#if !defined(INCLUDED_RENDER_H) #define INCLUDED_RENDER_H /// \file /// \brief High-level constructs for efficient OpenGL rendering. #include "irender.h" #include "igl.h" #include "container/array.h" #include "math/vector.h" #include "math/pi.h" #include typedef unsigned int RenderIndex; const GLenum RenderIndexTypeID = GL_UNSIGNED_INT; /// \brief A resizable buffer of indices. class IndexBuffer { typedef std::vector Indices; Indices m_data; public: typedef Indices::iterator iterator; typedef Indices::const_iterator const_iterator; iterator begin() { return m_data.begin(); } const_iterator begin() const { return m_data.begin(); } iterator end() { return m_data.end(); } const_iterator end() const { return m_data.end(); } bool empty() const { return m_data.empty(); } std::size_t size() const { return m_data.size(); } const RenderIndex* data() const { return &(*m_data.begin()); } RenderIndex& operator[](std::size_t index) { return m_data[index]; } const RenderIndex& operator[](std::size_t index) const { return m_data[index]; } void clear() { m_data.clear(); } void reserve(std::size_t max_indices) { m_data.reserve(max_indices); } void insert(RenderIndex index) { m_data.push_back(index); } void swap(IndexBuffer& other) { std::swap(m_data, m_data); } }; namespace std { /// \brief Swaps the values of \p self and \p other. /// Overloads std::swap. inline void swap(IndexBuffer& self, IndexBuffer& other) { self.swap(other); } } /// \brief A resizable buffer of vertices. /// \param Vertex The vertex data type. template class VertexBuffer { typedef typename std::vector Vertices; Vertices m_data; public: typedef typename Vertices::iterator iterator; typedef typename Vertices::const_iterator const_iterator; iterator begin() { return m_data.begin(); } iterator end() { return m_data.end(); } const_iterator begin() const { return m_data.begin(); } const_iterator end() const { return m_data.end(); } bool empty() const { return m_data.empty(); } RenderIndex size() const { return RenderIndex(m_data.size()); } const Vertex* data() const { return &(*m_data.begin()); } Vertex& operator[](std::size_t index) { return m_data[index]; } const Vertex& operator[](std::size_t index) const { return m_data[index]; } void clear() { m_data.clear(); } void reserve(std::size_t max_vertices) { m_data.reserve(max_vertices); } void push_back(const Vertex& vertex) { m_data.push_back(vertex); } }; /// \brief A wrapper around a VertexBuffer which inserts only vertices which have not already been inserted. /// \param Vertex The vertex data type. Must support operator<, operator== and operator!=. /// For best performance, quantise vertices before inserting them. template class UniqueVertexBuffer { typedef VertexBuffer Vertices; Vertices& m_data; struct bnode { bnode() : m_left(0), m_right(0) { } RenderIndex m_left; RenderIndex m_right; }; std::vector m_btree; RenderIndex m_prev0; RenderIndex m_prev1; RenderIndex m_prev2; const RenderIndex find_or_insert(const Vertex& vertex) { RenderIndex index = 0; while(1) { if(vertex < m_data[index]) { bnode& node = m_btree[index]; if(node.m_left != 0) { index = node.m_left; continue; } else { node.m_left = RenderIndex(m_btree.size()); m_btree.push_back(bnode()); m_data.push_back(vertex); return RenderIndex(m_btree.size()-1); } } if(m_data[index] < vertex) { bnode& node = m_btree[index]; if(node.m_right != 0) { index = node.m_right; continue; } else { node.m_right = RenderIndex(m_btree.size()); m_btree.push_back(bnode()); m_data.push_back(vertex); return RenderIndex(m_btree.size()-1); } } return index; } } public: UniqueVertexBuffer(Vertices& data) : m_data(data), m_prev0(0), m_prev1(0), m_prev2(0) { } typedef typename Vertices::const_iterator