#if !defined( INCLUDED_MATH_QUATERNION_H ) #define INCLUDED_MATH_QUATERNION_H /// \file /// \brief Quaternion data types and related operations. #include "math/matrix.h" /// \brief A quaternion stored in single-precision floating-point. typedef Vector4 Quaternion; const Quaternion c_quaternion_identity( 0, 0, 0, 1 ); inline Quaternion quaternion_multiplied_by_quaternion( const Quaternion& quaternion, const Quaternion& other ){ return Quaternion( quaternion[3] * other[0] + quaternion[0] * other[3] + quaternion[1] * other[2] - quaternion[2] * other[1], quaternion[3] * other[1] + quaternion[1] * other[3] + quaternion[2] * other[0] - quaternion[0] * other[2], quaternion[3] * other[2] + quaternion[2] * other[3] + quaternion[0] * other[1] - quaternion[1] * other[0], quaternion[3] * other[3] - quaternion[0] * other[0] - quaternion[1] * other[1] - quaternion[2] * other[2] ); } inline void quaternion_multiply_by_quaternion( Quaternion& quaternion, const Quaternion& other ){ quaternion = quaternion_multiplied_by_quaternion( quaternion, other ); } /// \brief Constructs a quaternion which rotates between two points on the unit-sphere, \p from and \p to. inline Quaternion quaternion_for_unit_vectors( const Vector3& from, const Vector3& to ){ return Quaternion( vector3_cross( from, to ), static_cast( vector3_dot( from, to ) ) ); } inline Quaternion quaternion_for_axisangle( const Vector3& axis, double angle ){ angle *= 0.5; float sa = static_cast( sin( angle ) ); return Quaternion( axis[0] * sa, axis[1] * sa, axis[2] * sa, static_cast( cos( angle ) ) ); } inline Quaternion quaternion_inverse( const Quaternion& quaternion ){ return Quaternion( vector3_negated( vector4_to_vector3( quaternion ) ), quaternion[3] ); } inline void quaternion_conjugate( Quaternion& quaternion ){ quaternion = quaternion_inverse( quaternion ); } inline Quaternion quaternion_normalised( const Quaternion& quaternion ){ const double n = ( 1.0 / ( quaternion[0] * quaternion[0] + quaternion[1] * quaternion[1] + quaternion[2] * quaternion[2] + quaternion[3] * quaternion[3] ) ); return Quaternion( static_cast( quaternion[0] * n ), static_cast( quaternion[1] * n ), static_cast( quaternion[2] * n ), static_cast( quaternion[3] * n ) ); } inline void quaternion_normalise( Quaternion& quaternion ){ quaternion = quaternion_normalised( quaternion ); } /// \brief Constructs a pure-rotation matrix from \p quaternion. inline Matrix4 matrix4_rotation_for_quaternion( const Quaternion& quaternion ){ #if 0 const double xx = quaternion[0] * quaternion[0]; const double xy = quaternion[0] * quaternion[1]; const double xz = quaternion[0] * quaternion[2]; const double xw = quaternion[0] * quaternion[3]; const double yy = quaternion[1] * quaternion[1]; const double yz = quaternion[1] * quaternion[2]; const double yw = quaternion[1] * quaternion[3]; const double zz = quaternion[2] * quaternion[2]; const double zw = quaternion[2] * quaternion[3]; return Matrix4( static_cast( 1 - 2 * ( yy + zz ) ), static_cast( 2 * ( xy + zw ) ), static_cast( 2 * ( xz - yw ) ), 0, static_cast( 2 * ( xy - zw ) ), static_cast( 1 - 2 * ( xx + zz ) ), static_cast( 2 * ( yz + xw ) ), 0, static_cast( 2 * ( xz + yw ) ), static_cast( 2 * ( yz - xw ) ), static_cast( 1 - 2 * ( xx + yy ) ), 0, 0, 0, 0, 1 ); #else const double x2 = quaternion[0] + quaternion[0]; const double y2 = quaternion[1] + quaternion[1]; const double z2 = quaternion[2] + quaternion[2]; const double xx = quaternion[0] * x2; const double xy = quaternion[0] * y2; const double xz = quaternion[0] * z2; const double yy = quaternion[1] * y2; const double yz = quaternion[1] * z2; const double zz = quaternion[2] * z2; const double wx = quaternion[3] * x2; const double wy = quaternion[3] * y2; const double wz = quaternion[3] * z2; return Matrix4( static_cast( 1.0 - ( yy + zz ) ), static_cast( xy + wz ), static_cast( xz - wy ), 0, static_cast( xy - wz ), static_cast( 1.0 - ( xx + zz ) ), static_cast( yz + wx ), 0, static_cast( xz + wy ), static_cast( yz - wx ), static_cast( 1.0 - ( xx + yy ) ), 0, 0, 0, 0, 1 ); #endif } const double c_half_sqrt2 = 0.70710678118654752440084436210485; const float c_half_sqrt2f = static_cast( c_half_sqrt2 ); inline bool quaternion_component_is_90( float component ){ return ( fabs( component ) - c_half_sqrt2 ) < 0.001; } inline Matrix4 matrix4_rotation_for_quaternion_quantised( const Quaternion& quaternion ){ if ( quaternion.y() == 0 && quaternion.z() == 0 && quaternion_component_is_90( quaternion.x() ) && quaternion_component_is_90( quaternion.w() ) ) { return matrix4_rotation_for_sincos_x( ( quaternion.x() > 0 ) ? 1.f : -1.f, 0 ); } if ( quaternion.x() == 0 && quaternion.z() == 0 && quaternion_component_is_90( quaternion.y() ) && quaternion_component_is_90( quaternion.w() ) ) { return matrix4_rotation_for_sincos_y( ( quaternion.y() > 0 ) ? 