/* Copyright (C) 1999-2007 id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef __MATH_VECTOR_H__ #define __MATH_VECTOR_H__ #ifdef WIN32 #pragma warning(disable : 4244) #endif #include #include //#define DotProduct(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2]) //#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2]) //#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2]) //#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2]) //#define VectorCopy(a,b) ((b).x=(a).x,(b).y=(a).y,(b).z=(a).z]) //#define VectorScale(v, s, o) ((o)[0]=(v)[0]*(s),(o)[1]=(v)[1]*(s),(o)[2]=(v)[2]*(s)) #define __VectorMA( v, s, b, o ) ( ( o )[0] = ( v )[0] + ( b )[0] * ( s ),( o )[1] = ( v )[1] + ( b )[1] * ( s ),( o )[2] = ( v )[2] + ( b )[2] * ( s ) ) //#define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0]) #define DotProduct4( x,y ) ( ( x )[0] * ( y )[0] + ( x )[1] * ( y )[1] + ( x )[2] * ( y )[2] + ( x )[3] * ( y )[3] ) #define VectorSubtract4( a,b,c ) ( ( c )[0] = ( a )[0] - ( b )[0],( c )[1] = ( a )[1] - ( b )[1],( c )[2] = ( a )[2] - ( b )[2],( c )[3] = ( a )[3] - ( b )[3] ) #define VectorAdd4( a,b,c ) ( ( c )[0] = ( a )[0] + ( b )[0],( c )[1] = ( a )[1] + ( b )[1],( c )[2] = ( a )[2] + ( b )[2],( c )[3] = ( a )[3] + ( b )[3] ) #define VectorCopy4( a,b ) ( ( b )[0] = ( a )[0],( b )[1] = ( a )[1],( b )[2] = ( a )[2],( b )[3] = ( a )[3] ) #define VectorScale4( v, s, o ) ( ( o )[0] = ( v )[0] * ( s ),( o )[1] = ( v )[1] * ( s ),( o )[2] = ( v )[2] * ( s ),( o )[3] = ( v )[3] * ( s ) ) #define VectorMA4( v, s, b, o ) ( ( o )[0] = ( v )[0] + ( b )[0] * ( s ),( o )[1] = ( v )[1] + ( b )[1] * ( s ),( o )[2] = ( v )[2] + ( b )[2] * ( s ),( o )[3] = ( v )[3] + ( b )[3] * ( s ) ) //#define VectorClear(a) ((a)[0]=(a)[1]=(a)[2]=0) #define VectorNegate( a,b ) ( ( b )[0] = -( a )[0],( b )[1] = -( a )[1],( b )[2] = -( a )[2] ) //#define VectorSet(v, x, y, z) ((v)[0]=(x), (v)[1]=(y), (v)[2]=(z)) #define Vector4Copy( a,b ) ( ( b )[0] = ( a )[0],( b )[1] = ( a )[1],( b )[2] = ( a )[2],( b )[3] = ( a )[3] ) #define SnapVector( v ) {v[0] = (int)v[0]; v[1] = (int)v[1]; v[2] = (int)v[2]; } //#include "util_heap.h" #ifndef EQUAL_EPSILON #define EQUAL_EPSILON 0.001 #endif float Q_fabs( float f ); #ifndef ID_INLINE #ifdef _WIN32 #define ID_INLINE __inline #else #define ID_INLINE inline #endif #endif // if this is defined, vec3 will take four elements, which may allow // easier SIMD optimizations //#define FAT_VEC3 //#ifdef __ppc__ //#pragma align(16) //#endif class angles_t; #ifdef __ppc__ // Vanilla PPC code, but since PPC has a reciprocal square root estimate instruction, // runs *much* faster than calling sqrt(). We'll use two Newton-Raphson // refinement steps to get bunch more precision in the 1/sqrt() value for very little cost. // We'll then multiply 1/sqrt times the original value to get the sqrt. // This is about 12.4 times faster than sqrt() and according to my testing (not exhaustive) // it returns fairly accurate results (error below 1.0e-5 up to 100000.0 