iterator; iterator begin() const { return m_data.begin(); } iterator end() const { return m_data.end(); } std::size_t size() const { return m_data.size(); } const Vertex* data() const { return &(*m_data.begin()); } Vertex& operator[](std::size_t index) { return m_data[index]; } const Vertex& operator[](std::size_t index) const { return m_data[index]; } void clear() { m_prev0 = 0; m_prev1 = 0; m_prev2 = 0; m_data.clear(); m_btree.clear(); } void reserve(std::size_t max_vertices) { m_data.reserve(max_vertices); m_btree.reserve(max_vertices); } /// \brief Returns the index of the element equal to \p vertex. RenderIndex insert(const Vertex& vertex) { if(m_data.empty()) { m_data.push_back(vertex); m_btree.push_back(bnode()); return 0; } if(m_data[m_prev0] == vertex) return m_prev0; if(m_prev1 != m_prev0 && m_data[m_prev1] == vertex) return m_prev1; if(m_prev2 != m_prev0 && m_prev2 != m_prev1 && m_data[m_prev2] == vertex) return m_prev2; m_prev2 = m_prev1; m_prev1 = m_prev0; m_prev0 = find_or_insert(vertex); return m_prev0; } }; /// \brief A 4-byte colour. struct Colour4b { unsigned char r, g, b, a; Colour4b() { } Colour4b(unsigned char _r, unsigned char _g, unsigned char _b, unsigned char _a) : r(_r), g(_g), b(_b), a(_a) { } }; inline bool operator<(const Colour4b& self, const Colour4b& other) { if(self.r != other.r) { return self.r < other.r; } if(self.g != other.g) { return self.g < other.g; } if(self.b != other.b) { return self.b < other.b; } if(self.a != other.a) { return self.a < other.a; } return false; } inline bool operator==(const Colour4b& self, const Colour4b& other) { return self.r == other.r && self.g == other.g && self.b == other.b && self.a == other.a; } inline bool operator!=(const Colour4b& self, const Colour4b& other) { return !operator==(self, other); } /// \brief A 3-float vertex. struct Vertex3f { float x, y, z; Vertex3f() { } Vertex3f(float _x, float _y, float _z) : x(_x), y(_y), z(_z) { } }; inline bool operator<(const Vertex3f& self, const Vertex3f& other) { if(self.x != other.x) { return self.x < other.x; } if(self.y != other.y) { return self.y < other.y; } if(self.z != other.z) { return self.z < other.z; } return false; } inline bool operator==(const Vertex3f& self, const Vertex3f& other) { return self.x == other.x && self.y == other.y && self.z == other.z; } inline bool operator!=(const Vertex3f& self, const Vertex3f& other) { return !operator==(self, other); } inline const Vertex3f& vertex3f_from_array(const float* array) { return *reinterpret_cast(array); } inline float* vertex3f_to_array(Vertex3f& vertex) { return reinterpret_cast(&vertex); } inline const float* vertex3f_to_array(const Vertex3f& vertex) { return reinterpret_cast(&vertex); } const Vertex3f vertex3f_identity(0, 0, 0); inline Vertex3f vertex3f_for_vector3(const Vector3& vector3) { return Vertex3f(vector3.x(), vector3.y(), vector3.z()); } inline const Vector3& vertex3f_to_vector3(const Vertex3f& vertex) { return reinterpret_cast(vertex); } inline Vector3& vertex3f_to_vector3(Vertex3f& vertex) { return reinterpret_cast(vertex); } /// \brief A 3-float normal. struct Normal3f { float x, y, z; Normal3f() { } Normal3f(float _x, float _y, float _z) : x(_x), y(_y), z(_z) { } }; inline bool operator<(const Normal3f& self, const Normal3f& other) { if(self.x != other.x) { return self.x < other.x; } if(self.y != other.y) { return self.y < other.y; } if(self.z != other.z) { return self.z < other.z; } return false; } inline bool operator==(const Normal3f& self, const Normal3f& other) { return self.x == other.x && self.y == other.y && self.z == other.z; } inline bool operator!