/* ------------------------------------------------------------------------------- Copyright (C) 1999-2006 Id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ---------------------------------------------------------------------------------- This code has been altered significantly from its original form, to support several games based on the Quake III Arena engine, in the form of "Q3Map2." ------------------------------------------------------------------------------- */ /* marker */ #define SURFACE_META_C /* dependencies */ #include "q3map2.h" #define LIGHTMAP_EXCEEDED -1 #define S_EXCEEDED -2 #define T_EXCEEDED -3 #define ST_EXCEEDED -4 #define UNSUITABLE_TRIANGLE -10 #define VERTS_EXCEEDED -1000 #define INDEXES_EXCEEDED -2000 #define GROW_META_VERTS 1024 #define GROW_META_TRIANGLES 1024 static int numMetaSurfaces, numPatchMetaSurfaces; static int maxMetaVerts = 0; static int numMetaVerts = 0; static int firstSearchMetaVert = 0; static bspDrawVert_t *metaVerts = NULL; static int maxMetaTriangles = 0; static int numMetaTriangles = 0; static metaTriangle_t *metaTriangles = NULL; /* ClearMetaVertexes() called before staring a new entity to clear out the triangle list */ void ClearMetaTriangles( void ) { numMetaVerts = 0; numMetaTriangles = 0; } /* FindMetaVertex() finds a matching metavertex in the global list, returning its index */ static int FindMetaVertex( bspDrawVert_t *src ) { int i; bspDrawVert_t *v, *temp; /* try to find an existing drawvert */ for( i = firstSearchMetaVert, v = &metaVerts[ i ]; i < numMetaVerts; i++, v++ ) { if( memcmp( src, v, sizeof( bspDrawVert_t ) ) == 0 ) return i; } /* enough space? */ if( numMetaVerts >= maxMetaVerts ) { /* reallocate more room */ maxMetaVerts += GROW_META_VERTS; temp = safe_malloc( maxMetaVerts * sizeof( bspDrawVert_t ) ); if( metaVerts != NULL ) { memcpy( temp, metaVerts, numMetaVerts * sizeof( bspDrawVert_t ) ); free( metaVerts ); } metaVerts = temp; } /* add the triangle */ memcpy( &metaVerts[ numMetaVerts ], src, sizeof( bspDrawVert_t ) ); numMetaVerts++; /* return the count */ return (numMetaVerts - 1); } /* AddMetaTriangle() adds a new meta triangle, allocating more memory if necessary */ static int AddMetaTriangle( void ) { metaTriangle_t *temp; /* enough space? */ if( numMetaTriangles >= maxMetaTriangles ) { /* reallocate more room */ maxMetaTriangles += GROW_META_TRIANGLES; temp = safe_malloc( maxMetaTriangles * sizeof( metaTriangle_t ) ); if( metaTriangles != NULL ) { memcpy( temp, metaTriangles, numMetaTriangles * sizeof( metaTriangle_t ) ); free( metaTriangles ); } metaTriangles = temp; } /* increment and return */ numMetaTriangles++; return numMetaTriangles - 1; } /* FindMetaTriangle() finds a matching metatriangle in the global list, otherwise adds it and returns the index to the metatriangle */ int FindMetaTriangle( metaTriangle_t *src, bspDrawVert_t *a, bspDrawVert_t *b, bspDrawVert_t *c, int planeNum ) { int triIndex; vec3_t dir; /* detect degenerate triangles fixme: do something proper here */ VectorSubtract( a->xyz, b->xyz, dir ); if( VectorLength( dir ) < 0.125f ) return -1; VectorSubtract( b->xyz, c->xyz, dir ); if( VectorLength( dir ) < 0.125f ) return -1; VectorSubtract( c->xyz, a->xyz, dir ); if( VectorLength( dir ) < 0.125f ) return -1; /* find plane */ if( planeNum >= 0 ) { /* because of precision issues with small triangles, try to use the specified plane */ src->planeNum = planeNum; VectorCopy( mapplanes[ planeNum ].normal, src->plane ); src->plane[ 3 ] = mapplanes[ planeNum ].dist; } else { /* calculate a plane from the triangle's points (and bail if a plane can't be constructed) */ src->planeNum = -1; if( PlaneFromPoints( src->plane, a->xyz, b->xyz, c->xyz ) == qfalse ) return -1; } /* ydnar 2002-10-03: repair any bogus normals (busted ase import kludge) */ if( VectorLength( a->normal ) <= 0.0f ) VectorCopy( src->plane, a->normal ); if( VectorLength( b->normal ) <= 0.0f ) VectorCopy( src->plane, b->normal ); if( VectorLength( c->normal ) <= 0.0f ) VectorCopy( src->plane, c->normal ); /* ydnar 2002-10-04: set lightmap axis if not already set */ if( !(src->si->compileFlags & C_VERTEXLIT) && src->lightmapAxis[ 0 ] == 0.0f && src->lightmapAxis[ 1 ] == 0.0f && src->lightmapAxis[ 2 ] == 0.0f ) { /* the shader can specify an explicit lightmap axis */ if( src->si->lightmapAxis[ 0 ] || src->si->lightmapAxis[ 1 ] || src->si->lightmapAxis[ 2 ] ) VectorCopy( src->si->lightmapAxis, src->lightmapAxis ); /* new axis-finding code */ else CalcLightmapAxis( src->plane, src->lightmapAxis ); } /* fill out the src triangle */ src->indexes[ 0 ] = FindMetaVertex( a ); src->indexes[ 1 ] = FindMetaVertex( b ); src->indexes[ 2 ] = FindMetaVertex( c ); /* try to find an existing triangle */ #ifdef USE_EXHAUSTIVE_SEARCH { int i; metaTriangle_t *tri; for( i = 0, tri = metaTriangles; i < numMetaTriangles; i++, tri++ ) { if( memcmp( src, tri, sizeof( metaTriangle_t ) ) == 0 ) return i; } } #endif /* get a new triangle */ triIndex = AddMetaTriangle(); /* add the triangle */ memcpy( &metaTriangles[ triIndex ], src, sizeof( metaTriangle_t ) ); /* return