/* ------------------------------------------------------------------------------- Copyright (C) 1999-2007 id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ------------------------------------------------------------------------------- This code has been altered significantly from its original form, to support several games based on the Quake III Arena engine, in the form of "Q3Map2." ------------------------------------------------------------------------------- */ /* dependencies */ #include "q3map2.h" /* minimap stuff */ typedef struct minimap_s { bspModel_t *model; int width; int height; int samples; float *sample_offsets; float sharpen_boxmult; float sharpen_centermult; float boost, brightness, contrast; float *data1f; float *sharpendata1f; vec3_t mins, size; } minimap_t; static minimap_t minimap; qboolean BrushIntersectionWithLine( bspBrush_t *brush, vec3_t start, vec3_t dir, float *t_in, float *t_out ){ int i; qboolean in = qfalse, out = qfalse; bspBrushSide_t *sides = &bspBrushSides[brush->firstSide]; for ( i = 0; i < brush->numSides; ++i ) { bspPlane_t *p = &bspPlanes[sides[i].planeNum]; float sn = DotProduct( start, p->normal ); float dn = DotProduct( dir, p->normal ); if ( dn == 0 ) { if ( sn > p->dist ) { return qfalse; // outside! } } else { float t = ( p->dist - sn ) / dn; if ( dn < 0 ) { if ( !in || t > *t_in ) { *t_in = t; in = qtrue; // as t_in can only increase, and t_out can only decrease, early out if ( out && *t_in >= *t_out ) { return qfalse; } } } else { if ( !out || t < *t_out ) { *t_out = t; out = qtrue; // as t_in can only increase, and t_out can only decrease, early out if ( in && *t_in >= *t_out ) { return qfalse; } } } } } return in && out; } static float MiniMapSample( float x, float y ){ vec3_t org, dir; int i, bi; float t0, t1; float samp; bspBrush_t *b; bspBrushSide_t *s; int cnt; org[0] = x; org[1] = y; org[2] = 0; dir[0] = 0; dir[1] = 0; dir[2] = 1; cnt = 0; samp = 0; for ( i = 0; i < minimap.model->numBSPBrushes; ++i ) { bi = minimap.model->firstBSPBrush + i; if ( opaqueBrushes[bi >> 3] & ( 1 << ( bi & 7 ) ) ) { b = &bspBrushes[bi]; // sort out mins/maxs of the brush s = &bspBrushSides[b->firstSide]; if ( x < -bspPlanes[s[0].planeNum].dist ) { continue; } if ( x > +bspPlanes[s[1].planeNum].dist ) { continue; } if ( y < -bspPlanes[s[2].planeNum].dist ) { continue; } if ( y > +bspPlanes[s[3].planeNum].dist ) { continue; } if ( BrushIntersectionWithLine( b, org, dir, &t0, &t1 ) ) { samp += t1 - t0; ++cnt; } } } return samp; } void RandomVector2f( float v[2] ){ do { v[0] = 2 * Random() - 1; v[1] = 2 * Random() - 1; } while ( v[0] * v[0] + v[1] * v[1] > 1 ); } static void MiniMapRandomlySupersampled( int y ){ int x, i; float *p = &minimap.data1f[y * minimap.width]; float ymin = minimap.mins[1] + minimap.size[1] * ( y / (float) minimap.height ); float dx = minimap.size[0] / (float) minimap.width; float dy = minimap.size[1] / (float) minimap.height; float uv[2]; float thisval; for ( x = 0; x < minimap.width; ++x ) { float xmin = minimap.mins[0] + minimap.size[0] * ( x / (float) minimap.width ); float val = 0; for ( i = 0; i < minimap.samples; ++i ) { RandomVector2f( uv ); thisval = MiniMapSample( xmin + ( uv[0] + 0.5 ) * dx, /* exaggerated random pattern for better results */ ymin + ( uv[1] + 0.5 ) * dy /* exaggerated random pattern for better results */ ); val += thisval; } val /= minimap.samples * minimap.size[2]; *p++ = val; } } static void MiniMapSupersampled( int y ){ int x, i; float *p = &minimap.data1f[y * minimap.width]; float ymin = minimap.mins[1] + minimap.size[1] * ( y / (float) minimap.height ); float dx = minimap.size[0] / (float) minimap.width; float dy = minimap.size[1] / (float) minimap.height; for ( x = 0; x < minimap.width; ++x ) { float xmin = minimap.mins[0] + minimap.size[0] * ( x / (float) minimap.width ); float val = 0; for ( i = 0; i < minimap.samples; ++i ) { float thisval = MiniMapSample( xmin + minimap.sample_offsets[2 * i + 0] * dx, ymin + minimap.sample_offsets[2 * i + 1] * dy ); val += thisval; } val /= minimap.samples * minimap.size[2]; *p++ = val; } } static void MiniMapNoSupersampling( int y ){ int x; float *p = &minimap.data1f[y * minimap.width]; float ymin = minimap.mins[1] + minimap.size[1] * ( ( y + 0.5 ) / (float) minimap.height ); for ( x = 0; x < minimap.width; ++x ) { float xmin = minimap.mins[0] + minimap.size[0] * ( ( x + 0.5 ) / (float) minimap.width ); *p++ = MiniMapSample( xmin, ymin ) / minimap.size[2]; } } static void MiniMapSharpen( int y ){ int x; qboolean up = ( y > 0 ); qboolean down = ( y < minimap.height - 1 ); float *p = &minimap.data1f[y * minimap.width]; float *q = &minimap.sharpendata1f[y * minimap.width]; for ( x = 0; x < minimap.width; ++x ) { qboolean left = ( x > 0 ); qboolean right = ( x < minimap.width - 1 ); float val = p[0] * minimap.sharpen_centermult; if ( left && up ) { val += p[-1 - minimap.width] * minimap.sharpen_boxmult; } if ( left && down ) { val += p[-1 + minimap.width] * minimap.sharpen_boxmult; } if ( right && up ) { val += p[+1 - minimap.width] * minimap.sharpen_boxmult; } if ( right && down ) { val += p[+1 + minimap.width] * minimap.sharpen_boxmult; } if ( left ) { val += p[-1] * minimap.sharpen_boxmult; } if ( right ) { val += p[+1] * minimap.sharpen_boxmult; } if ( up ) { val += p[-minimap.width] * minimap.sharpen_boxmult; } if ( down ) { val += p[+minimap.width] * minimap.sharpen_boxmult; } ++p; *q++ = val; } } static void MiniMapContrastBoost( int y ){ int x; float *q = &minimap.data1f[y * minimap.width]; for ( x = 0; x < minimap.width; ++x ) { *q = *q * minimap.boost / ( ( minimap.boost - 1 ) * *q + 1 ); ++q; } } static void MiniMapBrightnessContrast( int y ){ int x; float *q = &minimap.data1f[y * minimap.width]; for ( x = 0; x < minimap.width; ++x ) { *q = *q * minimap.contrast + minimap.brightness; ++q; } } void MiniMapMakeMinsMaxs( vec3_t mins_in, vec3_t maxs_in, float border, qboolean keepaspect ){ vec3_t mins, maxs, extend; VectorCopy( mins_in, mins ); VectorCopy( maxs_in, maxs ); // line compatible to nexuiz mapinfo Sys_Printf( "size %f %f %f %f %f %f\n", mins[0], mins[1], mins[2], maxs[0], maxs[1], maxs[2] ); if ( keepaspect ) { VectorSubtract( maxs, mins, extend ); if ( extend[1] > extend[0] ) { mins[0] -= ( extend[1] - extend[0] ) * 0.5; maxs[0] += ( extend[1] - extend[0] ) * 0.5; } else { mins[1] -= ( extend[0] - extend[1] ) * 0.5; maxs[1] += ( extend[0] - extend[1] ) * 0.5; } } /* border: amount of black area around the image */ /* input: border, 1-2*border, border but we need border/(1-2*border) */ VectorSubtract( maxs, mins, extend ); VectorScale( extend, border / ( 1 - 2 * border ), extend ); VectorSubtract( mins, extend, mins ); VectorAdd( maxs, extend, maxs ); VectorCopy( mins, minimap.mins ); VectorSubtract( maxs, mins, minimap.size ); // line compatible to nexuiz mapinfo Sys_Printf( "size_texcoords %f %f %f %f %f %f\n", mins[0], mins[1], mins[2], maxs[0], maxs[1], maxs[2] ); } /* MiniMapSetupBrushes() determines solid non-sky brushes in the world */ void MiniMapSetupBrushes( void ){ SetupBrushesFlags( C_SOLID | C_SKY, C_SOLID, 0, 0 ); // at least one must be solid // none may be sky // not all may be nodraw } qboolean MiniMapEvaluateSampleOffsets( int *bestj, int *bestk, float *bestval ){ float val, dx, dy; int j, k; *bestj = *bestk = -1; *bestval = 3; /* max possible val is 2 */ for ( j = 0; j < minimap.samples; ++j ) for ( k = j + 1; k < minimap.samples; ++k ) { dx = minimap.sample_offsets[2 * j + 0] - minimap.sample_offsets[2 * k + 0]; dy = minimap.sample_offsets[2 * j + 1] - minimap.sample_offsets[2 * k + 1]; if ( dx > +0.5 ) { dx -= 1; } if ( dx < -0.5 ) { dx += 1; } if ( dy > +0.5 ) { dy -= 1; } if ( dy < -0.5 ) { dy += 1; } val = dx * dx + dy * dy; if ( val < *bestval ) { *bestj = j; *bestk = k; *bestval = val; } } return *bestval < 3; } void MiniMapMakeSampleOffsets(){ int i, j, k, jj, kk; float val, valj, valk, sx, sy, rx, ry; Sys_Printf( "Generating good sample offsets (this may take a while)...\n" ); /* start with entirely random samples */ for ( i = 0; i < minimap.samples; ++i ) { minimap.sample_offsets[2 * i + 0] = Random(); minimap.sample_offsets[2 * i + 1] = Random(); } for ( i = 0; i < 1000; ++i ) { if ( MiniMapEvaluateSampleOffsets( &j, &k, &val ) ) { sx = minimap.sample_offsets[2 * j + 0]; sy = minimap.sample_offsets[2 * j + 1]; minimap.sample_offsets[2 * j + 0] = rx = Random(); minimap.sample_offsets[2 * j + 1] = ry = Random(); if ( !MiniMapEvaluateSampleOffsets( &jj, &kk, &valj ) ) { valj = -1; } minimap.sample_offsets[2 * j + 0] = sx; minimap.sample_offsets[2 * j + 1] = sy; sx = minimap.sample_offsets[2 * k + 0]; sy = minimap.sample_offsets[2 * k + 1]; minimap.sample_offsets[2 * k + 0] = rx; minimap.sample_offsets[2 * k + 1] = ry; if ( !MiniMapEvaluateSampleOffsets( &jj, &kk, &valk ) ) { valk = -1; } minimap.sample_offsets[2 * k + 0] = sx; minimap.sample_offsets[2 * k + 1] = sy; if ( valj > valk ) { if ( valj > val ) { /* valj is the greatest */ minimap.sample_offsets[2 * j + 0] = rx; minimap.sample_offsets[2 * j + 1] = ry; i = -1; } else { /* valj is the greater and it is useless - forget it */ } } else { if ( valk > val ) { /* valk is the greatest */ minimap.sample_offsets[2 * k + 0] = rx; minimap.sample_offsets[2 * k + 1] = ry; i = -1; } else { /* valk is the greater and it is useless - forget it */ } } } else{ break; } } } void MergeRelativePath( char *out, const char *absolute, const char *relative ){ const char *endpos = absolute + strlen( absolute ); while ( endpos != absolute && ( endpos[-1] == '/' || endpos[-1] == '\\' ) ) --endpos; while ( relative[0] == '.' && relative[1] == '.' && ( relative[2] == '/' || relative[2] == '\\' ) ) { relative += 3; while ( endpos != absolute ) { --endpos; if ( *endpos == '/' || *endpos == '\\' ) { break; } } while ( endpos != absolute && ( endpos[-1] == '/' || endpos[-1] == '\\' ) ) --endpos; } memcpy( out, absolute, endpos - absolute ); out[endpos - absolute] = '/'; strcpy( out + ( endpos - absolute + 1 ), relative ); } int MiniMapBSPMain( int argc, char **argv ){ char minimapFilename[1024]; char basename[1024]; char path[1024]; char relativeMinimapFilename[1024]; qboolean autolevel; float minimapSharpen; float border; byte *data4b, *p; float *q; int x, y; int i; miniMapMode_t mode; vec3_t mins, maxs; qboolean keepaspect; /* arg checking */ if ( argc < 2 ) { Sys_Printf( "Usage: q3map [-v] -minimap [-size n] [-sharpen f] [-samples n | -random n] [-o filename.tga] [-minmax Xmin Ymin Zmin Xmax Ymax Zmax] \n" ); return 0; } /* load the BSP first */ strcpy( source, ExpandArg( argv[ argc - 1 ] ) ); StripExtension( source ); DefaultExtension( source, ".bsp" ); Sys_Printf( "Loading %s\n", source ); BeginMapShaderFile( source ); LoadShaderInfo(); LoadBSPFile( source ); minimap.model = &bspModels[0]; VectorCopy( minimap.model->mins, mins ); VectorCopy( minimap.model->maxs, maxs ); *minimapFilename = 0; minimapSharpen = game->miniMapSharpen; minimap.width = minimap.height = game->miniMapSize; border = game->miniMapBorder; keepaspect = game->miniMapKeepAspect; mode = game->miniMapMode; autolevel = qfalse; minimap.samples = 1; minimap.sample_offsets = NULL; minimap.boost = 1.0; minimap.brightness = 0.0; minimap.contrast = 1.0; /* process arguments */ for ( i = 1; i < ( argc - 1 ); i++ ) { if ( !strcmp( argv[ i ], "-size" ) ) { minimap.width = minimap.height = atoi( argv[i + 1] ); i++; Sys_Printf( "Image size set to %i\n", minimap.width ); } else if ( !strcmp( argv[ i ], "-sharpen" ) ) { minimapSharpen = atof( argv[i + 1] ); i++; Sys_Printf( "Sharpening coefficient set to %f\n", minimapSharpen ); } else if ( !strcmp( argv[ i ], "-samples" ) ) { minimap.samples = atoi( argv[i + 1] ); i++; Sys_Printf( "Samples set to %i\n", minimap.samples ); if ( minimap.sample_offsets ) { free( minimap.sample_offsets ); } minimap.sample_offsets = malloc( 2 * sizeof( *minimap.sample_offsets ) * minimap.samples ); MiniMapMakeSampleOffsets(); } else if ( !strcmp( argv[ i ], "-random" ) ) { minimap.samples = atoi( argv[i + 1] ); i++; Sys_Printf( "Random samples set to %i\n", minimap.samples ); if ( minimap.sample_offsets ) { free( minimap.sample_offsets ); } minimap.sample_offsets = NULL; } else if ( !strcmp( argv[ i ], "-border" ) ) { border = atof( argv[i + 1] ); i++; Sys_Printf( "Border set to %f\n", border ); } else if ( !strcmp( argv[ i ], "-keepaspect" ) ) { keepaspect = qtrue; Sys_Printf( "Keeping aspect ratio by letterboxing\n", border ); } else if ( !strcmp( argv[ i ], "-nokeepaspect" ) ) { keepaspect = qfalse; Sys_Printf( "Not keeping aspect ratio\n", border ); } else if ( !strcmp( argv[ i ], "-o" ) ) { strcpy( minimapFilename, argv[i + 1] ); i++; Sys_Printf( "Output file name set to %s\n", minimapFilename ); } else if ( !strcmp( argv[ i ], "-minmax" ) && i < ( argc - 7 ) ) { mins[0] = atof( argv[i + 1] ); mins[1] = atof( argv[i + 2] ); mins[2] = atof( argv[i + 3] ); maxs[0] = atof( argv[i + 4] ); maxs[1] = atof( argv[i + 5] ); maxs[2] = atof( argv[i + 6] ); i += 6; Sys_Printf( "Map mins/maxs overridden\n" ); } else if ( !strcmp( argv[ i ], "-gray" ) ) { mode = MINIMAP_MODE_GRAY; Sys_Printf( "Writing as white-on-black image\n" ); } else if ( !strcmp( argv[ i ], "-black" ) ) { mode = MINIMAP_MODE_BLACK; Sys_Printf( "Writing as black alpha image\n" ); } else if ( !strcmp( argv[ i ], "-white" ) ) { mode = MINIMAP_MODE_WHITE; Sys_Printf( "Writing as white alpha image\n" ); } else if ( !strcmp( argv[ i ], "-boost" ) && i < ( argc - 2 ) ) { minimap.boost = atof( argv[i + 1] ); i++; Sys_Printf( "Contrast boost set to %f\n", minimap.boost ); } else if ( !strcmp( argv[ i ], "-brightness" ) && i < ( argc - 2 ) ) { minimap.brightness = atof( argv[i + 1] ); i++; Sys_Printf( "Brightness set to %f\n", minimap.brightness ); } else if ( !strcmp( argv[ i ], "-contrast" ) && i < ( argc - 2 ) ) { minimap.contrast = atof( argv[i + 1] ); i++; Sys_Printf( "Contrast set to %f\n", minimap.contrast ); } else if ( !strcmp( argv[ i ], "-autolevel" ) ) { autolevel = qtrue; Sys_Printf( "Auto level enabled\n", border ); } else if ( !strcmp( argv[ i ], "-noautolevel" ) ) { autolevel = qfalse; Sys_Printf( "Auto level disabled\n", border ); } } MiniMapMakeMinsMaxs( mins, maxs, border, keepaspect ); if ( !*minimapFilename ) { ExtractFileBase( source, basename ); ExtractFilePath( source, path ); sprintf( relativeMinimapFilename, game->miniMapNameFormat, basename ); MergeRelativePath( minimapFilename, path, relativeMinimapFilename ); Sys_Printf( "Output file name automatically set to %s\n", minimapFilename ); } ExtractFilePath( minimapFilename, path ); Q_mkdir( path ); if ( minimapSharpen >= 0 ) { minimap.sharpen_centermult = 8 * minimapSharpen + 1; minimap.sharpen_boxmult = -minimapSharpen; } minimap.data1f = safe_malloc( minimap.width * minimap.height * sizeof( *minimap.data1f ) ); data4b = safe_malloc( minimap.width * minimap.height * 4 ); if ( minimapSharpen >= 0 ) { minimap.sharpendata1f = safe_malloc( minimap.width * minimap.height * sizeof( *minimap.data1f ) ); } MiniMapSetupBrushes(); if ( minimap.samples <= 1 ) { Sys_Printf( "\n--- MiniMapNoSupersampling (%d) ---\n", minimap.height ); RunThreadsOnIndividual( minimap.height, qtrue, MiniMapNoSupersampling ); } else { if ( minimap.sample_offsets ) { Sys_Printf( "\n--- MiniMapSupersampled (%d) ---\n", minimap.height ); RunThreadsOnIndividual( minimap.height, qtrue, MiniMapSupersampled ); } else { Sys_Printf( "\n--- MiniMapRandomlySupersampled (%d) ---\n", minimap.height ); RunThreadsOnIndividual( minimap.height, qtrue, MiniMapRandomlySupersampled ); } } if ( minimap.boost != 1.0 ) { Sys_Printf( "\n--- MiniMapContrastBoost (%d) ---\n", minimap.height ); RunThreadsOnIndividual( minimap.height, qtrue, MiniMapContrastBoost ); } if ( autolevel ) { Sys_Printf( "\n--- MiniMapAutoLevel (%d) ---\n", minimap.height ); float mi = 1, ma = 0; float s, o; // TODO threads! q = minimap.data1f; for ( y = 0; y < minimap.height; ++y ) for ( x = 0; x < minimap.width; ++x ) { float v = *q++; if ( v < mi ) { mi = v; } if ( v > ma ) { ma = v; } } if ( ma > mi ) { s = 1 / ( ma - mi ); o = mi / ( ma - mi ); // equations: // brightness + contrast * v // after autolevel: // brightness + contrast * (v * s - o) // = // (brightness - contrast * o) + (contrast * s) * v minimap.brightness = minimap.brightness - minimap.contrast * o; minimap.contrast *= s; Sys_Printf( "Auto level: Brightness changed to %f\n", minimap.brightness ); Sys_Printf( "Auto level: Contrast changed to %f\n", minimap.contrast ); } else{ Sys_Printf( "Auto level: failed because all pixels are the same value\n" ); } } if ( minimap.brightness != 0 || minimap.contrast != 1 ) { Sys_Printf( "\n--- MiniMapBrightnessContrast (%d) ---\n", minimap.height ); RunThreadsOnIndividual( minimap.height, qtrue, MiniMapBrightnessContrast ); } if ( minimap.sharpendata1f ) { Sys_Printf( "\n--- MiniMapSharpen (%d) ---\n", minimap.height ); RunThreadsOnIndividual( minimap.height, qtrue, MiniMapSharpen ); q = minimap.sharpendata1f; } else { q = minimap.data1f; } Sys_Printf( "\nConverting..." ); switch ( mode ) { case MINIMAP_MODE_GRAY: p = data4b; for ( y = 0; y < minimap.height; ++y ) for ( x = 0; x < minimap.width; ++x ) { byte b; float v = *q++; if ( v < 0 ) { v = 0; } if ( v > 255.0 / 256.0 ) { v = 255.0 / 256.0; } b = v * 256; *p++ = b; } Sys_Printf( " writing to %s...", minimapFilename ); WriteTGAGray( minimapFilename, data4b, minimap.width, minimap.height ); break; case MINIMAP_MODE_BLACK: p = data4b; for ( y = 0; y < minimap.height; ++y ) for ( x = 0; x < minimap.width; ++x ) { byte b; float v = *q++; if ( v < 0 ) { v = 0; } if ( v > 255.0 / 256.0 ) { v = 255.0 / 256.0; } b = v * 256; *p++ = 0; *p++ = 0; *p++ = 0; *p++ = b; } Sys_Printf( " writing to %s...", minimapFilename ); WriteTGA( minimapFilename, data4b, minimap.width, minimap.height ); break; case MINIMAP_MODE_WHITE: p = data4b; for ( y = 0; y < minimap.height; ++y ) for ( x = 0; x < minimap.width; ++x ) { byte b; float v = *q++; if ( v < 0 ) { v = 0; } if ( v > 255.0 / 256.0 ) { v = 255.0 / 256.0; } b = v * 256; *p++ = 255; *p++ = 255; *p++ = 255; *p++ = b; } Sys_Printf( " writing to %s...", minimapFilename ); WriteTGA( minimapFilename, data4b, minimap.width, minimap.height ); break; } Sys_Printf( " done.\n" ); /* return to sender */ return 0; }