=(const Normal3f& self, const Normal3f& other) { return !operator==(self, other); } inline Normal3f normal3f_from_array(const float* array) { return Normal3f(array[0], array[1], array[2]); } inline float* normal3f_to_array(Normal3f& normal) { return reinterpret_cast(&normal); } inline const float* normal3f_to_array(const Normal3f& normal) { return reinterpret_cast(&normal); } inline Normal3f normal3f_for_vector3(const Vector3& vector3) { return Normal3f(vector3.x(), vector3.y(), vector3.z()); } inline const Vector3& normal3f_to_vector3(const Normal3f& normal) { return reinterpret_cast(normal); } inline Vector3& normal3f_to_vector3(Normal3f& normal) { return reinterpret_cast(normal); } /// \brief A 2-float texture-coordinate set. struct TexCoord2f { float s, t; TexCoord2f() { } TexCoord2f(float _s, float _t) : s(_s), t(_t) { } }; inline bool operator<(const TexCoord2f& self, const TexCoord2f& other) { if(self.s != other.s) { return self.s < other.s; } if(self.t != other.t) { return self.t < other.t; } return false; } inline bool operator==(const TexCoord2f& self, const TexCoord2f& other) { return self.s == other.s && self.t == other.t; } inline bool operator!=(const TexCoord2f& self, const TexCoord2f& other) { return !operator==(self, other); } inline float* texcoord2f_to_array(TexCoord2f& texcoord) { return reinterpret_cast(&texcoord); } inline const float* texcoord2f_to_array(const TexCoord2f& texcoord) { return reinterpret_cast(&texcoord); } inline const TexCoord2f& texcoord2f_from_array(const float* array) { return *reinterpret_cast(array); } inline TexCoord2f texcoord2f_for_vector2(const Vector2& vector2) { return TexCoord2f(vector2.x(), vector2.y()); } inline const Vector2& texcoord2f_to_vector2(const TexCoord2f& vertex) { return reinterpret_cast(vertex); } inline Vector2& texcoord2f_to_vector2(TexCoord2f& vertex) { return reinterpret_cast(vertex); } /// \brief Returns \p normal rescaled to be unit-length. inline Normal3f normal3f_normalised(const Normal3f& normal) { return normal3f_for_vector3(vector3_normalised(normal3f_to_vector3(normal))); } enum UnitSphereOctant { UNITSPHEREOCTANT_000 = 0 << 0 | 0 << 1 | 0 << 2, UNITSPHEREOCTANT_001 = 0 << 0 | 0 << 1 | 1 << 2, UNITSPHEREOCTANT_010 = 0 << 0 | 1 << 1 | 0 << 2, UNITSPHEREOCTANT_011 = 0 << 0 | 1 << 1 | 1 << 2, UNITSPHEREOCTANT_100 = 1 << 0 | 0 << 1 | 0 << 2, UNITSPHEREOCTANT_101 = 1 << 0 | 0 << 1 | 1 << 2, UNITSPHEREOCTANT_110 = 1 << 0 | 1 << 1 | 0 << 2, UNITSPHEREOCTANT_111 = 1 << 0 | 1 << 1 | 1 << 2, }; /// \brief Returns the octant for \p normal indicating the sign of the region of unit-sphere space it lies within. inline UnitSphereOctant normal3f_classify_octant(const Normal3f& normal) { return static_cast( ((normal.x > 0) << 0) | ((normal.y > 0) << 1) | ((normal.z > 0) << 2) ); } /// \brief Returns \p normal with its components signs made positive based on \p octant. inline Normal3f normal3f_fold_octant(const Normal3f& normal, UnitSphereOctant octant) { switch(octant) { case UNITSPHEREOCTANT_000: return Normal3f(-normal.x, -normal.y, -normal.z); case UNITSPHEREOCTANT_001: return Normal3f(normal.x, -normal.y, -normal.z); case UNITSPHEREOCTANT_010: return Normal3f(-normal.x, normal.y, -normal.z); case UNITSPHEREOCTANT_011: return Normal3f(normal.x, normal.y, -normal.z); case UNITSPHEREOCTANT_100: return Normal3f(-normal.x, -normal.y, normal.z); case UNITSPHEREOCTANT_101: return Normal3f(normal.x, -normal.y, normal.z); case UNITSPHEREOCTANT_110: return Normal3f(-normal.x, normal.y, normal.z); case UNITSPHEREOCTANT_111: return Normal3f(normal.x, normal.y, normal.z); } return Normal3f(); } /// \brief Reverses the effect of normal3f_fold_octant() on \p normal with \p octant. /// \p normal must have been obtained with normal3f_fold_octant(). /// \p octant must have been