mirror of
https://github.com/TTimo/GtkRadiant.git
synced 2025-01-11 04:21:08 +00:00
214 lines
6.9 KiB
C
214 lines
6.9 KiB
C
|
||
#include <stdlib.h>
|
||
#include <limits.h>
|
||
#include <float.h>
|
||
|
||
#include "mathlib.h"
|
||
|
||
#define TINY FLT_MIN
|
||
|
||
void lubksb( float **a, int n, int *indx, float b[] ){
|
||
// Solves the set of n linear equations A.X=B. Here a[n][n] is input, not as the matrix
|
||
// A but rather as its LU decomposition determined by the routine ludcmp. indx[n] is input
|
||
// as the permutation vector returned by ludcmp. b[n] is input as the right-hand side vector
|
||
// B, and returns with the solution vector X. a, n and indx are not modified by this routine
|
||
// and can be left in place for successive calls with different right-hand sides b. This routine takes
|
||
// into account the possibility that b will begin with many zero elements, so it is efficient for use
|
||
// in matrix inversion
|
||
int i,ii = -1,ip,j;
|
||
float sum;
|
||
|
||
for ( i = 0; i < n; i++ ) {
|
||
ip = indx[i];
|
||
sum = b[ip];
|
||
b[ip] = b[i];
|
||
if ( ii >= 0 ) {
|
||
for ( j = ii; j < i; j++ ) sum -= a[i][j] * b[j];
|
||
}
|
||
else if ( sum ) {
|
||
ii = i;
|
||
}
|
||
b[i] = sum;
|
||
}
|
||
for ( i = n - 1; i >= 0; i-- ) {
|
||
sum = b[i];
|
||
for ( j = i + 1; j < n; j++ ) sum -= a[i][j] * b[j];
|
||
b[i] = sum / a[i][i];
|
||
}
|
||
}
|
||
/* (C) Copr. 1986-92 Numerical Recipes Software */
|
||
|
||
|
||
int ludcmp( float **a, int n, int *indx, float *d ){
|
||
// given a matrix a[n][n] this routine replaces it with the LU decomposition of a rowwise
|
||
// permutation of itself. a and n are input. a is output, arranged as in above equation;
|
||
// indx[n] is an output vector that records the row permutation effected by the partial
|
||
// pivoting; d is output as +/-1 depending on whether the number of row interchanges was even
|
||
// or odd, respectively. This routine is used in combination with lubksb to solve linear
|
||
// equations or invert a matrix.
|
||
int i,imax,j,k;
|
||
float big,dum,sum,temp;
|
||
float *vv;
|
||
|
||
vv = (float*)malloc( sizeof( float ) * n );
|
||
*d = 1.0;
|
||
for ( i = 0; i < n; i++ ) {
|
||
big = 0.0;
|
||
for ( j = 0; j < n; j++ )
|
||
if ( ( temp = (float)fabs( a[i][j] ) ) > big ) {
|
||
big = temp;
|
||
}
|
||
if ( big == 0.0 ) {
|
||
return 1;
|
||
}
|
||
vv[i] = 1.0f / big;
|
||
}
|
||
for ( j = 0; j < n; j++ ) {
|
||
for ( i = 0; i < j; i++ ) {
|
||
sum = a[i][j];
|
||
for ( k = 0; k < i; k++ ) sum -= a[i][k] * a[k][j];
|
||
a[i][j] = sum;
|
||
}
|
||
big = 0.0;
|
||
for ( i = j; i < n; i++ ) {
|
||
sum = a[i][j];
|
||
for ( k = 0; k < j; k++ )
|
||
sum -= a[i][k] * a[k][j];
|
||
a[i][j] = sum;
|
||
if ( ( dum = vv[i] * (float)fabs( sum ) ) >= big ) {
|
||
big = dum;
|
||
imax = i;
|
||
}
|
||
}
|
||
if ( j != imax ) {
|
||
for ( k = 0; k < n; k++ ) {
|
||
dum = a[imax][k];
|
||
a[imax][k] = a[j][k];
|
||
a[j][k] = dum;
|
||
}
|
||
*d = -( *d );
|
||
vv[imax] = vv[j];
|
||
}
|
||
indx[j] = imax;
|
||
if ( a[j][j] == 0.0 ) {
|
||
a[j][j] = TINY;
|
||
}
|
||
if ( j != n ) {
|
||
dum = 1.0f / ( a[j][j] );
|
||
for ( i = j + 1; i < n; i++ ) a[i][j] *= dum;
|
||
}
|
||
}
|
||
free( vv );
|
||
return 0;
|
||
}
|
||
/* (C) Copr. 1986-92 Numerical Recipes Software */
|
||
|
||
|
||
/*
|
||
void ludcmp(float **a, int n, int *indx, float *d)
|
||
//Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a rowwise
|
||
//permutation of itself. a and n are input. a is output, arranged as in equation (2.3.14) above;
|
||
//indx[1..n] is an output vector that records the row permutation eected by the partial
|
||
//pivoting; d is output as .1 depending on whether the number of row interchanges was even
|
||
//or odd, respectively. This routine is used in combination with lubksb to solve linear equations
|
||
//or invert a matrix.
