/* =========================================================================== Copyright (C) 1997-2006 Id Software, Inc. This file is part of Quake 2 Tools source code. Quake 2 Tools source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake 2 Tools source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake 2 Tools source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #include "vis.h" /* each portal will have a list of all possible to see from first portal if (!thread->portalmightsee[portalnum]) portal mightsee for p2 = all other portals in leaf get sperating planes for all portals that might be seen by p2 mark as unseen if not present in seperating plane flood fill a new mightsee save as passagemightsee void CalcMightSee (leaf_t *leaf, */ int CountBits (byte *bits, int numbits) { int i; int c; c = 0; for (i=0 ; i>3] & (1<<(i&7)) ) c++; return c; } int c_fullskip; int c_portalskip, c_leafskip; int c_vistest, c_mighttest; int c_chop, c_nochop; int active; void CheckStack (leaf_t *leaf, threaddata_t *thread) { pstack_t *p, *p2; for (p=thread->pstack_head.next ; p ; p=p->next) { // printf ("="); if (p->leaf == leaf) Error ("CheckStack: leaf recursion"); for (p2=thread->pstack_head.next ; p2 != p ; p2=p2->next) if (p2->leaf == p->leaf) Error ("CheckStack: late leaf recursion"); } // printf ("\n"); } winding_t *AllocStackWinding (pstack_t *stack) { int i; for (i=0 ; i<3 ; i++) { if (stack->freewindings[i]) { stack->freewindings[i] = 0; return &stack->windings[i]; } } Error ("AllocStackWinding: failed"); return NULL; } void FreeStackWinding (winding_t *w, pstack_t *stack) { int i; i = w - stack->windings; if (i<0 || i>2) return; // not from local if (stack->freewindings[i]) Error ("FreeStackWinding: allready free"); stack->freewindings[i] = 1; } /* ============== ChopWinding ============== */ winding_t *ChopWinding (winding_t *in, pstack_t *stack, plane_t *split) { vec_t dists[128]; int sides[128]; int counts[3]; vec_t dot; int i, j; vec_t *p1, *p2; vec3_t mid; winding_t *neww; counts[0] = counts[1] = counts[2] = 0; // determine sides for each point for (i=0 ; inumpoints ; i++) { dot = DotProduct (in->points[i], split->normal); dot -= split->dist; dists[i] = dot; if (dot > ON_EPSILON) sides[i] = SIDE_FRONT; else if (dot < -ON_EPSILON) sides[i] = SIDE_BACK; else { sides[i] = SIDE_ON; } counts[sides[i]]++; } if (!counts[1]) return in; // completely on front side if (!counts[0]) { FreeStackWinding (in, stack); return NULL; } sides[i] = sides[0]; dists[i] = dists[0]; neww = AllocStackWinding (stack); neww->numpoints = 0; for (i=0 ; inumpoints ; i++) { p1 = in->points[i]; if (neww->numpoints == MAX_POINTS_ON_FIXED_WINDING) { FreeStackWinding (neww, stack); return in; // can't chop -- fall back to original } if (sides[i] == SIDE_ON) { VectorCopy (p1, neww->points[neww->numpoints]); neww->numpoints++; continue; } if (sides[i] == SIDE_FRONT) { VectorCopy (p1, neww->points[neww->numpoints]); neww->numpoints++; } if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i]) continue; if (neww->numpoints == MAX_POINTS_ON_FIXED_WINDING) { FreeStackWinding (neww, stack); return in; // can't chop -- fall back to original } // generate a split point p2 = in->points[(i+1)%in->numpoints]; dot = dists[i] / (dists[i]-dists[i+1]); for (j=0 ; j<3 ; j++) { // avoid round off error when possible if (split->normal[j] == 1) mid[j] = split->dist; else if (split->normal[j] == -1) mid[j] = -split->dist; else mid[j] = p1[j] + dot*(p2[j]-p1[j]); } VectorCopy (mid, neww->points[neww->numpoints]); neww->numpoints++; } // free the original winding FreeStackWinding (in, stack); return neww; } /* ============== ClipToSeperators Source, pass, and target are an ordering of portals. Generates seperating planes canidates by taking two points from source and one point from pass, and clips target by them. If target is totally clipped away, that portal can not be seen through. Normal clip keeps target on the same side as pass, which is correct if the order goes source, pass, target. If the order goes pass, source, target then flipclip should be set. ============== */ winding_t *ClipToSeperators (winding_t *source, winding_t *pass, winding_t *target, qboolean flipclip, pstack_t *stack) { int i, j, k, l; plane_t plane; vec3_t v1, v2; float d; vec_t length; int counts[3]; qboolean fliptest; // check all combinations for (i=0 ; inumpoints ; i++) { l = (i+1)%source->numpoints; VectorSubtract (source->points[l] , source->points[i], v1); // fing a vertex of pass that makes a plane that puts all of the // vertexes of pass on the front side and all of the vertexes of // source on the back side for (j=0 ; jnumpoints ; j++) { VectorSubtract (pass->points[j], source->points[i], v2); plane.normal[0] = v1[1]*v2[2] - v1[2]*v2[1]; plane.normal[1] = v1[2]*v2[0] - v1[0]*v2[2]; plane.normal[2] = v1[0]*v2[1] - v1[1]*v2[0]; // if points don't make a valid plane, skip it length = plane.normal[0] * plane.normal[0] + plane.normal[1] * plane.normal[1] + plane.normal[2] * plane.normal[2]; if (length < ON_EPSILON) continue; length = 1/sqrt(length); plane.normal[0] *= length; plane.normal[1] *= length; plane.normal[2] *= length; plane.dist = DotProduct (pass->points[j], plane.normal); // // find out which side of the generated seperating plane has the // source portal // #if 1 fliptest = false; for (k=0 ; knumpoints ; k++) { if (k == i || k == l) continue; d = DotProduct (source->points[k], plane.normal) - plane.dist; if (d < -ON_EPSILON) { // source is on the negative side, so we want all // pass and target on the positive side fliptest = false; break; } else if (d > ON_EPSILON) { // source is on the positive side, so we want all // pass and target on the negative side fliptest = true; break; } } if (k == source->numpoints) continue; // planar with source portal #else fliptest = flipclip; #endif // // flip the normal if the source portal is backwards // if (fliptest) { VectorSubtract (vec3_origin, plane.normal, plane.normal); plane.dist = -plane.dist; } #if 1 // // if all of the pass portal points are now on the positive side, // this is the seperating plane // counts[0] = counts[1] = counts[2] = 0; for (k=0 ; knumpoints ; k++) { if (k==j) continue; d = DotProduct (pass->points[k], plane.normal) - plane.dist; if (d < -ON_EPSILON) break; else if (d > ON_EPSILON) counts[0]++; else counts[2]++; } if (k != pass->numpoints) continue; // points on negative side, not a seperating plane if (!counts[0]) continue; // planar with seperating plane #else k = (j+1)%pass->numpoints; d = DotProduct (pass->points[k], plane.normal) - plane.dist; if (d < -ON_EPSILON) continue; k = (j+pass->numpoints-1)%pass->numpoints; d = DotProduct (pass->points[k], plane.normal) - plane.dist; if (d < -ON_EPSILON) continue; #endif // // flip the normal if we want the back side // if (flipclip) { VectorSubtract (vec3_origin, plane.normal, plane.normal); plane.dist = -plane.dist; } // // clip target by the seperating plane // target = ChopWinding (target, stack, &plane); if (!target) return NULL; // target is not visible } } return target; } /* ================== RecursiveLeafFlow Flood fill through the leafs If src_portal is NULL, this is the originating leaf ================== */ void RecursiveLeafFlow (int leafnum, threaddata_t *thread, pstack_t *prevstack) { pstack_t stack; portal_t *p; plane_t backplane; leaf_t *leaf; int i, j; long *test, *might, *vis, more; int pnum; thread->c_chains++; leaf = &leafs[leafnum]; // CheckStack (leaf, thread); prevstack->next = &stack; stack.next = NULL; stack.leaf = leaf; stack.portal = NULL; might = (long *)stack.mightsee; vis = (long *)thread->base->portalvis; // check all portals for flowing into other leafs for (i=0 ; inumportals ; i++) { p = leaf->portals[i]; pnum = p - portals; if ( ! (prevstack->mightsee[pnum >> 3] & (1<<(pnum&7)) ) ) { continue; // can't possibly see it } // if the portal can't see anything we haven't allready seen, skip it if (p->status == stat_done) { test = (long *)p->portalvis; } else { test = (long *)p->portalflood; } more = 0; for (j=0 ; jmightsee)[j] & test[j]; more |= (might[j] & ~vis[j]); } if (!more && (thread->base->portalvis[pnum>>3] & (1<<(pnum&7))) ) { // can't see anything new continue; } // get plane of portal, point normal into the neighbor leaf stack.portalplane = p->plane; VectorSubtract (vec3_origin, p->plane.normal, backplane.normal); backplane.dist = -p->plane.dist; // c_portalcheck++; stack.portal = p; stack.next = NULL; stack.freewindings[0] = 1; stack.freewindings[1] = 1; stack.freewindings[2] = 1; #if 1 { float d; d = DotProduct (p->origin, thread->pstack_head.portalplane.normal); d -= thread->pstack_head.portalplane.dist; if (d < -p->radius) { continue; } else if (d > p->radius) { stack.pass = p->winding; } else { stack.pass = ChopWinding (p->winding, &stack, &thread->pstack_head.portalplane); if (!stack.pass) continue; } } #else stack.pass = ChopWinding (p->winding, &stack, &thread->pstack_head.portalplane); if (!stack.pass) continue; #endif #if 1 { float d; d = DotProduct (thread->base->origin, p->plane.normal); d -= p->plane.dist; if (d > p->radius) { continue; } else if (d < -p->radius) { stack.source = prevstack->source; } else { stack.source = ChopWinding (prevstack->source, &stack, &backplane); if (!stack.source) continue; } } #else stack.source = ChopWinding (prevstack->source, &stack, &backplane); if (!stack.source) continue; #endif if (!prevstack->pass) { // the second leaf can only be blocked if coplanar // mark the portal as visible thread->base->portalvis[pnum>>3] |= (1<<(pnum&7)); RecursiveLeafFlow (p->leaf, thread, &stack); continue; } stack.pass = ClipToSeperators (stack.source, prevstack->pass, stack.pass, false, &stack); if (!stack.pass) continue; stack.pass = ClipToSeperators (prevstack->pass, stack.source, stack.pass, true, &stack); if (!stack.pass) continue; // mark the portal as visible thread->base->portalvis[pnum>>3] |= (1<<(pnum&7)); // flow through it for real RecursiveLeafFlow (p->leaf, thread, &stack); } } /* =============== PortalFlow generates the portalvis bit vector =============== */ void PortalFlow (int portalnum) { threaddata_t data; int i; portal_t *p; int c_might, c_can; p = sorted_portals[portalnum]; p->status = stat_working; c_might = CountBits (p->portalflood, numportals*2); memset (&data, 0, sizeof(data)); data.base = p; data.pstack_head.portal = p; data.pstack_head.source = p->winding; data.pstack_head.portalplane = p->plane; for (i=0 ; iportalflood)[i]; RecursiveLeafFlow (p->leaf, &data, &data.pstack_head); p->status = stat_done; c_can = CountBits (p->portalvis, numportals*2); qprintf ("portal:%4i mightsee:%4i cansee:%4i (%i chains)\n", (int)(p - portals), c_might, c_can, data.c_chains); } /* =============================================================================== This