/* =========================================================================== Copyright (C) 1997-2006 Id Software, Inc. This file is part of Quake 2 Tools source code. Quake 2 Tools source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake 2 Tools source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake 2 Tools source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #include "cmdlib.h" #include "mathlib.h" #include "bspfile.h" #define ON_EPSILON 0.1 typedef struct tnode_s { int type; vec3_t normal; float dist; int children[2]; int pad; } tnode_t; tnode_t *tnodes, *tnode_p; /* ============== MakeTnode Converts the disk node structure into the efficient tracing structure ============== */ void MakeTnode (int nodenum) { tnode_t *t; dplane_t *plane; int i; dnode_t *node; t = tnode_p++; node = dnodes + nodenum; plane = dplanes + node->planenum; t->type = plane->type; VectorCopy (plane->normal, t->normal); t->dist = plane->dist; for (i=0 ; i<2 ; i++) { if (node->children[i] < 0) t->children[i] = (dleafs[-node->children[i] - 1].contents & CONTENTS_SOLID) | (1<<31); else { t->children[i] = tnode_p - tnodes; MakeTnode (node->children[i]); } } } /* ============= MakeTnodes Loads the node structure out of a .bsp file to be used for light occlusion ============= */ void MakeTnodes (dmodel_t *bm) { // 32 byte align the structs tnodes = malloc( (numnodes+1) * sizeof(tnode_t)); tnodes = (tnode_t *)(((int)tnodes + 31)&~31); tnode_p = tnodes; MakeTnode (0); } //========================================================== int TestLine_r (int node, vec3_t start, vec3_t stop) { tnode_t *tnode; float front, back; vec3_t mid; float frac; int side; int r; if (node & (1<<31)) return node & ~(1<<31); // leaf node tnode = &tnodes[node]; switch (tnode->type) { case PLANE_X: front = start[0] - tnode->dist; back = stop[0] - tnode->dist; break; case PLANE_Y: front = start[1] - tnode->dist; back = stop[1] - tnode->dist; break; case PLANE_Z: front = start[2] - tnode->dist; back = stop[2] - tnode->dist; break; default: front = (start[0]*tnode->normal[0] + start[1]*tnode->normal[1] + start[2]*tnode->normal[2]) - tnode->dist; back = (stop[0]*tnode->normal[0] + stop[1]*tnode->normal[1] + stop[2]*tnode->normal[2]) - tnode->dist; break; } if (front >= -ON_EPSILON && back >= -ON_EPSILON) return TestLine_r (tnode->children[0], start, stop); if (front < ON_EPSILON && back < ON_EPSILON) return TestLine_r (tnode->children[1], start, stop); side = front < 0; frac = front / (front-back); mid[0] = start[0] + (stop[0] - start[0])*frac; mid[1] = start[1] + (stop[1] - start[1])*frac; mid[2] = start[2] + (stop[2] - start[2])*frac; r = TestLine_r (tnode->children[side], start, mid); if (r) return r; return TestLine_r (tnode->children[!side], mid, stop); } int TestLine (vec3_t start, vec3_t stop) { return TestLine_r (0, start, stop); } /* ============================================================================== LINE TRACING The major lighting operation is a point to point visibility test, performed by recursive subdivision of the line by the BSP tree. ============================================================================== */ typedef struct { vec3_t backpt; int side; int node; } tracestack_t; /* ============== TestLine ============== */ qboolean _TestLine (vec3_t start, vec3_t stop) { int node; float front, back; tracestack_t *tstack_p; int side; float frontx,fronty, frontz, backx, backy, backz; tracestack_t tracestack[64]; tnode_t *tnode; frontx = start[0]; fronty = start[1]; frontz = start[2]; backx = stop[0]; backy = stop[1]; backz = stop[2]; tstack_p = tracestack; node = 0; while (1) { if (node == CONTENTS_SOLID) { #if 0 float d1, d2, d3; d1 = backx - frontx; d2 = backy - fronty; d3 = backz - frontz; if (d1*d1 + d2*d2 + d3*d3 > 1) #endif return false; // DONE! } while (node < 0) { // pop up the stack for a back side tstack_p--; if (tstack_p < tracestack) return true; node = tstack_p->node; // set the hit point for this plane frontx = backx; fronty = backy; frontz = backz; // go down the back side backx = tstack_p->backpt[0]; backy = tstack_p->backpt[1]; backz = tstack_p->backpt[2]; node = tnodes[tstack_p->node].children[!tstack_p->side]; } tnode = &tnodes[node]; switch (tnode->type) { case PLANE_X: front = frontx - tnode->dist; back = backx - tnode->dist; break; case PLANE_Y: front = fronty - tnode->dist; back = backy - tnode->dist; break; case PLANE_Z: front = frontz - tnode->dist; back = backz - tnode->dist; break; default: front = (frontx*tnode->normal[0] + fronty*tnode->normal[1] + frontz*tnode->normal[2]) - tnode->dist; back = (backx*tnode->normal[0] + backy*tnode->normal[1] + backz*tnode->normal[2]) - tnode->dist; break; } if (front > -ON_EPSILON && back > -ON_EPSILON) // if (front > 0 && back > 0) { node = tnode->children[0]; continue; } if (front < ON_EPSILON && back < ON_EPSILON) // if (front <= 0 && back <= 0) { node = tnode->children[1]; continue; } side = front < 0; front = front / (front-back); tstack_p->node = node; tstack_p->side = side; tstack_p->backpt[0] = backx; tstack_p->backpt[1] = backy; tstack_p->backpt[2] = backz; tstack_p++; backx = frontx + front*(backx-frontx); backy = fronty + front*(backy-fronty); backz = frontz + front*(backz-frontz); node = tnode->children[side]; } }