the triangle index */ return triIndex; } /* SurfaceToMetaTriangles() converts a classified surface to metatriangles */ static void SurfaceToMetaTriangles( mapDrawSurface_t *ds ) { int i; metaTriangle_t src; bspDrawVert_t a, b, c; /* only handle certain types of surfaces */ if( ds->type != SURFACE_FACE && ds->type != SURFACE_META && ds->type != SURFACE_FORCED_META && ds->type != SURFACE_DECAL ) return; /* speed at the expense of memory */ firstSearchMetaVert = numMetaVerts; /* only handle valid surfaces */ if( ds->type != SURFACE_BAD && ds->numVerts >= 3 && ds->numIndexes >= 3 ) { /* walk the indexes and create triangles */ for( i = 0; i < ds->numIndexes; i += 3 ) { /* sanity check the indexes */ if( ds->indexes[ i ] == ds->indexes[ i + 1 ] || ds->indexes[ i ] == ds->indexes[ i + 2 ] || ds->indexes[ i + 1 ] == ds->indexes[ i + 2 ] ) { //% Sys_Printf( "%d! ", ds->numVerts ); continue; } /* build a metatriangle */ src.si = ds->shaderInfo; src.side = (ds->sideRef != NULL ? ds->sideRef->side : NULL); src.entityNum = ds->entityNum; src.surfaceNum = ds->surfaceNum; src.planeNum = ds->planeNum; src.castShadows = ds->castShadows; src.recvShadows = ds->recvShadows; src.fogNum = ds->fogNum; src.sampleSize = ds->sampleSize; VectorCopy( ds->lightmapAxis, src.lightmapAxis ); /* copy drawverts */ memcpy( &a, &ds->verts[ ds->indexes[ i ] ], sizeof( a ) ); memcpy( &b, &ds->verts[ ds->indexes[ i + 1 ] ], sizeof( b ) ); memcpy( &c, &ds->verts[ ds->indexes[ i + 2 ] ], sizeof( c ) ); FindMetaTriangle( &src, &a, &b, &c, ds->planeNum ); } /* add to count */ numMetaSurfaces++; } /* clear the surface (free verts and indexes, sets it to SURFACE_BAD) */ ClearSurface( ds ); } /* TriangulatePatchSurface() creates triangles from a patch */ void TriangulatePatchSurface( mapDrawSurface_t *ds ) { int iterations, x, y, pw[ 5 ], r; mapDrawSurface_t *dsNew; mesh_t src, *subdivided, *mesh; /* try to early out */ if( ds->numVerts == 0 || ds->type != SURFACE_PATCH || patchMeta == qfalse ) return; /* make a mesh from the drawsurf */ src.width = ds->patchWidth; src.height = ds->patchHeight; src.verts = ds->verts; //% subdivided = SubdivideMesh( src, 8, 999 ); iterations = IterationsForCurve( ds->longestCurve, patchSubdivisions ); subdivided = SubdivideMesh2( src, iterations ); //% ds->maxIterations /* fit it to the curve and remove colinear verts on rows/columns */ PutMeshOnCurve( *subdivided ); mesh = RemoveLinearMeshColumnsRows( subdivided ); FreeMesh( subdivided ); //% MakeMeshNormals( mesh ); /* make a copy of the drawsurface */ dsNew = AllocDrawSurface( SURFACE_META ); memcpy( dsNew, ds, sizeof( *ds ) ); /* if the patch is nonsolid, then discard it */ if( !(ds->shaderInfo->compileFlags & C_SOLID) ) ClearSurface( ds ); /* set new pointer */ ds = dsNew; /* basic transmogrification */ ds->type = SURFACE_META; ds->numIndexes = 0; ds->indexes = safe_malloc( mesh->width * mesh->height * 6 * sizeof( int ) ); /* copy the verts in */ ds->numVerts = (mesh->width * mesh->height); ds->verts = mesh->verts; /* iterate through the mesh quads */ for( y = 0; y < (mesh->height - 1); y++ ) { for( x = 0; x < (mesh->width - 1); x++ ) { /* set indexes */ pw[ 0 ] = x + (y * mesh->width); pw[ 1 ] = x + ((y + 1) * mesh->width); pw[ 2 ] = x + 1 + ((y + 1) * mesh->width); pw[ 3 ] = x + 1 + (y * mesh->width); pw[ 4 ] = x + (y * mesh->width); /* same as pw[ 0 ] */ /* set radix */ r = (x + y) & 1; /* make first triangle */ ds->indexes[ ds->numIndexes++ ] = pw[ r + 0 ]; ds->indexes[ ds->numIndexes++ ] = pw[ r + 1 ]; ds->indexes[ ds->numIndexes++ ] = pw[ r + 2 ]; /* make second triangle */ ds->indexes[ ds->numIndexes++ ] = pw[ r + 0 ]; ds->indexes[ ds->numIndexes++ ] = pw[ r + 2 ]; ds->indexes[ ds->numIndexes++ ] = pw[ r + 3 ]; } } /* free the mesh, but not the verts */ free( mesh ); /* add to count */ numPatchMetaSurfaces++; /* classify it */ ClassifySurfaces( 1, ds ); } /* FanFaceSurface() - ydnar creates a tri-fan from a brush face winding loosely based on SurfaceAsTriFan() */ void FanFaceSurface( mapDrawSurface_t *ds ) { int i, j, k, a, b, c, color[ MAX_LIGHTMAPS ][ 4 ]; bspDrawVert_t *verts, *centroid, *dv; double iv; /* try to early out */ if( !ds->numVerts || (ds->type != SURFACE_FACE && ds->type != SURFACE_DECAL) ) return; /* add a new vertex at the beginning of the surface */ verts = safe_malloc( (ds->numVerts + 1) * sizeof( bspDrawVert_t ) ); memset( verts, 0, sizeof( bspDrawVert_t ) ); memcpy( &verts[ 1 ], ds->verts, ds->numVerts * sizeof( bspDrawVert_t ) ); free( ds->verts ); ds->verts = verts; /* add up the drawverts to create a centroid */ centroid = &verts[ 0 ]; memset( color, 0, 4 * MAX_LIGHTMAPS * sizeof( int ) ); for( i = 1, dv = &verts[ 1 ]; i < (ds->numVerts + 1); i++, dv++ ) { VectorAdd( centroid->xyz, dv->xyz, centroid->xyz ); VectorAdd( centroid->normal, dv->normal, centroid->normal ); for( j = 0; j < 4; j++ ) { for( k = 0; k < MAX_LIGHTMAPS; k++ ) color[ k ][ j ] += dv->color[ k ][ j ]; if( j < 2 ) { centroid->st[ j ] += dv->st[ j ]; for( k = 0; k < MAX_LIGHTMAPS; k++ ) centroid->lightmap[ k ][ j ] += dv->lightmap[ k ][ j ]; } } } /* average the