is a rough first-order aproximation that is used to trivially reject some of the final calculations. Calculates portalfront and portalflood bit vectors thinking about: typedef struct passage_s { struct passage_s *next; struct portal_s *to; stryct sep_s *seperators; byte *mightsee; } passage_t; typedef struct portal_s { struct passage_s *passages; int leaf; // leaf portal faces into } portal_s; leaf = portal->leaf clear for all portals calc portal visibility clear bit vector for all passages passage visibility for a portal to be visible to a passage, it must be on the front of all seperating planes, and both portals must be behind the mew portal =============================================================================== */ int c_flood, c_vis; /* ================== SimpleFlood ================== */ void SimpleFlood (portal_t *srcportal, int leafnum) { int i; leaf_t *leaf; portal_t *p; int pnum; leaf = &leafs[leafnum]; for (i=0 ; inumportals ; i++) { p = leaf->portals[i]; pnum = p - portals; if ( ! (srcportal->portalfront[pnum>>3] & (1<<(pnum&7)) ) ) continue; if (srcportal->portalflood[pnum>>3] & (1<<(pnum&7)) ) continue; srcportal->portalflood[pnum>>3] |= (1<<(pnum&7)); SimpleFlood (srcportal, p->leaf); } } /* ============== BasePortalVis ============== */ void BasePortalVis (int portalnum) { int j, k; portal_t *tp, *p; float d; winding_t *w; p = portals+portalnum; p->portalfront = malloc (portalbytes); memset (p->portalfront, 0, portalbytes); p->portalflood = malloc (portalbytes); memset (p->portalflood, 0, portalbytes); p->portalvis = malloc (portalbytes); memset (p->portalvis, 0, portalbytes); for (j=0, tp = portals ; jwinding; for (k=0 ; knumpoints ; k++) { d = DotProduct (w->points[k], p->plane.normal) - p->plane.dist; if (d > ON_EPSILON) break; } if (k == w->numpoints) continue; // no points on front w = p->winding; for (k=0 ; knumpoints ; k++) { d = DotProduct (w->points[k], tp->plane.normal) - tp->plane.dist; if (d < -ON_EPSILON) break; } if (k == w->numpoints) continue; // no points on front p->portalfront[j>>3] |= (1<<(j&7)); } SimpleFlood (p, p->leaf); p->nummightsee = CountBits (p->portalflood, numportals*2); // printf ("portal %i: %i mightsee\n", portalnum, p->nummightsee); c_flood += p->nummightsee; } /* =============================================================================== This is a second order aproximation Calculates portalvis bit vector WAAAAAAY too slow. =============================================================================== */ /* ================== RecursiveLeafBitFlow ================== */ void RecursiveLeafBitFlow (int leafnum, byte *mightsee, byte *cansee) { portal_t *p; leaf_t *leaf; int i, j; long more; int pnum; byte newmight[MAX_PORTALS/8]; leaf = &leafs[leafnum]; // check all portals for flowing into other leafs for (i=0 ; inumportals ; i++) { p = leaf->portals[i]; pnum = p - portals; // if some previous portal can't see it, skip if (! (mightsee[pnum>>3] & (1<<(pnum&7)) ) ) continue; // if this portal can see some portals we mightsee, recurse more = 0; for (j=0 ; jportalflood)[j]; more |= ((long *)newmight)[j] & ~((long *)cansee)[j]; } if (!more) continue; // can't see anything new cansee[pnum>>3] |= (1<<(pnum&7)); RecursiveLeafBitFlow (p->leaf, newmight, cansee); } } /* ============== BetterPortalVis ============== */ void BetterPortalVis (int portalnum) { portal_t *p; p = portals+portalnum; RecursiveLeafBitFlow (p->leaf, p->portalflood, p->portalvis); // build leaf vis information p->nummightsee = CountBits (p->portalvis, numportals*2); c_vis += p->nummightsee; }