in 0.1 increments). static inline float idSqrt( float x ) { const float half = 0.5; const float one = 1.0; float B, y0, y1; // This'll NaN if it hits frsqrte. Handle both +0.0 and -0.0 if ( fabs( x ) == 0.0 ) { return x; } B = x; #ifdef __GNUC__ asm ( "frsqrte %0,%1" : "=f" ( y0 ) : "f" ( B ) ); #else y0 = __frsqrte( B ); #endif /* First refinement step */ y1 = y0 + half * y0 * ( one - B * y0 * y0 ); /* Second refinement step -- copy the output of the last step to the input of this step */ y0 = y1; y1 = y0 + half * y0 * ( one - B * y0 * y0 ); /* Get sqrt(x) from x * 1/sqrt(x) */ return x * y1; } #else static inline double idSqrt( double x ) { return sqrt( x ); } #endif //class idVec3 : public idHeap { class idVec3 { public: #ifndef FAT_VEC3 float x,y,z; #else float x,y,z,dist; #endif #ifndef FAT_VEC3 idVec3() {}; #else idVec3() {dist = 0.0f; }; #endif idVec3( const float x, const float y, const float z ); operator float *(); float operator[]( const int index ) const; float &operator[]( const int index ); void set( const float x, const float y, const float z ); idVec3 operator-() const; idVec3 &operator=( const idVec3 &a ); float operator*( const idVec3 &a ) const; idVec3 operator*( const float a ) const; friend idVec3 operator*( float a, idVec3 b ); idVec3 operator+( const idVec3 &a ) const; idVec3 operator-( const idVec3 &a ) const; idVec3 &operator+=( const idVec3 &a ); idVec3 &operator-=( const idVec3 &a ); idVec3 &operator*=( const float a ); int operator==( const idVec3 &a ) const; int operator!=( const idVec3 &a ) const; idVec3 Cross( const idVec3 &a ) const; idVec3 &Cross( const idVec3 &a, const idVec3 &b ); float Length( void ) const; float Normalize( void ); void Zero( void ); void Snap( void ); void SnapTowards( const idVec3 &to ); float toYaw( void ); float toPitch( void ); angles_t toAngles( void ); friend idVec3 LerpVector( const idVec3 &w1, const idVec3 &w2, const float t ); char *string( void ); }; extern idVec3 vec_zero; ID_INLINE idVec3::idVec3( const float x, const float y, const float z ) { this->x = x; this->y = y; this->z = z; #ifdef FAT_VEC3 this->dist = 0.0f; #endif } ID_INLINE float idVec3::operator[]( const int index ) const { return ( &x )[ index ]; } ID_INLINE float &idVec3::operator[]( const int index ) { return ( &x )[ index ]; } ID_INLINE idVec3::operator float *( void ) { return &x; } ID_INLINE idVec3 idVec3::operator-() const { return idVec3( -x, -y, -z ); } ID_INLINE idVec3 &idVec3::operator=( const idVec3 &a ) { x = a.x; y = a.y; z = a.z; return *this; } ID_INLINE void idVec3::set( const float x, const float y, const float z ) { this->x = x; this->y = y; this->z = z; } ID_INLINE idVec3 idVec3::operator-( const idVec3 &a ) const { return idVec3( x - a.x, y - a.y, z - a.z ); } ID_INLINE float idVec3::operator*( const idVec3 &a ) const { return x * a.x + y * a.y + z * a.z; } ID_INLINE idVec3 idVec3::operator*( const float a ) const { return idVec3( x * a, y * a, z * a ); } ID_INLINE idVec3 operator*( const float a, const idVec3 