#if !defined(INCLUDED_MATH_PLANE_H) #define INCLUDED_MATH_PLANE_H /// \file /// \brief Plane data types and related operations. #include "math/matrix.h" /// \brief A plane equation stored in double-precision floating-point. class Plane3 { public: double a, b, c, d; Plane3() { } Plane3(double _a, double _b, double _c, double _d) : a(_a), b(_b), c(_c), d(_d) { } template Plane3(const BasicVector3& normal, double dist) : a(normal.x()), b(normal.y()), c(normal.z()), d(dist) { } BasicVector3& normal() { return reinterpret_cast&>(*this); } const BasicVector3& normal() const { return reinterpret_cast&>(*this); } double& dist() { return d; } const double& dist() const { return d; } }; inline Plane3 plane3_normalised(const Plane3& plane) { double rmagnitude = 1.0 / sqrt(plane.a * plane.a + plane.b * plane.b + plane.c * plane.c); return Plane3( plane.a * rmagnitude, plane.b * rmagnitude, plane.c * rmagnitude, plane.d * rmagnitude ); } inline Plane3 plane3_translated(const Plane3& plane, const Vector3& translation) { Plane3 transformed; transformed.a = plane.a; transformed.b = plane.b; transformed.c = plane.c; transformed.d = -((-plane.d * transformed.a + translation.x()) * transformed.a + (-plane.d * transformed.b + translation.y()) * transformed.b + (-plane.d * transformed.c + translation.z()) * transformed.c); return transformed; } inline Plane3 plane3_transformed(const Plane3& plane, const Matrix4& transform) { Plane3 transformed; transformed.a = transform[0] * plane.a + transform[4] * plane.b + transform[8] * plane.c; transformed.b = transform[1] * plane.a + transform[5] * plane.b + transform[9] * plane.c; transformed.c = transform[2] * plane.a + transform[6] * plane.b + transform[10] * plane.c; transformed.d = -((-plane.d * transformed.a + transform[12]) * transformed.a + (-plane.d * transformed.b + transform[13]) * transformed.b + (-plane.d * transformed.c + transform[14]) * transformed.c); return transformed; } inline Plane3 plane3_inverse_transformed(const Plane3& plane, const Matrix4& transform) { return Plane3 ( transform[ 0] * plane.a + transform[ 1] * plane.b + transform[ 2] * plane.c + transform[ 3] * plane.d, transform[ 4] * plane.a + transform[ 5] * plane.b + transform[ 6] * plane.c + transform[ 7] * plane.d, transform[ 8] * plane.a + transform[ 9] * plane.b + transform[10] * plane.c + transform[11] * plane.d, transform[12] * plane.a + transform[13] * plane.b + transform[14] * plane.c + transform[15] * plane.d ); } inline Plane3 plane3_flipped(const Plane3& plane) { return Plane3(vector3_negated(plane.normal()), -plane.dist()); } const double c_PLANE_NORMAL_EPSILON = 0.0001f; const double c_PLANE_DIST_EPSILON = 0.02; inline bool plane3_equal(const Plane3& self, const Plane3& other) { return vector3_equal_epsilon(self.normal(), other.normal(), c_PLANE_NORMAL_EPSILON) && float_equal_epsilon(self.dist(), other.dist(), c_PLANE_DIST_EPSILON); } inline bool plane3_opposing(const Plane3& self, const Plane3& other) { return plane3_equal(self, plane3_flipped(other)); } inline bool plane3_valid(const Plane3& self) { return float_equal_epsilon(vector3_dot(self.normal(), self.normal()), 1.0, 0.01); } template inline Plane3 plane3_for_points(const BasicVector3& p0, const BasicVector3& p1, const BasicVector3& p2) { Plane3 self; self.normal() = vector3_normalised(vector3_cross(vector3_subtracted(p1, p0), vector3_subtracted(p2, p0))); self.dist() = vector3_dot(p0, self.normal()); return self; } template inline Plane3 plane3_for_points(const BasicVector3 planepts[3]) { return plane3_for_points(planepts[2], planepts[1], planepts[0]); } #endif