obtained with normal3f_classify_octant(). inline Normal3f normal3f_unfold_octant(const Normal3f& normal, UnitSphereOctant octant) { return normal3f_fold_octant(normal, octant); } enum UnitSphereSextant { UNITSPHERESEXTANT_XYZ = 0, UNITSPHERESEXTANT_XZY = 1, UNITSPHERESEXTANT_YXZ = 2, UNITSPHERESEXTANT_YZX = 3, UNITSPHERESEXTANT_ZXY = 4, UNITSPHERESEXTANT_ZYX = 5, }; /// \brief Returns the sextant for \p normal indicating how to sort its components so that x > y > z. /// All components of \p normal must be positive. /// \p normal must be normalised. inline UnitSphereSextant normal3f_classify_sextant(const Normal3f& normal) { return normal.x >= normal.y ? normal.x >= normal.z ? normal.y >= normal.z ? UNITSPHERESEXTANT_XYZ : UNITSPHERESEXTANT_XZY : UNITSPHERESEXTANT_ZXY : normal.y >= normal.z ? normal.x >= normal.z ? UNITSPHERESEXTANT_YXZ : UNITSPHERESEXTANT_YZX : UNITSPHERESEXTANT_ZYX; } /// \brief Returns \p normal with its components sorted so that x > y > z based on \p sextant. /// All components of \p normal must be positive. /// \p normal must be normalised. inline Normal3f normal3f_fold_sextant(const Normal3f& normal, UnitSphereSextant sextant) { switch(sextant) { case UNITSPHERESEXTANT_XYZ: return Normal3f(normal.x, normal.y, normal.z); case UNITSPHERESEXTANT_XZY: return Normal3f(normal.x, normal.z, normal.y); case UNITSPHERESEXTANT_YXZ: return Normal3f(normal.y, normal.x, normal.z); case UNITSPHERESEXTANT_YZX: return Normal3f(normal.y, normal.z, normal.x); case UNITSPHERESEXTANT_ZXY: return Normal3f(normal.z, normal.x, normal.y); case UNITSPHERESEXTANT_ZYX: return Normal3f(normal.z, normal.y, normal.x); } return Normal3f(); } /// \brief Reverses the effect of normal3f_fold_sextant() on \p normal with \p sextant. /// \p normal must have been obtained with normal3f_fold_sextant(). /// \p sextant must have been obtained with normal3f_classify_sextant(). inline Normal3f normal3f_unfold_sextant(const Normal3f& normal, UnitSphereSextant sextant) { return normal3f_fold_sextant(normal, sextant); } const std::size_t c_quantise_normal = 1 << 6; /// \brief All the components of \p folded must be positive and sorted so that x > y > z. inline Normal3f normal3f_folded_quantised(const Normal3f& folded) { // compress double scale = static_cast(c_quantise_normal) / (folded.x + folded.y + folded.z); unsigned int zbits = static_cast(folded.z * scale); unsigned int ybits = static_cast(folded.y * scale); // decompress return normal3f_normalised(Normal3f( static_cast(c_quantise_normal - zbits - ybits), static_cast(ybits), static_cast(zbits) )); } /// \brief Returns \p normal quantised by compressing and then decompressing its representation. inline Normal3f normal3f_quantised_custom(const Normal3f& normal) { UnitSphereOctant octant = normal3f_classify_octant(normal); Normal3f folded = normal3f_fold_octant(normal, octant); UnitSphereSextant sextant = normal3f_classify_sextant(folded); folded = normal3f_fold_sextant(folded, sextant); return normal3f_unfold_octant(normal3f_unfold_sextant(normal3f_folded_quantised(folded), sextant), octant); } struct spherical_t { double longditude, latitude; spherical_t(double _longditude, double _latitude) : longditude(_longditude), latitude(_latitude) { } }; /* { theta = 2pi * U; phi = acos((2 * V) - 1); U = theta / 2pi; V = (cos(phi) + 1) / 2; } longitude = atan(y / x); latitude = acos(z); */ struct uniformspherical_t { double U, V; uniformspherical_t(double U_, double V_) : U(U_), V(V_) { } }; inline spherical_t spherical_from_normal3f(const Normal3f& normal) { return spherical_t(normal.x == 0 ? c_pi / 2 : normal.x > 0 ? atan(normal.y / normal.x) : atan(normal.y / normal.x) + c_pi, acos(normal.z)); } inline Normal3f