centroid */ iv = 1.0f / ds->numVerts; VectorScale( centroid->xyz, iv, centroid->xyz ); if( VectorNormalize( centroid->normal, centroid->normal ) <= 0 ) VectorCopy( verts[ 1 ].normal, centroid->normal ); for( j = 0; j < 4; j++ ) { for( k = 0; k < MAX_LIGHTMAPS; k++ ) { color[ k ][ j ] /= ds->numVerts; centroid->color[ k ][ j ] = (color[ k ][ j ] < 255.0f ? color[ k ][ j ] : 255); } if( j < 2 ) { centroid->st[ j ] *= iv; for( k = 0; k < MAX_LIGHTMAPS; k++ ) centroid->lightmap[ k ][ j ] *= iv; } } /* add to vert count */ ds->numVerts++; /* fill indexes in triangle fan order */ ds->numIndexes = 0; ds->indexes = safe_malloc( ds->numVerts * 3 * sizeof( int ) ); for( i = 1; i < ds->numVerts; i++ ) { a = 0; b = i; c = (i + 1) % ds->numVerts; c = c ? c : 1; ds->indexes[ ds->numIndexes++ ] = a; ds->indexes[ ds->numIndexes++ ] = b; ds->indexes[ ds->numIndexes++ ] = c; } /* add to count */ numFanSurfaces++; /* classify it */ ClassifySurfaces( 1, ds ); } /* StripFaceSurface() - ydnar attempts to create a valid tri-strip w/o degenerate triangles from a brush face winding based on SurfaceAsTriStrip() */ #define MAX_INDEXES 1024 void StripFaceSurface( mapDrawSurface_t *ds ) { int i, r, least, rotate, numIndexes, ni, a, b, c, indexes[ MAX_INDEXES ]; vec_t *v1, *v2; /* try to early out */ if( !ds->numVerts || (ds->type != SURFACE_FACE && ds->type != SURFACE_DECAL) ) return; /* is this a simple triangle? */ if( ds->numVerts == 3 ) { numIndexes = 3; VectorSet( indexes, 0, 1, 2 ); } else { /* ydnar: find smallest coordinate */ least = 0; if( ds->shaderInfo != NULL && ds->shaderInfo->autosprite == qfalse ) { for( i = 0; i < ds->numVerts; i++ ) { /* get points */ v1 = ds->verts[ i ].xyz; v2 = ds->verts[ least ].xyz; /* compare */ if( v1[ 0 ] < v2[ 0 ] || (v1[ 0 ] == v2[ 0 ] && v1[ 1 ] < v2[ 1 ]) || (v1[ 0 ] == v2[ 0 ] && v1[ 1 ] == v2[ 1 ] && v1[ 2 ] < v2[ 2 ]) ) least = i; } } /* determine the triangle strip order */ numIndexes = (ds->numVerts - 2) * 3; if( numIndexes > MAX_INDEXES ) Error( "MAX_INDEXES exceeded for surface (%d > %d) (%d verts)", numIndexes, MAX_INDEXES, ds->numVerts ); /* try all possible orderings of the points looking for a non-degenerate strip order */ for( r = 0; r < ds->numVerts; r++ ) { /* set rotation */ rotate = (r + least) % ds->numVerts; /* walk the winding in both directions */ for( ni = 0, i = 0; i < ds->numVerts - 2 - i; i++ ) { /* make indexes */ a = (ds->numVerts - 1 - i + rotate) % ds->numVerts; b = (i + rotate ) % ds->numVerts; c = (ds->numVerts - 2 - i + rotate) % ds->numVerts; /* test this triangle */ if( ds->numVerts > 4 && IsTriangleDegenerate( ds->verts, a, b, c ) ) break; indexes[ ni++ ] = a; indexes[ ni++ ] = b; indexes[ ni++ ] = c; /* handle end case */ if( i + 1 != ds->numVerts - 1 - i ) { /* make indexes */ a = (ds->numVerts - 2 - i + rotate ) % ds->numVerts; b = (i + rotate ) % ds->numVerts; c = (i + 1 + rotate ) % ds->numVerts; /* test triangle */ if( ds->numVerts > 4 && IsTriangleDegenerate( ds->verts, a, b, c ) ) break; indexes[ ni++ ] = a; indexes[ ni++ ] = b; indexes[ ni++ ] = c; } } /* valid strip? */ if( ni == numIndexes ) break; } /* if any triangle in the strip is degenerate, render from a centered fan point instead */ if( ni < numIndexes ) { FanFaceSurface( ds ); return; } } /* copy strip triangle indexes */ ds->numIndexes = numIndexes; ds->indexes = safe_malloc( ds->numIndexes * sizeof( int ) ); memcpy( ds->indexes, indexes, ds->numIndexes * sizeof( int ) ); /* add to count */ numStripSurfaces++; /* classify it */ ClassifySurfaces( 1, ds ); } /* MakeEntityMetaTriangles() builds meta triangles from brush faces (tristrips and fans) */ void MakeEntityMetaTriangles( entity_t *e ) { int i, f, fOld, start; mapDrawSurface_t *ds; /* note it */ Sys_FPrintf( SYS_VRB, "--- MakeEntityMetaTriangles ---\n" ); /* init pacifier */ fOld = -1; start = I_FloatTime(); /* walk the list of surfaces in the entity */ for( i = e->firstDrawSurf; i < numMapDrawSurfs; i++ ) { /* print pacifier */ f = 10 * (i - e->firstDrawSurf) / (numMapDrawSurfs - e->firstDrawSurf); if( f != fOld ) { fOld = f; Sys_FPrintf( SYS_VRB, "%d...", f ); } /* get surface */ ds = &mapDrawSurfs[ i ]; if( ds->numVerts <= 0 ) continue; /* ignore autosprite surfaces */ if( ds->shaderInfo->autosprite ) continue; /* meta this surface? */ if( meta == qfalse && ds->shaderInfo->forceMeta == qfalse ) continue; /* switch on type */ switch( ds->type ) { case SURFACE_FACE: case SURFACE_DECAL: StripFaceSurface( ds ); SurfaceToMetaTriangles( ds ); break; case SURFACE_PATCH: TriangulatePatchSurface( ds ); break; case SURFACE_TRIANGLES: break; case SURFACE_FORCED_META: case SURFACE_META: SurfaceToMetaTriangles( ds ); break; default: break; } } /* print time */ if( (numMapDrawSurfs - e->firstDrawSurf) ) Sys_FPrintf( SYS_VRB, " (%d)\n", (int) (I_FloatTime() - start) ); /* emit some stats */ Sys_FPrintf( SYS_VRB, "%9d total meta surfaces\n", numMetaSurfaces ); Sys_FPrintf( SYS_VRB, "%9d stripped surfaces\n", numStripSurfaces ); Sys_FPrintf( SYS_VRB, "%9d fanned surfaces\n", numFanSurfaces ); Sys_FPrintf( SYS_VRB, "%9d patch meta