|
||
{
|
||
int i,imax,j,k;
|
||
float big,dum,sum,temp;
|
||
float *vv; //vv stores the implicit scaling of each row.
|
||
vv=vector(1,n);
|
||
*d=1.0; //No row interchanges yet.
|
||
for (i=1;i<=n;i++) { //Loop over rows to get the implicit scaling information.
|
||
big=0.0;
|
||
for (j=1;j<=n;j++)
|
||
if ((temp=fabs(a[i][j])) > big) big=temp;
|
||
if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
|
||
//No nonzero largest element.
|
||
vv[i]=1.0/big; //Save the scaling.
|
||
}
|
||
for (j=1;j<=n;j++) { //This is the loop over columns of Crout's method.
|
||
for (i=1;i<j;i++) { //This is equation (2.3.12) except for i = j.
|
||
sum=a[i][j];
|
||
for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
|
||
a[i][j]=sum;
|
||
}
|
||
big=0.0; //Initialize for the search for largest pivot element.
|
||
for (i=j;i<=n;i++) { //This is i = j of equation (2.3.12) and i = j+1 : ::N
|
||
of equation (2.3.13). sum=a[i][j];
|
||
for (k=1;k<j;k++)
|
||
sum -= a[i][k]*a[k][j];
|
||
a[i][j]=sum;
|
||
if ( (dum=vv[i]*fabs(sum)) >= big) {
|
||
//Is the figure of merit for the pivot better than the best so far?
|
||
big=dum;
|
||
imax=i;
|
||
}
|
||
}
|
||
if (j != imax) { //Do we need to interchange rows?
|
||
for (k=1;k<=n;k++) { Yes, do so...
|
||
dum=a[imax][k];
|
||
a[imax][k]=a[j][k];
|
||
a[j][k]=dum;
|
||
}
|
||
*d = -(*d); //...and change the parity of d.
|
||
vv[imax]=vv[j]; //Also interchange the scale factor.
|
||
}
|
||
indx[j]=imax;
|
||
if (a[j][j] == 0.0) a[j][j]=TINY;
|
||
//If the pivot element is zero the matrix is singular (at least to the precision of the
|
||
// algorithm). For some applications on singular matrices, it is desirable to substitute
|
||
// TINY for zero.
|
||
if (j != n) { //Now, finally, divide by the pivot element.
|
||
dum=1.0/(a[j][j]);
|
||
for (i=j+1;i<=n;i++) a[i][j] *= dum;
|
||
}
|
||
} //Go back for the next column in the reduction.
|
||
free_vector(vv,1,n);
|
||
}
|
||
|
||
void lubksb(float **a, int n, int *indx, float b[])
|
||
//Solves the set of n linear equations A.X = B. Here a[1..n][1..n] is input, not as the matrix
|
||
//A but rather as its LU decomposition, determined by the routine ludcmp. indx[1..n] is input
|
||
//as the permutation vector returned by ludcmp. b[1..n] is input as the right-hand side vector
|
||
//B, and returns with the solution vector X. a, n, and indx are not modied by this routine
|
||
//and can be left in place for successive calls with dierent right-hand sides b. This routine takes
|
||
//into account the possibility that b will begin with many zero elements, so it is e.cient for use
|
||
//in matrix inversion.
|
||
{
|
||
int i,ii=0,ip,j;
|
||
float sum;
|
||
for (i=1;i<=n;i++) { //When ii is set to a positive value, it will become the
|
||
//index of the first nonvanishing element of b. Wenow
|
||
//do the forward substitution, equation (2.3.6). The
|
||
//only new wrinkle is to unscramble the permutation
|
||
//as we go.
|
||
ip=indx[i];
|
||
sum=b[ip];
|
||
b[ip]=b[i];
|
||
if (ii)
|
||
for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
|
||
else if (sum) ii=i; //A nonzero element was encountered, so from now on we
|
||
//will have to do the sums in the loop above. b[i]=sum;
|
||
}
|
||
for (i=n;i>=1;i--) { //Now we do the backsubstitution, equation (2.3.7).
|
||
sum=b[i];
|
||
for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
|
||
b[i]=sum/a[i][i]; //Store a component of the solution vector X.
|
||
} //All done!
|
||
}
|
||
|
||
void bleh()
|
||
{
|
||
#define N ...
|
||
float **a,**y,d,*col;
|
||
int i,j,*indx;
|
||
...
|
||
ludcmp(a,N,indx,&d); //Decompose the matrix just once.
|
||
for(j=1;j<=N;j++) { //Find inverse by columns.
|
||
for(i=1;i<=N;i++) col[i]=0.0;
|
||
col[j]=1.0;
|
||
lubksb(a,N,indx,col);
|
||
for(i=1;i<=N;i++) y[i][j]=col[i];
|
||
}
|
||
}
|
||
*/
|