normal3f_from_spherical(const spherical_t& spherical) { return Normal3f( static_cast(cos(spherical.longditude) * sin(spherical.latitude)), static_cast(sin(spherical.longditude) * sin(spherical.latitude)), static_cast(cos(spherical.latitude)) ); } inline uniformspherical_t uniformspherical_from_spherical(const spherical_t& spherical) { return uniformspherical_t(spherical.longditude * c_inv_2pi, (cos(spherical.latitude) + 1) * 0.5); } inline spherical_t spherical_from_uniformspherical(const uniformspherical_t& uniformspherical) { return spherical_t(c_2pi * uniformspherical.U, acos((2 * uniformspherical.V) - 1)); } inline uniformspherical_t uniformspherical_from_normal3f(const Normal3f& normal) { return uniformspherical_from_spherical(spherical_from_normal3f(normal)); //return uniformspherical_t(atan2(normal.y / normal.x) * c_inv_2pi, (normal.z + 1) * 0.5); } inline Normal3f normal3f_from_uniformspherical(const uniformspherical_t& uniformspherical) { return normal3f_from_spherical(spherical_from_uniformspherical(uniformspherical)); } /// \brief Returns a single-precision \p component quantised to \p precision. inline float float_quantise(float component, float precision) { return float_snapped(component, precision); } /// \brief Returns a double-precision \p component quantised to \p precision. inline double double_quantise(double component, double precision) { return float_snapped(component, precision); } inline spherical_t spherical_quantised(const spherical_t& spherical, float snap) { return spherical_t(double_quantise(spherical.longditude, snap), double_quantise(spherical.latitude, snap)); } inline uniformspherical_t uniformspherical_quantised(const uniformspherical_t& uniformspherical, float snap) { return uniformspherical_t(double_quantise(uniformspherical.U, snap), double_quantise(uniformspherical.V, snap)); } /// \brief Returns a \p vertex quantised to \p precision. inline Vertex3f vertex3f_quantised(const Vertex3f& vertex, float precision) { return Vertex3f(float_quantise(vertex.x, precision), float_quantise(vertex.y, precision), float_quantise(vertex.z, precision)); } /// \brief Returns a \p normal quantised to a fixed precision. inline Normal3f normal3f_quantised(const Normal3f& normal) { return normal3f_quantised_custom(normal); //return normal3f_from_spherical(spherical_quantised(spherical_from_normal3f(normal), snap)); //return normal3f_from_uniformspherical(uniformspherical_quantised(uniformspherical_from_normal3f(normal), snap)); // float_quantise(normal.x, snap), float_quantise(normal.y, snap), float_quantise(normal.y, snap)); } /// \brief Returns a \p texcoord quantised to \p precision. inline TexCoord2f texcoord2f_quantised(const TexCoord2f& texcoord, float precision) { return TexCoord2f(float_quantise(texcoord.s, precision), float_quantise(texcoord.t, precision)); } /// \brief Standard vertex type for lines and points. struct PointVertex { Colour4b colour; Vertex3f vertex; PointVertex() { } PointVertex(Vertex3f _vertex) : colour(Colour4b(255, 255, 255, 255)), vertex(_vertex) { } PointVertex(Vertex3f _vertex, Colour4b _colour) : colour(_colour), vertex(_vertex) { } }; inline bool operator<(const PointVertex& self, const PointVertex& other) { if(self.vertex != other.vertex) { return self.vertex < other.vertex; } if(self.colour != other.colour) { return self.colour < other.colour; } return false; } inline bool operator==(const PointVertex& self, const PointVertex& other) { return self.colour == other.colour && self.vertex == other.vertex; } inline bool operator!