#if !defined(INCLUDED_MATH_QUATERNION_H) #define INCLUDED_MATH_QUATERNION_H /// \file /// \brief Quaternion data types and related operations. #include "math/matrix.h" /// \brief A quaternion stored in single-precision floating-point. typedef Vector4 Quaternion; const Quaternion c_quaternion_identity(0, 0, 0, 1); inline Quaternion quaternion_multiplied_by_quaternion(const Quaternion& quaternion, const Quaternion& other) { return Quaternion( quaternion[3]*other[0] + quaternion[0]*other[3] + quaternion[1]*other[2] - quaternion[2]*other[1], quaternion[3]*other[1] + quaternion[1]*other[3] + quaternion[2]*other[0] - quaternion[0]*other[2], quaternion[3]*other[2] + quaternion[2]*other[3] + quaternion[0]*other[1] - quaternion[1]*other[0], quaternion[3]*other[3] - quaternion[0]*other[0] - quaternion[1]*other[1] - quaternion[2]*other[2] ); } inline void quaternion_multiply_by_quaternion(Quaternion& quaternion, const Quaternion& other) { quaternion = quaternion_multiplied_by_quaternion(quaternion, other); } /// \brief Constructs a quaternion which rotates between two points on the unit-sphere, \p from and \p to. inline Quaternion quaternion_for_unit_vectors(const Vector3& from, const Vector3& to) { return Quaternion(vector3_cross(from, to), static_cast(vector3_dot(from, to))); } inline Quaternion quaternion_for_axisangle(const Vector3& axis, double angle) { angle *= 0.5; float sa = static_cast(sin(angle)); return Quaternion(axis[0] * sa, axis[1] * sa, axis[2] * sa, static_cast(cos(angle))); } inline Quaternion quaternion_inverse(const Quaternion& quaternion) { return Quaternion(vector3_negated(vector4_to_vector3(quaternion)), quaternion[3]); } inline void quaternion_conjugate(Quaternion& quaternion) { quaternion = quaternion_inverse(quaternion); } inline Quaternion quaternion_normalised(const Quaternion& quaternion) { const double n = (1.0 / (quaternion[0] * quaternion[0] + quaternion[1] * quaternion[1] + quaternion[2] * quaternion[2] + quaternion[3] * quaternion[3])); return Quaternion( static_cast(quaternion[0] * n), static_cast(quaternion[1] * n), static_cast(quaternion[2] * n), static_cast(quaternion[3] * n) ); } inline void quaternion_normalise(Quaternion& quaternion) { quaternion = quaternion_normalised(quaternion); } /// \brief Constructs a pure-rotation matrix from \p quaternion. inline Matrix4 matrix4_rotation_for_quaternion(const Quaternion& quaternion) { #if 0 const double xx = quaternion[0] * quaternion[0]; const double xy = quaternion[0] * quaternion[1]; const double xz = quaternion[0] * quaternion[2]; const double xw = quaternion[0] * quaternion[3]; const double yy = quaternion[1] * quaternion[1]; const double yz = quaternion[1] * quaternion[2]; const double yw = quaternion[1] * quaternion[3]; const double zz = quaternion[2] * quaternion[2]; const double zw = quaternion[2] * quaternion[3]; return Matrix4( static_cast( 1 - 2 * ( yy + zz ) ), static_cast( 2 * ( xy + zw ) ), static_cast( 2 * ( xz - yw ) ), 0, static_cast( 2 * ( xy - zw ) ), static_cast( 1 - 2 * ( xx + zz ) ), static_cast( 2 * ( yz + xw ) ), 0, static_cast( 2 * ( xz + yw ) ), static_cast( 2 * ( yz - xw ) ), static_cast( 1 - 2 * ( xx + yy ) ), 0, 0, 0, 0, 1 ); #else const double x2 = quaternion[0] + quaternion[0]; const double y2 = quaternion[1] + quaternion[1]; const double z2 = quaternion[2] + quaternion[2]; const double xx = quaternion[0] * x2; const double xy = quaternion[0] * y2; const double xz = quaternion[0] * z2; const double yy = quaternion[1] * y2; const double yz = quaternion[1] * z2; const double zz = quaternion[2] * z2; const double wx = quaternion[3] * x2; const double wy = quaternion[3] * y2; const double wz = quaternion[3] * z2; return Matrix4( static_cast( 1.0 - (yy + zz) ), static_cast(xy + wz), static_cast(xz - wy), 0, static_cast(xy - wz), static_cast( 1.0 - (xx + zz) ), static_cast(yz + wx), 0, static_cast(xz + wy), static_cast(yz - wx), static_cast( 1.0 - (xx + yy) ), 0, 0, 0, 0, 1 ); #endif } const double c_half_sqrt2 = 0.70710678118654752440084436210485; const float c_half_sqrt2f = static_cast(c_half_sqrt2); inline bool quaternion_component_is_90(float component) { return (fabs(component) - c_half_sqrt2) < 0.001; } inline Matrix4 matrix4_rotation_for_quaternion_quantised(const Quaternion& quaternion) { if(quaternion.y() == 0 && quaternion.z() == 0 && quaternion_component_is_90(quaternion.x()) && quaternion_component_is_90(quaternion.w())) { return matrix4_rotation_for_sincos_x((quaternion.x() > 0) ? 1.f : -1.f, 0); } if(quaternion.x() == 0 && quaternion.z() == 0 && quaternion_component_is_90(quaternion.y()) && quaternion_component_is_90(quaternion.w())) { return matrix4_rotation_for_sincos_y((quaternion.y() > 0) ? 