gtkradiant/libs/container/hashtable.h
TTimo 12b372f89c ok
git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant@1 8a3a26a2-13c4-0310-b231-cf6edde360e5
2006-02-10 22:01:20 +00:00

474 lines
11 KiB
C++

/*
Copyright (C) 2001-2006, William Joseph.
All Rights Reserved.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if !defined(INCLUDED_CONTAINER_HASHTABLE_H)
#define INCLUDED_CONTAINER_HASHTABLE_H
#include <cstddef>
#include <algorithm>
#include <functional>
#include "debugging/debugging.h"
namespace HashTableDetail
{
inline std::size_t next_power_of_two(std::size_t size)
{
std::size_t result = 1;
while(result < size)
{
result <<= 1;
}
return result;
}
struct BucketNodeBase
{
BucketNodeBase* next;
BucketNodeBase* prev;
};
inline void list_initialise(BucketNodeBase& self)
{
self.next = self.prev = &self;
}
inline void list_swap(BucketNodeBase& self, BucketNodeBase& other)
{
BucketNodeBase tmp(self);
if(other.next == &other)
{
list_initialise(self);
}
else
{
self = other;
self.next->prev = self.prev->next = &self;
}
if(tmp.next == &self)
{
list_initialise(other);
}
else
{
other = tmp;
other.next->prev = other.prev->next = &other;
}
}
inline void node_link(BucketNodeBase* node, BucketNodeBase* next)
{
node->next = next;
node->prev = next->prev;
next->prev = node;
node->prev->next = node;
}
inline void node_unlink(BucketNodeBase* node)
{
node->prev->next = node->next;
node->next->prev = node->prev;
}
template<typename Key, typename Value>
struct KeyValue
{
const Key key;
Value value;
KeyValue(const Key& key_, const Value& value_)
: key(key_), value(value_)
{
}
};
template<typename Key, typename Value, typename Hash>
struct BucketNode : public BucketNodeBase
{
Hash m_hash;
KeyValue<Key, Value> m_value;
BucketNode(Hash hash, const Key& key, const Value& value)
: m_hash(hash), m_value(key, value)
{
}
BucketNode* getNext()
{
return static_cast<BucketNode*>(next);
}
BucketNode* getPrev()
{
return static_cast<BucketNode*>(prev);
}
};
template<typename Key, typename Value, typename Hash>
class BucketIterator
{
typedef BucketNode<Key, Value, Hash> Node;
Node* m_node;
void increment()
{
m_node = m_node->getNext();
}
public:
typedef std::forward_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef difference_type distance_type;
typedef KeyValue<Key, Value> value_type;
typedef value_type* pointer;
typedef value_type& reference;
BucketIterator(Node* node) : m_node(node)
{
}
Node* node()
{
return m_node;
}
bool operator==(const BucketIterator& other) const
{
return m_node == other.m_node;
}
bool operator!=(const BucketIterator& other) const
{
return !operator==(other);
}
BucketIterator& operator++()
{
increment();
return *this;
}
BucketIterator operator++(int)
{
BucketIterator tmp = *this;
increment();
return tmp;
}
value_type& operator*()
{
return m_node->m_value;
}
value_type* operator->()
{
return &(operator*());
}
};
}
/// A hash-table container which maps keys to values.
///
/// - Inserting or removing elements does not invalidate iterators.
/// - Inserting or retrieving an element for a given key takes O(1) time on average.
/// - Elements are stored in no particular order.
///
/// \param Key Uniquely identifies a value. Must provide a copy-constructor.
/// \param Value The value to be stored . Must provide a default-constructor and a copy-constructor.
/// \param Hasher Must provide 'std::size_t operator()(const Key&) const' which always returns the same result if the same argument is given.
/// \param KeyEqual Must provide 'bool operator==(const Key&, const Key&) const' which returns true only if both arguments are equal.