=(const PointVertex& self, const PointVertex& other) { return !operator==(self, other); } /// \brief Standard vertex type for lit/textured meshes. struct ArbitraryMeshVertex { TexCoord2f texcoord; Normal3f normal; Vertex3f vertex; Normal3f tangent; Normal3f bitangent; ArbitraryMeshVertex() : tangent(0, 0, 0), bitangent(0, 0, 0) { } ArbitraryMeshVertex(Vertex3f _vertex, Normal3f _normal, TexCoord2f _texcoord) : texcoord(_texcoord), normal(_normal), vertex(_vertex), tangent(0, 0, 0), bitangent(0, 0, 0) { } }; inline bool operator<(const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other) { if(self.texcoord != other.texcoord) { return self.texcoord < other.texcoord; } if(self.normal != other.normal) { return self.normal < other.normal; } if(self.vertex != other.vertex) { return self.vertex < other.vertex; } return false; } inline bool operator==(const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other) { return self.texcoord == other.texcoord && self.normal == other.normal && self.vertex == other.vertex; } inline bool operator!=(const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other) { return !operator==(self, other); } const float c_quantise_vertex = 1.f / static_cast(1 << 3); /// \brief Returns \p v with vertex quantised to a fixed precision. inline PointVertex pointvertex_quantised(const PointVertex& v) { return PointVertex(vertex3f_quantised(v.vertex, c_quantise_vertex), v.colour); } const float c_quantise_texcoord = 1.f / static_cast(1 << 8); /// \brief Returns \p v with vertex, normal and texcoord quantised to a fixed precision. inline ArbitraryMeshVertex arbitrarymeshvertex_quantised(const ArbitraryMeshVertex& v) { return ArbitraryMeshVertex(vertex3f_quantised(v.vertex, c_quantise_vertex), normal3f_quantised(v.normal), texcoord2f_quantised(v.texcoord, c_quantise_texcoord)); } /// \brief Sets up the OpenGL colour and vertex arrays for \p array. inline void pointvertex_gl_array(const PointVertex* array) { glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(PointVertex), &array->colour); glVertexPointer(3, GL_FLOAT, sizeof(PointVertex), &array->vertex); } class RenderablePointArray : public OpenGLRenderable { const Array& m_array; const GLenum m_mode; public: RenderablePointArray(const Array& array, GLenum mode) : m_array(array), m_mode(mode) { } void render(RenderStateFlags state) const { #define NV_DRIVER_BUG 1 #if NV_DRIVER_BUG glColorPointer(4, GL_UNSIGNED_BYTE, 0, 0); glVertexPointer(3, GL_FLOAT, 0, 0); glDrawArrays(GL_TRIANGLE_FAN, 0, 0); #endif pointvertex_gl_array(m_array.data()); glDrawArrays(m_mode, 0, GLsizei(m_array.size())); } }; class RenderablePointVector : public OpenGLRenderable { std::vector m_vector; const GLenum m_mode; public: RenderablePointVector(GLenum mode) : m_mode(mode) { } void render(RenderStateFlags state) const { pointvertex_gl_array(&m_vector.front()); glDrawArrays(m_mode, 0, GLsizei(m_vector.size())); } std::size_t size() const { return m_vector.size(); } bool empty() const { return m_vector.empty(); } void clear() { m_vector.clear(); } void reserve(std::size_t size) { m_vector.reserve(size); } void push_back(const PointVertex& point) { m_vector.push_back(point); } }; class RenderableVertexBuffer : public OpenGLRenderable { const GLenum m_mode; const VertexBuffer& m_vertices; public: RenderableVertexBuffer(GLenum mode, const VertexBuffer& vertices) : m_mode(mode), m_vertices(vertices) { } void render(RenderStateFlags state) const { pointvertex_gl_array(m_vertices.data()); glDrawArrays(m_mode, 0, m_vertices.size()); } }; class RenderableIndexBuffer : public OpenGLRenderable { const GLenum m_mode; const IndexBuffer& m_indices; const VertexBuffer& m_vertices; public: RenderableIndexBuffer(GLenum mode, const IndexBuffer& indices, const VertexBuffer& vertices) : m_mode(mode), m_indices(indices), m_vertices(vertices) { } void render(RenderStateFlags