1.f : -1.f, 0); } if(quaternion.x() == 0 && quaternion.y() == 0 && quaternion_component_is_90(quaternion.z()) && quaternion_component_is_90(quaternion.w())) { return matrix4_rotation_for_sincos_z((quaternion.z() > 0) ? 1.f : -1.f, 0); } return matrix4_rotation_for_quaternion(quaternion); } inline Quaternion quaternion_for_matrix4_rotation(const Matrix4& matrix4) { Matrix4 transposed = matrix4_transposed(matrix4); double trace = transposed[0] + transposed[5] + transposed[10] + 1.0; if(trace > 0.0001) { double S = 0.5 / sqrt(trace); return Quaternion( static_cast((transposed[9] - transposed[6]) * S), static_cast((transposed[2] - transposed[8]) * S), static_cast((transposed[4] - transposed[1]) * S), static_cast(0.25 / S) ); } if(transposed[0] >= transposed[5] && transposed[0] >= transposed[10]) { double S = 2.0 * sqrt(1.0 + transposed[0] - transposed[5] - transposed[10]); return Quaternion( static_cast(0.25 / S), static_cast((transposed[1] + transposed[4]) / S), static_cast((transposed[2] + transposed[8]) / S), static_cast((transposed[6] + transposed[9]) / S) ); } if(transposed[5] >= transposed[0] && transposed[5] >= transposed[10]) { double S = 2.0 * sqrt(1.0 + transposed[5] - transposed[0] - transposed[10]); return Quaternion( static_cast((transposed[1] + transposed[4]) / S), static_cast(0.25 / S), static_cast((transposed[6] + transposed[9]) / S), static_cast((transposed[2] + transposed[8]) / S) ); } double S = 2.0 * sqrt(1.0 + transposed[10] - transposed[0] - transposed[5]); return Quaternion( static_cast((transposed[2] + transposed[8]) / S), static_cast((transposed[6] + transposed[9]) / S), static_cast(0.25 / S), static_cast((transposed[1] + transposed[4]) / S) ); } /// \brief Returns \p self concatenated with the rotation transform produced by \p rotation. /// The concatenated rotation occurs before \p self. inline Matrix4 matrix4_rotated_by_quaternion(const Matrix4& self, const Quaternion& rotation) { return matrix4_multiplied_by_matrix4(self, matrix4_rotation_for_quaternion(rotation)); } /// \brief Concatenates \p self with the rotation transform produced by \p rotation. /// The concatenated rotation occurs before \p self. inline void matrix4_rotate_by_quaternion(Matrix4& self, const Quaternion& rotation) { self = matrix4_rotated_by_quaternion(self, rotation); } /// \brief Rotates \p self by \p rotation, using \p pivotpoint. inline void matrix4_pivoted_rotate_by_quaternion(Matrix4& self, const Quaternion& rotation, const Vector3& pivotpoint) { matrix4_translate_by_vec3(self, pivotpoint); matrix4_rotate_by_quaternion(self, rotation); matrix4_translate_by_vec3(self, vector3_negated(pivotpoint)); } inline Vector3 quaternion_transformed_point(const Quaternion& quaternion, const Vector3& point) { double xx = quaternion.x() * quaternion.x(); double yy = quaternion.y() * quaternion.y(); double zz = quaternion.z() * quaternion.z(); double ww = quaternion.w() * quaternion.w(); double xy2 = quaternion.x() * quaternion.y() * 2; double xz2 = quaternion.x() * quaternion.z() * 2; double xw2 = quaternion.x() * quaternion.w() * 2; double yz2 = quaternion.y() * quaternion.z() * 2; double yw2 = quaternion.y() * quaternion.w() * 2; double zw2 = quaternion.z() * quaternion.w() * 2; return Vector3( static_cast(ww * point.x() + yw2 * point.z() - zw2 * point.y() + xx * point.x() + xy2 * point.y() + xz2 * point.z() - zz * point.x() - yy * point.x()), static_cast(xy2 * point.x() + yy * point.y() + yz2 * point.z() + zw2 * point.x() - zz * point.y() + ww * point.y() - xw2 * point.z() - xx * point.y()), static_cast(xz2 * point.x() + yz2 * point.y() + zz * point.z() - yw2 * point.x() - yy * point.z() + xw2 * point.y() - xx * point.z() + ww * point.z()) ); } /// \brief Constructs a pure-rotation transform from \p axis and \p angle (radians). inline Matrix4 matrix4_rotation_for_axisangle(const Vector3& axis, double angle) { return matrix4_rotation_for_quaternion(quaternion_for_axisangle(axis, angle)); } /// \brief Rotates \p self about \p axis by \p angle. inline void matrix4_rotate_by_axisangle(Matrix4& self, const Vector3& axis, double angle) { matrix4_multiply_by_matrix4(self, matrix4_rotation_for_axisangle(axis, angle)); } /// \brief Rotates \p self about \p axis by \p angle using \p pivotpoint. inline void matrix4_pivoted_rotate_by_axisangle(Matrix4& self, const Vector3& axis, double angle, const Vector3& pivotpoint) { matrix4_translate_by_vec3(self, pivotpoint); matrix4_rotate_by_axisangle(self, axis, angle); matrix4_translate_by_vec3(self, vector3_negated(pivotpoint)); } #endif