b ) { return idVec3( b.x * a, b.y * a, b.z * a ); } ID_INLINE idVec3 idVec3::operator+( const idVec3 &a ) const { return idVec3( x + a.x, y + a.y, z + a.z ); } ID_INLINE idVec3 &idVec3::operator+=( const idVec3 &a ) { x += a.x; y += a.y; z += a.z; return *this; } ID_INLINE idVec3 &idVec3::operator-=( const idVec3 &a ) { x -= a.x; y -= a.y; z -= a.z; return *this; } ID_INLINE idVec3 &idVec3::operator*=( const float a ) { x *= a; y *= a; z *= a; return *this; } ID_INLINE int idVec3::operator==( const idVec3 &a ) const { if ( Q_fabs( x - a.x ) > EQUAL_EPSILON ) { return false; } if ( Q_fabs( y - a.y ) > EQUAL_EPSILON ) { return false; } if ( Q_fabs( z - a.z ) > EQUAL_EPSILON ) { return false; } return true; } ID_INLINE int idVec3::operator!=( const idVec3 &a ) const { if ( Q_fabs( x - a.x ) > EQUAL_EPSILON ) { return true; } if ( Q_fabs( y - a.y ) > EQUAL_EPSILON ) { return true; } if ( Q_fabs( z - a.z ) > EQUAL_EPSILON ) { return true; } return false; } ID_INLINE idVec3 idVec3::Cross( const idVec3 &a ) const { return idVec3( y * a.z - z * a.y, z * a.x - x * a.z, x * a.y - y * a.x ); } ID_INLINE idVec3 &idVec3::Cross( const idVec3 &a, const idVec3 &b ) { x = a.y * b.z - a.z * b.y; y = a.z * b.x - a.x * b.z; z = a.x * b.y - a.y * b.x; return *this; } ID_INLINE float idVec3::Length( void ) const { float length; length = x * x + y * y + z * z; return ( float )idSqrt( length ); } ID_INLINE float idVec3::Normalize( void ) { float length; float ilength; length = this->Length(); if ( length ) { ilength = 1.0f / length; x *= ilength; y *= ilength; z *= ilength; } return length; } ID_INLINE void idVec3::Zero( void ) { x = 0.0f; y = 0.0f; z = 0.0f; } ID_INLINE void idVec3::Snap( void ) { x = float( int( x ) ); y = float( int( y ) ); z = float( int( z ) ); } /* ====================== SnapTowards Round a vector to integers for more efficient network transmission, but make sure that it rounds towards a given point rather than blindly truncating. This prevents it from truncating into a wall. ====================== */ ID_INLINE void idVec3::SnapTowards( const idVec3 &to ) { if ( to.x <= x ) { x = float( int( x ) ); } else { x = float( int( x ) + 1 ); } if ( to.y <= y ) { y = float( int( y ) ); } else { y = float( int( y ) + 1 ); } if ( to.z <= z ) { z = float( int( z ) ); } else { z = float( int( z ) + 1 ); } } //=============================================================== class Bounds { public: idVec3 b[2]; Bounds(); Bounds( const idVec3 &mins, const idVec3 &maxs ); void Clear(); void Zero(); float Radius(); // radius from origin, not from center idVec3 Center(); void AddPoint( const idVec3 &v ); void AddBounds( const Bounds &bb ); bool IsCleared(); bool ContainsPoint( const idVec3 &p ); bool IntersectsBounds( const Bounds &b2 ); // touching is NOT intersecting }; extern Bounds boundsZero; ID_INLINE Bounds::Bounds(){ } ID_INLINE bool Bounds::IsCleared() { return b[0][0] > b[1][0]; } ID_INLINE bool Bounds::ContainsPoint( const idVec3 &p ) { if ( p[0] < b[0][0] || p[1] < b[0][1] || p[2] < b[0][2] || p[0] > b[1][0] || p[1] > b[1][1] || p[2] > b[1][2] ) { return false; } return true; } ID_INLINE bool Bounds::IntersectsBounds( const Bounds &b2 ) { if ( b2.b[1][0] < b[0][0] || b2.b[1][1] < b[0][1] || b2.b[1][2] < b[0][2] || b2.b[0][0] > b[1][0] || b2.b[0][1] > b[1][1] || b2.b[0][2] > b[1][2] ) { return false; } return true; } ID_INLINE Bounds::Bounds( const idVec3 &mins, const idVec3 &maxs ) { b[0] = mins; b[1] = maxs; } ID_INLINE idVec3 Bounds::Center() { return idVec3( ( b[1][0] + b[0][0] ) * 0.5f, ( b[1][1] + b[0][1] ) * 0.5f, ( b[1][2] + b[0][2] ) * 0.5f ); } ID_INLINE void Bounds::Clear() { b[0][0] = b[0][1] = b[0][2] = 99999; b[1][0] = b[1][1] = b[1][2] = -99999; } ID_INLINE void Bounds::Zero() { b[0][0] = b[0][1] = b[0][2] = b[1][0] = b[1][1] = b[1][2] = 0; } ID_INLINE void Bounds::AddPoint( const idVec3 &v ) { if ( v[0] < b[0][0] ) { b[0][0] = v[0]; } if ( v[0] > b[1][0] ) { b[1][0] = v[0]; } if ( v[1] < b[0][1] ) { b[0][1] = v[1]; } if ( v[1] > b[1][1] ) { b[1][1] = v[1]; } if ( v[2] < b[0][2] ) { b[0][2] = v[2]; } if ( v[2] > b[1][2] ) { b[1][2] = v[2]; } } ID_INLINE void Bounds::AddBounds( const Bounds &bb ) { if ( bb.b[0][0] < b[0][0] ) { b[0][0] = bb.b[0][0]; } if ( bb.b[0][1] < b[0][1] ) { b[0][1] = bb.b[0][1]; } if ( bb.b[0][2] < b[0][2] ) { b[0][2] = bb.b[0][2]; } if ( bb.b[1][0] > b[1][0] ) { b[1][0] = bb.b[1][0]; } if ( bb.b[1][1] > b[1][1] ) { b[1][1] = bb.b[1][1]; } if ( bb.b[1][2] > b[1][2] ) { b[1][2] = bb.b[1][2]; } } ID_INLINE float Bounds::Radius() { int i; float total; float a, aa; total = 0; for ( i = 0 ; i < 3 ; i++ ) { a = (float)fabs( b[0][i] ); aa = (float)fabs( b[1][i] ); if ( aa > a ) { a = aa; } total += a * a; } return (float)idSqrt( total ); } //=============================================================== class idVec2 { public: float x; float y; operator float *(); float operator[]( int index ) const; float &operator[]( int index ); }; ID_INLINE float idVec2::operator[]( int index ) const { return ( &x )[ index ]; } ID_INLINE float& idVec2::operator[]( int index ) { return ( &x )[ index ]; } ID_INLINE idVec2::operator float *( void ) { return &x; } class idVec4 : public idVec3 { public: #ifndef FAT_VEC3 float dist; #endif idVec4(); ~idVec4() {}; idVec4( float x, float y, float z, float dist ); float operator[]( int index ) const; float &operator[]( int index ); }; ID_INLINE idVec4::idVec4() {} ID_INLINE idVec4::idVec4( float x, float y, float z, float dist ) { this->x = x; this->y = y; this->z = z; this->dist = dist; } ID_INLINE float idVec4::operator[]( int index ) const { return ( &x )[ index ]; } ID_INLINE float& idVec4::operator[]( int index ) { return ( &x )[ index ]; } class idVec5_t : public idVec3 { public: float s; float t; float operator[]( int index ) const; float &operator[]( int index ); }; ID_INLINE float idVec5_t::operator[]( int index ) const { return ( &x )[ index ]; } ID_INLINE float& idVec5_t::operator[]( int index ) { return ( &x )[ index ]; } #endif /* !__MATH_VECTOR_H__ */