state) const { #if 1 pointvertex_gl_array(m_vertices.data()); glDrawElements(m_mode, GLsizei(m_indices.size()), RenderIndexTypeID, m_indices.data()); #else glBegin(m_mode); if(state & RENDER_COLOUR != 0) { for(std::size_t i = 0; i < m_indices.size(); ++i) { glColor4ubv(&m_vertices[m_indices[i]].colour.r); glVertex3fv(&m_vertices[m_indices[i]].vertex.x); } } else { for(std::size_t i = 0; i < m_indices.size(); ++i) { glVertex3fv(&m_vertices[m_indices[i]].vertex.x); } } glEnd(); #endif } }; class RemapXYZ { public: static void set(Vertex3f& vertex, float x, float y, float z) { vertex.x = x; vertex.y = y; vertex.z = z; } }; class RemapYZX { public: static void set(Vertex3f& vertex, float x, float y, float z) { vertex.x = z; vertex.y = x; vertex.z = y; } }; class RemapZXY { public: static void set(Vertex3f& vertex, float x, float y, float z) { vertex.x = y; vertex.y = z; vertex.z = x; } }; template inline void draw_circle(const std::size_t segments, const float radius, PointVertex* vertices, remap_policy remap) { const double increment = c_pi / double(segments << 2); std::size_t count = 0; float x = radius; float y = 0; while(count < segments) { PointVertex* i = vertices + count; PointVertex* j = vertices + ((segments << 1) - (count + 1)); PointVertex* k = i + (segments << 1); PointVertex* l = j + (segments << 1); PointVertex* m = i + (segments << 2); PointVertex* n = j + (segments << 2); PointVertex* o = k + (segments << 2); PointVertex* p = l + (segments << 2); remap_policy::set(i->vertex, x,-y, 0); remap_policy::set(k->vertex,-y,-x, 0); remap_policy::set(m->vertex,-x, y, 0); remap_policy::set(o->vertex, y, x, 0); ++count; { const double theta = increment * count; x = static_cast(radius * cos(theta)); y = static_cast(radius * sin(theta)); } remap_policy::set(j->vertex, y,-x, 0); remap_policy::set(l->vertex,-x,-y, 0); remap_policy::set(n->vertex,-y, x, 0); remap_policy::set(p->vertex, x, y, 0); } } #if 0 class PointVertexArrayIterator { PointVertex* m_point; public: PointVertexArrayIterator(PointVertex* point) : m_point(point) { } PointVertexArrayIterator& operator++() { ++m_point; return *this; } PointVertexArrayIterator operator++(int) { PointVertexArrayIterator tmp(*this); ++m_point; return tmp; } Vertex3f& operator*() { return m_point.vertex; } Vertex3f* operator->() { return &(operator*()); } } template 0.000001f) { s.x() = -cross.y() / cross.x(); } if(fabs(cross.x()) > 0.000001f) { t.x() = -cross.z() / cross.x(); } } { Vector3 cross( vector3_cross( vector3_subtracted( Vector3(b.vertex.y, b.texcoord.s, b.texcoord.t), Vector3(a.vertex.y, a.texcoord.s, a.texcoord.t) ), vector3_subtracted( Vector3(c.vertex.y, c.texcoord.s, c.texcoord.t), Vector3(a.vertex.y, a.texcoord.s, a.texcoord.t) ) ) ); if(fabs(cross.x()) > 0.000001f) { s.y() = -cross.y() / cross.x(); } if(fabs(cross.x()) > 0.000001f) { t.y() = -cross.z() / cross.x(); } } { Vector3 cross( vector3_cross( vector3_subtracted( Vector3(b.vertex.z, b.texcoord.s, b.texcoord.t), Vector3(a.vertex.z, a.texcoord.s, a.texcoord.t) ), vector3_subtracted( Vector3(c.vertex.z, c.texcoord.s, c.texcoord.t), Vector3(a.vertex.z, a.texcoord.s, a.texcoord.t) ) ) ); if(fabs(cross.x()) > 0.000001f) { s.z() = -cross.y() / cross.x(); } if(fabs(cross.x()) > 0.000001f) { t.z() = -cross.z() / cross.x(); } } } inline void ArbitraryMeshTriangle_sumTangents(ArbitraryMeshVertex& a, ArbitraryMeshVertex& b, ArbitraryMeshVertex& c) { Vector3 s, t; ArbitraryMeshTriangle_calcTangents(a, b, c, s, t); reinterpret_cast(a.tangent) += s; reinterpret_cast(b.tangent) += s; reinterpret_cast(c.tangent) += s; reinterpret_cast(a.bitangent) += t; reinterpret_cast(b.bitangent) += t; reinterpret_cast(c.bitangent) += t; } #endif