1.f : -1.f, 0 ); } if ( quaternion.x() == 0 && quaternion.y() == 0 && quaternion_component_is_90( quaternion.z() ) && quaternion_component_is_90( quaternion.w() ) ) { return matrix4_rotation_for_sincos_z( ( quaternion.z() > 0 ) ? 1.f : -1.f, 0 ); } return matrix4_rotation_for_quaternion( quaternion ); } inline Quaternion quaternion_for_matrix4_rotation( const Matrix4& matrix4 ){ Matrix4 transposed = matrix4_transposed( matrix4 ); double trace = transposed[0] + transposed[5] + transposed[10] + 1.0; if ( trace > 0.0001 ) { double S = 0.5 / sqrt( trace ); return Quaternion( static_cast( ( transposed[9] - transposed[6] ) * S ), static_cast( ( transposed[2] - transposed[8] ) * S ), static_cast( ( transposed[4] - transposed[1] ) * S ), static_cast( 0.25 / S ) ); } if ( transposed[0] >= transposed[5] && transposed[0] >= transposed[10] ) { double S = 2.0 * sqrt( 1.0 + transposed[0] - transposed[5] - transposed[10] ); return Quaternion( static_cast( 0.25 / S ), static_cast( ( transposed[1] + transposed[4] ) / S ), static_cast( ( transposed[2] + transposed[8] ) / S ), static_cast( ( transposed[6] + transposed[9] ) / S ) ); } if ( transposed[5] >= transposed[0] && transposed[5] >= transposed[10] ) { double S = 2.0 * sqrt( 1.0 + transposed[5] - transposed[0] - transposed[10] ); return Quaternion( static_cast( ( transposed[1] + transposed[4] ) / S ), static_cast( 0.25 / S ), static_cast( ( transposed[6] + transposed[9] ) / S ), static_cast( ( transposed[2] + transposed[8] ) / S ) ); } double S = 2.0 * sqrt( 1.0 + transposed[10] - transposed[0] - transposed[5] ); return Quaternion( static_cast( ( transposed[2] + transposed[8] ) / S ), static_cast( ( transposed[6] + transposed[9] ) / S ), static_cast( 0.25 / S ), static_cast( ( transposed[1] + transposed[4] ) / S ) ); } /// \brief Returns \p self concatenated with the rotation transform produced by \p rotation. /// The concatenated rotation occurs before \p self. inline Matrix4 matrix4_rotated_by_quaternion( const Matrix4& self, const Quaternion& rotation ){ return matrix4_multiplied_by_matrix4( self, matrix4_rotation_for_quaternion( rotation ) ); } /// \brief Concatenates \p self with the rotation transform produced by \p rotation. /// The concatenated rotation occurs before \p self. inline void matrix4_rotate_by_quaternion( Matrix4& self, const Quaternion& rotation ){ self = matrix4_rotated_by_quaternion( self, rotation ); } /// \brief Rotates \p self by \p rotation, using \p pivotpoint. inline void matrix4_pivoted_rotate_by_quaternion( Matrix4& self, const Quaternion& rotation, const Vector3& pivotpoint ){ matrix4_translate_by_vec3( self, pivotpoint ); matrix4_rotate_by_quaternion( self, rotation ); matrix4_translate_by_vec3( self, vector3_negated( pivotpoint ) ); } inline Vector3 quaternion_transformed_point( const Quaternion& quaternion, const Vector3& point ){ double xx = quaternion.x() * quaternion.x(); double yy = quaternion.y() * quaternion.y(); double zz = quaternion.z() * quaternion.z(); double ww = quaternion.w() * quaternion.w(); double xy2 = quaternion.x() * quaternion.y() * 2; double xz2 = quaternion.x() * quaternion.z() * 2; double xw2 = quaternion.x() * quaternion.w() * 2; double yz2 = quaternion.y() * quaternion.z() * 2; double yw2 = quaternion.y() * quaternion.w() * 2; double zw2 = quaternion.z() * quaternion.w() * 2; return Vector3( static_cast( ww * point.x() + yw2 * point.z() - zw2 * point.y() + xx * point.x() + xy2 * point.y() + xz2 * point.z() - zz * point.x() - yy * point.x() ), static_cast( xy2 * point.x() + yy * point.y() + yz2 * point.z() + zw2 * point.x() - zz * point.y() + ww * point.y() - xw2 * point.z() - xx * point.y() ), static_cast( xz2 * point.x() + yz2 * point.y() + zz * point.z() - yw2 * point.x() - yy * point.z() + xw2 * point.y() - xx * point.z() + ww * point.z() ) ); } /// \brief Constructs a pure-rotation transform from \p axis and \p angle (radians). inline Matrix4 matrix4_rotation_for_axisangle( const Vector3& axis, double angle ){ return matrix4_rotation_for_quaternion( quaternion_for_axisangle( axis, angle ) ); } /// \brief Rotates \p self about \p axis by \p angle. inline void matrix4_rotate_by_axisangle( Matrix4& self, const Vector3& axis, double angle ){ matrix4_multiply_by_matrix4( self, matrix4_rotation_for_axisangle( axis, angle ) ); } /// \brief Rotates \p self about \p axis by \p angle using \p pivotpoint. inline void matrix4_pivoted_rotate_by_axisangle( Matrix4& self, const Vector3& axis, double angle, const Vector3& pivotpoint ){ matrix4_translate_by_vec3( self, pivotpoint ); matrix4_rotate_by_axisangle( self, axis, angle ); matrix4_translate_by_vec3( self, vector3_negated( pivotpoint ) ); } #endif