surfaces\n", numPatchMetaSurfaces ); Sys_FPrintf( SYS_VRB, "%9d meta verts\n", numMetaVerts ); Sys_FPrintf( SYS_VRB, "%9d meta triangles\n", numMetaTriangles ); /* tidy things up */ TidyEntitySurfaces( e ); } /* PointTriangleIntersect() assuming that all points lie in plane, determine if pt is inside the triangle abc code originally (c) 2001 softSurfer (www.softsurfer.com) */ #define MIN_OUTSIDE_EPSILON -0.01f #define MAX_OUTSIDE_EPSILON 1.01f static qboolean PointTriangleIntersect( vec3_t pt, vec4_t plane, vec3_t a, vec3_t b, vec3_t c, vec3_t bary ) { vec3_t u, v, w; float uu, uv, vv, wu, wv, d; /* make vectors */ VectorSubtract( b, a, u ); VectorSubtract( c, a, v ); VectorSubtract( pt, a, w ); /* more setup */ uu = DotProduct( u, u ); uv = DotProduct( u, v ); vv = DotProduct( v, v ); wu = DotProduct( w, u ); wv = DotProduct( w, v ); d = uv * uv - uu * vv; /* calculate barycentric coordinates */ bary[ 1 ] = (uv * wv - vv * wu) / d; if( bary[ 1 ] < MIN_OUTSIDE_EPSILON || bary[ 1 ] > MAX_OUTSIDE_EPSILON ) return qfalse; bary[ 2 ] = (uv * wv - uu * wv) / d; if( bary[ 2 ] < MIN_OUTSIDE_EPSILON || bary[ 2 ] > MAX_OUTSIDE_EPSILON ) return qfalse; bary[ 0 ] = 1.0f - (bary[ 1 ] + bary[ 2 ]); /* point is in triangle */ return qtrue; } /* CreateEdge() sets up an edge structure from a plane and 2 points that the edge ab falls lies in */ typedef struct edge_s { vec3_t origin, edge; vec_t length, kingpinLength; int kingpin; vec4_t plane; } edge_t; void CreateEdge( vec4_t plane, vec3_t a, vec3_t b, edge_t *edge ) { /* copy edge origin */ VectorCopy( a, edge->origin ); /* create vector aligned with winding direction of edge */ VectorSubtract( b, a, edge->edge ); if( fabs( edge->edge[ 0 ] ) > fabs( edge->edge[ 1 ] ) && fabs( edge->edge[ 0 ] ) > fabs( edge->edge[ 2 ] ) ) edge->kingpin = 0; else if( fabs( edge->edge[ 1 ] ) > fabs( edge->edge[ 0 ] ) && fabs( edge->edge[ 1 ] ) > fabs( edge->edge[ 2 ] ) ) edge->kingpin = 1; else edge->kingpin = 2; edge->kingpinLength = edge->edge[ edge->kingpin ]; VectorNormalize( edge->edge, edge->edge ); edge->edge[ 3 ] = DotProduct( a, edge->edge ); edge->length = DotProduct( b, edge->edge ) - edge->edge[ 3 ]; /* create perpendicular plane that edge lies in */ CrossProduct( plane, edge->edge, edge->plane ); edge->plane[ 3 ] = DotProduct( a, edge->plane ); } /* FixMetaTJunctions() fixes t-junctions on meta triangles */ #define TJ_PLANE_EPSILON (1.0f / 8.0f) #define TJ_EDGE_EPSILON (1.0f / 8.0f) #define TJ_POINT_EPSILON (1.0f / 8.0f) void FixMetaTJunctions( void ) { int i, j, k, f, fOld, start, vertIndex, triIndex, numTJuncs; metaTriangle_t *tri, *newTri; shaderInfo_t *si; bspDrawVert_t *a, *b, *c, junc; float dist, amount; vec3_t pt; vec4_t plane; edge_t edges[ 3 ]; /* this code is crap; revisit later */ return; /* note it */ Sys_FPrintf( SYS_VRB, "--- FixMetaTJunctions ---\n" ); /* init pacifier */ fOld = -1; start = I_FloatTime(); /* walk triangle list */ numTJuncs = 0; for( i = 0; i < numMetaTriangles; i++ ) { /* get triangle */ tri = &metaTriangles[ i ]; /* print pacifier */ f = 10 * i / numMetaTriangles; if( f != fOld ) { fOld = f; Sys_FPrintf( SYS_VRB, "%d...", f ); } /* attempt to early out */ si = tri->si; if( (si->compileFlags & C_NODRAW) || si->autosprite || si->notjunc ) continue; /* calculate planes */ VectorCopy( tri->plane, plane ); plane[ 3 ] = tri->plane[ 3 ]; CreateEdge( plane, metaVerts[ tri->indexes[ 0 ] ].xyz, metaVerts[ tri->indexes[ 1 ] ].xyz, &edges[ 0 ] ); CreateEdge( plane, metaVerts[ tri->indexes[ 1 ] ].xyz, metaVerts[ tri->indexes[ 2 ] ].xyz, &edges[ 1 ] ); CreateEdge( plane, metaVerts[ tri->indexes[ 2 ] ].xyz, metaVerts[ tri->indexes[ 0 ] ].xyz, &edges[ 2 ] ); /* walk meta vert list */ for( j = 0; j < numMetaVerts; j++ ) { /* get vert */ VectorCopy( metaVerts[ j ].xyz, pt ); /* debug code: darken verts */ if( i == 0 ) VectorSet( metaVerts[ j ].color[ 0 ], 8, 8, 8 ); /* determine if point lies in the triangle's plane */ dist = DotProduct( pt, plane ) - plane[ 3 ]; if( fabs( dist ) > TJ_PLANE_EPSILON ) continue; /* skip this point if it already exists in the triangle */ for( k = 0; k < 3; k++ ) { if( fabs( pt[ 0 ] - metaVerts[ tri->indexes[ k ] ].xyz[ 0 ] ) <= TJ_POINT_EPSILON && fabs( pt[ 1 ] - metaVerts[ tri->indexes[ k ] ].xyz[ 1 ] ) <= TJ_POINT_EPSILON && fabs( pt[ 2 ] - metaVerts[ tri->indexes[ k ] ].xyz[ 2 ] ) <= TJ_POINT_EPSILON ) break; } if( k < 3 ) continue; /* walk edges */ for( k = 0; k < 3; k++ ) { /* ignore bogus edges */ if( fabs( edges[ k ].kingpinLength ) < TJ_EDGE_EPSILON ) continue; /* determine if point lies on the edge */ dist = DotProduct( pt, edges[ k ].plane ) - edges[ k ].plane[ 3 ]; if( fabs( dist ) > TJ_EDGE_EPSILON ) continue; /* determine how far along the edge the point lies */ amount = (pt[ edges[ k ].kingpin ] - edges[ k ].origin[ edges[ k ].kingpin ]) / edges[ k ].kingpinLength; if( amount <= 0.0f || amount >= 1.0f ) continue; #if 0 dist = DotProduct( pt, edges[ k ].edge ) - edges[ k ].edge[ 3 ]; if( dist <= -0.0f || dist >= edges[ k ].length ) continue; amount = dist / edges[ k ].length; #endif /* debug code: brighten this point */ //% metaVerts[ j ].color[ 0 ][ 0 ] += 5; //% metaVerts[ j ].color[ 0 ][ 1 ] += 4; VectorSet( metaVerts[ tri->indexes[ k ] ].color[ 0 ], 255, 204, 0 ); VectorSet( metaVerts[ tri->indexes[ (k + 1) % 3 ] ].color[ 0 ], 255, 204, 0 ); /* the edge opposite the zero-weighted vertex was hit, so use that as an amount */ a = &metaVerts[ tri->indexes[ k % 3 ] ]; b = &metaVerts[ tri->indexes[ (k + 1) % 3 ] ]; c = &metaVerts[ tri->indexes[ (k + 2) % 3 ] ]; /* make new vert */ LerpDrawVertAmount( a, b, amount, &junc ); VectorCopy( pt, junc.xyz ); /* compare against existing verts */ if( VectorCompare( junc.xyz, a->xyz ) || VectorCompare( junc.xyz, b->xyz ) || VectorCompare( junc.xyz, c->xyz ) ) continue; /* see if we can just re-use the existing vert */ if( !memcmp( &metaVerts[ j ], &junc, sizeof( junc ) ) ) vertIndex = j; else { /* find new vertex (note: a and b are invalid pointers after this) */ firstSearchMetaVert = numMetaVerts; vertIndex = FindMetaVertex( &junc ); if( vertIndex < 0 ) continue; } /* make new triangle */ triIndex = AddMetaTriangle(); if( triIndex < 0 ) continue; /* get triangles */ tri = &metaTriangles[ i ]; newTri = &metaTriangles[ triIndex ]; /* copy the triangle */ memcpy( newTri, tri, sizeof( *tri ) ); /* fix verts */ tri->indexes[ (k + 1) % 3 ] = vertIndex; newTri->indexes[ k ] = vertIndex; /* recalculate edges */ CreateEdge( plane, metaVerts[ tri->indexes[ 0 ] ].xyz, metaVerts[ tri->indexes[ 1 ] ].xyz, &edges[ 0 ] ); CreateEdge( plane, metaVerts[ tri->indexes[ 1 ] ].xyz, metaVerts[ tri->indexes[ 2 ] ].xyz, &edges[ 1 ] ); CreateEdge( plane, metaVerts[ tri->indexes[ 2 ] ].xyz, metaVerts[ tri->indexes[ 0 ] ].xyz, &edges[ 2 ] ); /* debug code */ metaVerts[ vertIndex ].color[ 0 ][ 0 ] = 255; metaVerts[ vertIndex ].color[ 0 ][ 1 ] = 204; metaVerts[ vertIndex ].color[ 0 ][ 2 ] = 0; /* add to counter and end processing of this vert */ numTJuncs++; break; } } } /* print time */ Sys_FPrintf( SYS_VRB, " (%d)\n", (int) (I_FloatTime() - start) ); /* emit some stats */ Sys_FPrintf( SYS_VRB, "%9d T-junctions added\n", numTJuncs ); } /* SmoothMetaTriangles() averages coincident vertex normals in the meta triangles */ #define MAX_SAMPLES 256 #define THETA_EPSILON 0.000001 #define EQUAL_NORMAL_EPSILON 0.01 void SmoothMetaTriangles( void ) { int i, j, k, f, fOld, start, cs, numVerts, numVotes, numSmoothed; float shadeAngle, defaultShadeAngle, maxShadeAngle, dot, testAngle; metaTriangle_t *tri; float *shadeAngles; byte *smoothed; vec3_t average, diff; int indexes[ MAX_SAMPLES ]; vec3_t votes[ MAX_SAMPLES ]; /* note it */ Sys_FPrintf( SYS_VRB, "--- SmoothMetaTriangles ---\n" ); /* allocate shade angle table */ shadeAngles = safe_malloc( numMetaVerts * sizeof( float ) ); memset( shadeAngles, 0, numMetaVerts * sizeof( float ) ); /* allocate smoothed table */ cs = (numMetaVerts / 8) + 1; smoothed = safe_malloc( cs ); memset( smoothed, 0, cs ); /* set default shade angle */ defaultShadeAngle = DEG2RAD( npDegrees ); maxShadeAngle = 0.0f; /* run through every surface and flag verts belonging to non-lightmapped surfaces and set per-vertex smoothing angle */ for( i = 0, tri = &metaTriangles[ i ]; i < numMetaTriangles; i++, tri++ ) { /* get shader for shade angle */ if( tri->si->shadeAngleDegrees > 0.0f ) shadeAngle = DEG2RAD( tri->si->shadeAngleDegrees ); else shadeAngle = defaultShadeAngle; if( shadeAngle > maxShadeAngle ) maxShadeAngle = shadeAngle; /* flag its verts */ for( j = 0; j < 3; j++ ) { shadeAngles[ tri->indexes[ j ] ] = shadeAngle; if( shadeAngle <= 0 ) smoothed[ tri->indexes[ j ] >> 3 ] |= (1 << (tri->indexes[ j ] & 7)); } } /* bail if no surfaces have a shade angle */ if( maxShadeAngle <= 0 ) { Sys_FPrintf( SYS_VRB, "No smoothing angles specified, aborting\n" ); free( shadeAngles ); free( smoothed ); return; } /* init pacifier */ fOld = -1; start = I_FloatTime(); /* go through the list of vertexes */ numSmoothed = 0; for( i = 0; i < numMetaVerts; i++ ) { /* print pacifier */ f = 10 * i / numMetaVerts; if( f != fOld ) { fOld = f; Sys_FPrintf( SYS_VRB, "%d...", f ); } /* already smoothed? */ if( smoothed[ i >> 3 ] & (1 << (i & 7)) ) continue; /* clear */ VectorClear( average ); numVerts = 0; numVotes = 0; /* build a table of coincident vertexes */ for( j = i; j < numMetaVerts && numVerts < MAX_SAMPLES; j++ ) { /* already smoothed? */ if( smoothed[ j >> 3 ] & (1 << (j & 7)) ) continue; /* test vertexes */ if( VectorCompare( metaVerts[ i ].xyz, metaVerts[ j ].xyz ) == qfalse ) continue; /* use smallest shade angle */ shadeAngle = (shadeAngles[ i ] < shadeAngles[ j ] ? shadeAngles[ i ] : shadeAngles[ j ]); /* check shade angle */ dot = DotProduct( metaVerts[ i ].normal, metaVerts[ j ].normal ); if( dot > 1.0 ) dot = 1.0; else if( dot < -1.0 ) dot = -1.0; testAngle = acos( dot ) + THETA_EPSILON; if( testAngle >= shadeAngle ) continue; /* add to the list */ indexes[ numVerts++ ] = j; /* flag vertex */ smoothed[ j >> 3 ] |= (1 << (j & 7)); /* see if this normal has already been voted */ for( k = 0; k < numVotes; k++ ) { VectorSubtract( metaVerts[ j ].normal, votes[ k ], diff ); if( fabs( diff[ 0 ] ) < EQUAL_NORMAL_EPSILON && fabs( diff[ 1 ] ) < EQUAL_NORMAL_EPSILON && fabs( diff[ 2 ] ) < EQUAL_NORMAL_EPSILON ) break; } /* add a new vote? */ if( k == numVotes && numVotes < MAX_SAMPLES ) { VectorAdd( average, metaVerts[ j ].normal, average ); VectorCopy( metaVerts[ j ].normal, votes[ numVotes ] ); numVotes++; } } /* don't average for less than 2 verts */ if( numVerts < 2 ) continue; /* average normal */ if( VectorNormalize( average, average ) > 0 ) { /* smooth */ for( j = 0; j < numVerts; j++ ) VectorCopy( average, metaVerts[ indexes[ j ] ].normal ); numSmoothed++; } } /* free the tables */ free( shadeAngles ); free( smoothed ); /* print time */ Sys_FPrintf( SYS_VRB, " (%d)\n", (int) (I_FloatTime() - start) ); /* emit some stats */ Sys_FPrintf( SYS_VRB, "%9d smoothed vertexes\n", numSmoothed ); } /* AddMetaVertToSurface() adds a drawvert to a surface unless an existing vert matching already exists returns the index of that vert (or < 0 on failure) */ int AddMetaVertToSurface( mapDrawSurface_t *ds, bspDrawVert_t *dv1, int *coincident ) { int i; bspDrawVert_t *dv2; /* go through the verts and find a suitable candidate */ for( i = 0; i < ds->numVerts; i++ ) { /* get test vert */ dv2 = &ds->verts[ i ]; /* compare xyz and normal */ if( VectorCompare( dv1->xyz, dv2->xyz ) == qfalse ) continue; if( VectorCompare( dv1->normal, dv2->normal ) == qfalse ) continue; /* good enough at this point */ (*coincident)++; /* compare texture coordinates and color */ if( dv1->st[ 0 ] != dv2->st[ 0 ] || dv1->st[ 1 ] != dv2->st[ 1 ] ) continue; if( dv1->color[ 0 ][ 3 ] != dv2->color[ 0 ][ 3 ] ) continue; /* found a winner */ numMergedVerts++; return i; } /* overflow check */ if( ds->numVerts >= ((ds->shaderInfo->compileFlags & C_VERTEXLIT) ? maxSurfaceVerts : maxLMSurfaceVerts) ) return VERTS_EXCEEDED; /* made it this far, add the vert and return */ dv2 = &ds->verts[ ds->numVerts++ ]; *dv2 = *dv1; return (ds->numVerts - 1); } /* AddMetaTriangleToSurface() attempts to add a metatriangle to a surface returns the score of the triangle added */ #define AXIS_SCORE 100000 #define AXIS_MIN 100000 #define VERT_SCORE 10000 #define SURFACE_SCORE 1000 #define ST_SCORE 50 #define ST_SCORE2 (2 * (ST_SCORE)) #define ADEQUATE_SCORE ((AXIS_MIN) + 1 * (VERT_SCORE)) #define GOOD_SCORE ((AXIS_MIN) + 2 * (VERT_SCORE) + 4 * (ST_SCORE)) #define PERFECT_SCORE ((AXIS_MIN) + + 3 * (VERT_SCORE) + (SURFACE_SCORE) + 4 * (ST_SCORE)) static int AddMetaTriangleToSurface( mapDrawSurface_t *ds, metaTriangle_t *tri, qboolean testAdd ) { int i, score, coincident, ai, bi, ci, oldTexRange[ 2 ]; float lmMax; vec3_t mins, maxs; qboolean inTexRange, es, et; mapDrawSurface_t old; /* overflow check */ if( ds->numIndexes >= maxSurfaceIndexes ) return 0; /* test the triangle */ if( ds->entityNum != tri->entityNum ) /* ydnar: added 2002-07-06 */ return 0; if( ds->castShadows != tri->castShadows || ds->recvShadows != tri->recvShadows ) return 0; if( ds->shaderInfo != tri->si || ds->fogNum != tri->fogNum || ds->sampleSize != tri->sampleSize ) return 0; #if 0 if( !(ds->shaderInfo->compileFlags & C_VERTEXLIT) && //% VectorCompare( ds->lightmapAxis, tri->lightmapAxis ) == qfalse ) DotProduct( ds->lightmapAxis, tri->plane ) < 0.25f ) return 0; #endif /* planar surfaces will only merge with triangles in the same plane */ if( npDegrees == 0.0f && ds->shaderInfo->nonplanar == qfalse && ds->planeNum >= 0 ) { if( VectorCompare( mapplanes[ ds->planeNum ].normal, tri->plane ) == qfalse || mapplanes[ ds->planeNum ].dist != tri->plane[ 3 ] ) return 0; if( tri->planeNum >= 0 && tri->planeNum != ds->planeNum ) return 0; } /* set initial score */ score = tri->surfaceNum == ds->surfaceNum ? SURFACE_SCORE : 0; /* score the the dot product of lightmap axis to plane */ if( (ds->shaderInfo->compileFlags & C_VERTEXLIT) || VectorCompare( ds->lightmapAxis, tri->lightmapAxis ) ) score += AXIS_SCORE; else score += AXIS_SCORE * DotProduct( ds->lightmapAxis, tri->plane ); /* preserve old drawsurface if this fails */ memcpy( &old, ds, sizeof( *ds ) ); /* attempt to add the verts */ coincident = 0; ai = AddMetaVertToSurface( ds, &metaVerts[ tri->indexes[ 0 ] ], &coincident ); bi = AddMetaVertToSurface( ds, &metaVerts[ tri->indexes[ 1 ] ], &coincident ); ci = AddMetaVertToSurface( ds, &metaVerts[ tri->indexes[ 2 ] ], &coincident ); /* check vertex underflow */ if( ai < 0 || bi < 0 || ci < 0 ) { memcpy( ds, &old, sizeof( *ds ) ); return 0; } /* score coincident vertex count (2003-02-14: changed so this only matters on planar surfaces) */ score += (coincident * VERT_SCORE); /* add new vertex bounds to mins/maxs */ VectorCopy( ds->mins, mins ); VectorCopy( ds->maxs, maxs ); AddPointToBounds( metaVerts[ tri->indexes[ 0 ] ].xyz, mins, maxs ); AddPointToBounds( metaVerts[ tri->indexes[ 1 ] ].xyz, mins, maxs ); AddPointToBounds( metaVerts[ tri->indexes[ 2 ] ].xyz, mins, maxs ); /* check lightmap bounds overflow (after at least 1 triangle has been added) */ if( !