///
/// \dontinclude container/hashtable.cpp
/// \skipline HashTable example
/// \until end example
template<typename Key, typename Value, typename Hasher, typename KeyEqual = std::equal_to<Key> >
class HashTable : private KeyEqual, private Hasher
{
typedef typename Hasher::hash_type hash_type;
typedef HashTableDetail::KeyValue<Key, Value> KeyValue;
typedef HashTableDetail::BucketNode<Key, Value, hash_type> BucketNode;
inline BucketNode* node_create(hash_type hash, const Key& key, const Value& value)
{
return new BucketNode(hash, key, value);
}
inline void node_destroy(BucketNode* node)
{
delete node;
}
typedef BucketNode* Bucket;
static Bucket* buckets_new(std::size_t count)
{
Bucket* buckets = new Bucket[count];
std::uninitialized_fill(buckets, buckets + count, Bucket(0));
return buckets;
}
static void buckets_delete(Bucket* buckets)
{
delete[] buckets;
}
std::size_t m_bucketCount;
Bucket* m_buckets;
std::size_t m_size;
HashTableDetail::BucketNodeBase m_list;
BucketNode* getFirst()
{
return static_cast<BucketNode*>(m_list.next);
}
BucketNode* getLast()
{
return static_cast<BucketNode*>(&m_list);
}
public:
typedef KeyValue value_type;
typedef HashTableDetail::BucketIterator<Key, Value, hash_type> iterator;
private:
void initialise()
{
list_initialise(m_list);
}
hash_type hashKey(const Key& key)
{
return Hasher::operator()(key);
}
std::size_t getBucketId(hash_type hash) const
{
return hash & (m_bucketCount - 1);
}
Bucket& getBucket(hash_type hash)
{
return m_buckets[getBucketId(hash)];
}
BucketNode* bucket_find(Bucket bucket, hash_type hash, const Key& key)
{
std::size_t bucketId = getBucketId(hash);
for(iterator i(bucket); i != end(); ++i)
{
hash_type nodeHash = i.node()->m_hash;
if(getBucketId(nodeHash) != bucketId)
{
return 0;
}
if(nodeHash == hash && KeyEqual::operator()((*i).key, key))
{
return i.node();
}
}
return 0;
}
BucketNode* bucket_insert(Bucket& bucket, BucketNode* node)
{
// link node into list
node_link(node, bucket_next(bucket));
bucket = node;
return node;
}
BucketNode* bucket_next(Bucket& bucket)
{
Bucket* end = m_buckets + m_bucketCount;
for(Bucket* i = &bucket; i != end; ++i)
{
if(*i != 0)
{
return *i;
}
}
return getLast();
}
void buckets_resize(std::size_t count)
{
BucketNode* first = getFirst();
BucketNode* last = getLast();
buckets_delete(m_buckets);
m_bucketCount = count;
m_buckets = buckets_new(m_bucketCount);
initialise();
for(BucketNode* i = first; i != last;)
{
BucketNode* node = i;
i = i->getNext();
bucket_insert(getBucket((*node).m_hash), node);
}
}
void size_increment()
{
if(m_size == m_bucketCount)
{
buckets_resize(m_bucketCount == 0 ? 8 : m_bucketCount << 1);
}
++m_size;
}
void size_decrement()
{
--m_size;
}
HashTable(const HashTable& other);
HashTable& operator=(const HashTable& other);
public:
HashTable() : m_bucketCount(0), m_buckets(0), m_size(0)
{
initialise();
}
HashTable(std::size_t bucketCount) : m_bucketCount(HashTableDetail::next_power_of_two(bucketCount)), m_buckets(buckets_new(m_bucketCount)), m_size(0)
{
initialise();
}
~HashTable()
{
for(BucketNode* i = getFirst(); i != getLast();)
{
BucketNode* node = i;
i = i->getNext();
node_destroy(node);
}
buckets_delete(m_buckets);
}
iterator begin()
{
return iterator(getFirst());
}
iterator end()
{
return iterator(getLast());
}
bool empty() const
{
return m_size == 0;
}
std::size_t size() const
{
return m_size;
}
/// \brief Returns an iterator pointing to the value associated with \p key if it is contained by the hash-table, else \c end().
iterator find(const Key& key)
{
hash_type hash = hashKey(key);
if(m_bucketCount != 0)
{
Bucket bucket = getBucket(hash);
if(bucket != 0)
{
BucketNode* node = bucket_find(bucket, hash, key);
if(node != 0)
{
return iterator(node);
}
}
}
return end();
}
/// \brief Adds \p value to the hash-table associated with \p key if it does not exist.
iterator insert(const Key& key, const Value& value)
{
hash_type hash = hashKey(key);
if(m_bucketCount != 0)
{
Bucket& bucket = getBucket(hash);
if(bucket != 0)
{
BucketNode* node = bucket_find(bucket, hash, key);
if(node != 0)
{
return iterator(node);
}
}
}
size_increment();
return iterator(bucket_insert(getBucket(hash), node_create(hash, key, value)));
}
/// \brief Removes the value pointed to by \p i from the hash-table.
///
/// \p i must be a deferenceable iterator into the hash-table.
void erase(iterator i)
{
Bucket& bucket = getBucket(i.node()->m_hash);
BucketNode* node = i.node();
// if this was the last node in the bucket
if(bucket == node)
{
bucket = (node->getNext() == getLast() || &getBucket(node->getNext()->m_hash) != &bucket) ? 0 : node->getNext();
}
node_unlink(node);
ASSERT_MESSAGE(node != 0, "tried to erase a non-existent key/value");
node_destroy(node);
size_decrement();
}
/// \brief Returns the value identified by \p key if it is contained by the hash-table, else inserts and returns a new default-constructed value associated with \p key.
Value& operator[](const Key& key)
{
hash_type hash = hashKey(key);
if(m_bucketCount != 0)
{
Bucket& bucket = getBucket(hash);
if(bucket != 0)
{
BucketNode* node = bucket_find(bucket, hash, key);
if(node != 0)
{
return node->m_value.value;
}
}
}
size_increment();
return bucket_insert(getBucket(hash), node_create(hash, key, Value()))->m_value.value;
}
/// \brief Removes the value associated with \p key from the hash-table.
void erase(const Key& key)
{
erase(find(key));
}
/// \brief Swaps the contents of the hash-table with \p other.
void swap(HashTable& other)
{
std::swap(m_buckets, other.m_buckets);
std::swap(m_bucketCount, other.m_bucketCount);
std::swap(m_size, other.m_size);
HashTableDetail::list_swap(m_list, other.m_list);
}
/// \brief Removes all values from the hash-table.
void clear()
{
HashTable tmp;
tmp.swap(*this);
}
};
#endif