(ds->shaderInfo->compileFlags & C_VERTEXLIT) && ds->numIndexes > 0 && VectorLength( ds->lightmapAxis ) > 0.0f && (VectorCompare( ds->mins, mins ) == qfalse || VectorCompare( ds->maxs, maxs ) == qfalse) ) { /* set maximum size before lightmap scaling (normally 2032 units) */ /* 2004-02-24: scale lightmap test size by 2 to catch larger brush faces */ /* 2004-04-11: reverting to actual lightmap size */ lmMax = (ds->sampleSize * (ds->shaderInfo->lmCustomWidth - 1)); for( i = 0; i < 3; i++ ) { if( (maxs[ i ] - mins[ i ]) > lmMax ) { memcpy( ds, &old, sizeof( *ds ) ); return 0; } } } /* check texture range overflow */ oldTexRange[ 0 ] = ds->texRange[ 0 ]; oldTexRange[ 1 ] = ds->texRange[ 1 ]; inTexRange = CalcSurfaceTextureRange( ds ); es = (ds->texRange[ 0 ] > oldTexRange[ 0 ]) ? qtrue : qfalse; et = (ds->texRange[ 1 ] > oldTexRange[ 1 ]) ? qtrue : qfalse; if( inTexRange == qfalse && ds->numIndexes > 0 ) { memcpy( ds, &old, sizeof( *ds ) ); return UNSUITABLE_TRIANGLE; } /* score texture range */ if( ds->texRange[ 0 ] <= oldTexRange[ 0 ] ) score += ST_SCORE2; else if( ds->texRange[ 0 ] > oldTexRange[ 0 ] && oldTexRange[ 1 ] > oldTexRange[ 0 ] ) score += ST_SCORE; if( ds->texRange[ 1 ] <= oldTexRange[ 1 ] ) score += ST_SCORE2; else if( ds->texRange[ 1 ] > oldTexRange[ 1 ] && oldTexRange[ 0 ] > oldTexRange[ 1 ] ) score += ST_SCORE; /* go through the indexes and try to find an existing triangle that matches abc */ for( i = 0; i < ds->numIndexes; i += 3 ) { /* 2002-03-11 (birthday!): rotate the triangle 3x to find an existing triangle */ if( (ai == ds->indexes[ i ] && bi == ds->indexes[ i + 1 ] && ci == ds->indexes[ i + 2 ]) || (bi == ds->indexes[ i ] && ci == ds->indexes[ i + 1 ] && ai == ds->indexes[ i + 2 ]) || (ci == ds->indexes[ i ] && ai == ds->indexes[ i + 1 ] && bi == ds->indexes[ i + 2 ]) ) { /* triangle already present */ memcpy( ds, &old, sizeof( *ds ) ); tri->si = NULL; return 0; } /* rotate the triangle 3x to find an inverse triangle (error case) */ if( (ai == ds->indexes[ i ] && bi == ds->indexes[ i + 2 ] && ci == ds->indexes[ i + 1 ]) || (bi == ds->indexes[ i ] && ci == ds->indexes[ i + 2 ] && ai == ds->indexes[ i + 1 ]) || (ci == ds->indexes[ i ] && ai == ds->indexes[ i + 2 ] && bi == ds->indexes[ i + 1 ]) ) { /* warn about it */ Sys_Printf( "WARNING: Flipped triangle: (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f)\n", ds->verts[ ai ].xyz[ 0 ], ds->verts[ ai ].xyz[ 1 ], ds->verts[ ai ].xyz[ 2 ], ds->verts[ bi ].xyz[ 0 ], ds->verts[ bi ].xyz[ 1 ], ds->verts[ bi ].xyz[ 2 ], ds->verts[ ci ].xyz[ 0 ], ds->verts[ ci ].xyz[ 1 ], ds->verts[ ci ].xyz[ 2 ] ); /* reverse triangle already present */ memcpy( ds, &old, sizeof( *ds ) ); tri->si = NULL; return 0; } } /* add the triangle indexes */ if( ds->numIndexes < maxSurfaceIndexes ) ds->indexes[ ds->numIndexes++ ] = ai; if( ds->numIndexes < maxSurfaceIndexes ) ds->indexes[ ds->numIndexes++ ] = bi; if( ds->numIndexes < maxSurfaceIndexes ) ds->indexes[ ds->numIndexes++ ] = ci; /* check index overflow */ if( ds->numIndexes >= maxSurfaceIndexes ) { memcpy( ds, &old, sizeof( *ds ) ); return 0; } /* sanity check the indexes */ if( ds->numIndexes >= 3 && (ds->indexes[ ds->numIndexes - 3 ] == ds->indexes[ ds->numIndexes - 2 ] || ds->indexes[ ds->numIndexes - 3 ] == ds->indexes[ ds->numIndexes - 1 ] || ds->indexes[ ds->numIndexes - 2 ] == ds->indexes[ ds->numIndexes - 1 ]) ) Sys_Printf( "DEG:%d! ", ds->numVerts ); /* testing only? */ if( testAdd ) memcpy( ds, &old, sizeof( *ds ) ); else { /* copy bounds back to surface */ VectorCopy( mins, ds->mins ); VectorCopy( maxs, ds->maxs ); /* mark triangle as used */ tri->si = NULL; } /* add a side reference */ ds->sideRef = AllocSideRef( tri->side, ds->sideRef ); /* return to sender */ return score; } /* MetaTrianglesToSurface() creates map drawsurface(s) from the list of possibles */ static void MetaTrianglesToSurface( int numPossibles, metaTriangle_t *possibles, int *fOld, int *numAdded ) { int i, j, f, best, score, bestScore; metaTriangle_t *seed, *test; mapDrawSurface_t *ds; bspDrawVert_t *verts; int *indexes; qboolean added; /* allocate arrays */ verts = safe_malloc( sizeof( *verts ) * maxSurfaceVerts ); indexes = safe_malloc( sizeof( *indexes ) * maxSurfaceIndexes ); /* walk the list of triangles */ for( i = 0, seed = possibles; i < numPossibles; i++, seed++ ) { /* skip this triangle if it has already been merged */ if( seed->si == NULL ) continue; /* ----------------------------------------------------------------- initial drawsurf construction ----------------------------------------------------------------- */ /* start a new drawsurface */ ds = AllocDrawSurface( SURFACE_META ); ds->entityNum = seed->entityNum; ds->surfaceNum = seed->surfaceNum; ds->castShadows = seed->castShadows; ds->recvShadows = seed->recvShadows; ds->shaderInfo = seed->si; ds->planeNum = seed->planeNum; ds->fogNum = seed->fogNum; ds->sampleSize = seed->sampleSize; ds->verts = verts; ds->indexes = indexes; VectorCopy( seed->lightmapAxis, ds->lightmapAxis ); ds->sideRef = AllocSideRef( seed->side, NULL ); ClearBounds( ds->mins, ds->maxs ); /* clear verts/indexes */ memset( verts, 0, sizeof( verts ) ); memset( indexes, 0, sizeof( indexes ) ); /* add the first triangle */ if( AddMetaTriangleToSurface( ds, seed, qfalse ) ) (*numAdded)++; /* ----------------------------------------------------------------- add triangles ----------------------------------------------------------------- */ /* progressively walk the list until no more triangles can be added */ added = qtrue; while( added ) { /* print pacifier */ f = 10 * *numAdded / numMetaTriangles; if( f > *fOld ) { *fOld = f; Sys_FPrintf( SYS_VRB, "%d...", f ); } /* reset best score */ best = -1; bestScore = 0; added = qfalse; /* walk the list of possible candidates for merging */ for( j = i + 1, test = &possibles[ j ]; j < numPossibles; j++, test++ ) { /* skip this triangle if it has already been merged */ if( test->si == NULL ) continue; /* score this triangle */ score = AddMetaTriangleToSurface( ds, test, qtrue ); if( score > bestScore ) { best = j; bestScore = score; /* if we have a score over a certain threshold, just use it */ if( bestScore >= GOOD_SCORE ) { if( AddMetaTriangleToSurface( ds, &possibles[ best ], qfalse ) ) (*numAdded)++; /* reset */ best = -1; bestScore = 0; added = qtrue; } } } /* add best candidate */ if( best >= 0 && bestScore > ADEQUATE_SCORE ) { if( AddMetaTriangleToSurface( ds, &possibles[ best ], qfalse ) ) (*numAdded)++; /* reset */ added = qtrue; } } /* copy the verts and indexes to the new surface */ ds->verts = safe_malloc( ds->numVerts * sizeof( bspDrawVert_t ) ); memcpy( ds->verts, verts, ds->numVerts * sizeof( bspDrawVert_t ) ); ds->indexes = safe_malloc( ds->numIndexes * sizeof( int ) ); memcpy( ds->indexes, indexes, ds->numIndexes * sizeof( int ) ); /* classify the surface */ ClassifySurfaces( 1, ds ); /* add to count */ numMergedSurfaces++; } /* free arrays */ free( verts ); free( indexes ); } /* CompareMetaTriangles() compare function for qsort() */ static int CompareMetaTriangles( const void *a, const void *b ) { int i, j, av, bv; vec3_t aMins, bMins; /* shader first */ if( ((metaTriangle_t*) a)->si < ((metaTriangle_t*) b)->si ) return 1; else if( ((metaTriangle_t*) a)->si > ((metaTriangle_t*) b)->si ) return -1; /* then fog */ else if( ((metaTriangle_t*) a)->fogNum < ((metaTriangle_t*) b)->fogNum ) return 1; else if( ((metaTriangle_t*) a)->fogNum > ((metaTriangle_t*) b)->fogNum ) return -1; /* then plane */ #if 0 else if( npDegrees == 0.0f && ((metaTriangle_t*) a)->si->nonplanar == qfalse && ((metaTriangle_t*) a)->planeNum >= 0 && ((metaTriangle_t*) a)->planeNum >= 0 ) { if( ((metaTriangle_t*) a)->plane[ 3 ] < ((metaTriangle_t*) b)->plane[ 3 ] ) return 1; else if( ((metaTriangle_t*) a)->plane[ 3 ] > ((metaTriangle_t*) b)->plane[ 3 ] ) return -1; else if( ((metaTriangle_t*) a)->plane[ 0 ] < ((metaTriangle_t*) b)->plane[ 0 ] ) return 1; else if( ((metaTriangle_t*) a)->plane[ 0 ] > ((metaTriangle_t*) b)->plane[ 0 ] ) return -1; else if( ((metaTriangle_t*) a)->plane[ 1 ] < ((metaTriangle_t*) b)->plane[ 1 ] ) return 1; else if( ((metaTriangle_t*) a)->plane[ 1 ] > ((metaTriangle_t*) b)->plane[ 1 ] ) return -1; else if( ((metaTriangle_t*) a)->plane[ 2 ] < ((metaTriangle_t*) b)->plane[ 2 ] ) return 1; else if( ((metaTriangle_t*) a)->plane[ 2 ] > ((metaTriangle_t*) b)->plane[ 2 ] ) return -1; } #endif /* then position in world */ /* find mins */ VectorSet( aMins, 999999, 999999, 999999 ); VectorSet( bMins, 999999, 999999, 999999 ); for( i = 0; i < 3; i++ ) { av = ((metaTriangle_t*) a)->indexes[ i ]; bv = ((metaTriangle_t*) b)->indexes[ i ]; for( j = 0; j < 3; j++ ) { if( metaVerts[ av ].xyz[ j ] < aMins[ j ] ) aMins[ j ] = metaVerts[ av ].xyz[ j ]; if( metaVerts[ bv ].xyz[ j ] < bMins[ j ] ) bMins[ j ] = metaVerts[ bv ].xyz[ j ]; } } /* test it */ for( i = 0; i < 3; i++ ) { if( aMins[ i ] < bMins[ i ] ) return 1; else if( aMins[ i ] > bMins[ i ] ) return -1; } /* functionally equivalent */ return 0; } /* MergeMetaTriangles() merges meta triangles into drawsurfaces */ void MergeMetaTriangles( void ) { int i, j, fOld, start, numAdded; metaTriangle_t *head, *end; /* only do this if there are meta triangles */ if( numMetaTriangles <= 0 ) return; /* note it */ Sys_FPrintf( SYS_VRB, "--- MergeMetaTriangles ---\n" ); /* sort the triangles by shader major, fognum minor */ qsort( metaTriangles, numMetaTriangles, sizeof( metaTriangle_t ), CompareMetaTriangles ); /* init pacifier */ fOld = -1; start = I_FloatTime(); numAdded = 0; /* merge */ for( i = 0, j = 0; i < numMetaTriangles; i = j ) { /* get head of list */ head = &metaTriangles[ i ]; /* skip this triangle if it has already been merged */ if( head->si == NULL ) continue; /* find end */ if( j <= i ) { for( j = i + 1; j < numMetaTriangles; j++ ) { /* get end of list */ end = &metaTriangles[ j ]; if( head->si != end->si || head->fogNum != end->fogNum ) break; } } /* try to merge this list of possible merge candidates */ MetaTrianglesToSurface( (j - i), head, &fOld, &numAdded ); } /* clear meta triangle list */ ClearMetaTriangles(); /* print time */ if( i ) Sys_FPrintf( SYS_VRB, " (%d)\n", (int) (I_FloatTime() - start) ); /* emit some stats */ Sys_FPrintf( SYS_VRB, "%9d surfaces merged\n", numMergedSurfaces ); Sys_FPrintf( SYS_VRB, "%9d vertexes merged\n", numMergedVerts ); }