/* Copyright (C) 1999-2007 id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ // faces.c #include "qbsp.h" /* some faces will be removed before saving, but still form nodes: the insides of sky volumes meeting planes of different water current volumes */ // undefine for dumb linear searches #define USE_HASHING #define INTEGRAL_EPSILON 0.01 #define POINT_EPSILON 0.5 #define OFF_EPSILON 0.5 int c_merge; int c_subdivide; int c_totalverts; int c_uniqueverts; int c_degenerate; int c_tjunctions; int c_faceoverflows; int c_facecollapse; int c_badstartverts; #define MAX_SUPERVERTS 512 int superverts[MAX_SUPERVERTS]; int numsuperverts; face_t *edgefaces[MAX_MAP_EDGES][2]; int firstmodeledge = 1; int firstmodelface; int c_tryedges; vec3_t edge_dir; vec3_t edge_start; vec_t edge_len; int num_edge_verts; int edge_verts[MAX_MAP_VERTS]; float subdivide_size = 240; face_t *NewFaceFromFace( face_t *f ); //=========================================================================== typedef struct hashvert_s { struct hashvert_s *next; int num; } hashvert_t; #define HASH_SIZE 64 int vertexchain[MAX_MAP_VERTS]; // the next vertex in a hash chain int hashverts[HASH_SIZE * HASH_SIZE]; // a vertex number, or 0 for no verts face_t *edgefaces[MAX_MAP_EDGES][2]; //============================================================================ unsigned HashVec( vec3_t vec ){ int x, y; x = ( 4096 + (int)( vec[0] + 0.5 ) ) >> 7; y = ( 4096 + (int)( vec[1] + 0.5 ) ) >> 7; if ( x < 0 || x >= HASH_SIZE || y < 0 || y >= HASH_SIZE ) { Error( "HashVec: point outside valid range" ); } return y * HASH_SIZE + x; } #ifdef USE_HASHING /* ============= GetVertex Uses hashing ============= */ int GetVertexnum( vec3_t in ){ int h; int i; float *p; vec3_t vert; int vnum; c_totalverts++; for ( i = 0 ; i < 3 ; i++ ) { if ( fabs( in[i] - Q_rint( in[i] ) ) < INTEGRAL_EPSILON ) { vert[i] = Q_rint( in[i] ); } else{ vert[i] = in[i]; } } h = HashVec( vert ); for ( vnum = hashverts[h] ; vnum ; vnum = vertexchain[vnum] ) { p = dvertexes[vnum].point; if ( fabs( p[0] - vert[0] ) < POINT_EPSILON && fabs( p[1] - vert[1] ) < POINT_EPSILON && fabs( p[2] - vert[2] ) < POINT_EPSILON ) { return vnum; } } // emit a vertex if ( numvertexes == MAX_MAP_VERTS ) { Error( "numvertexes == MAX_MAP_VERTS" ); } dvertexes[numvertexes].point[0] = vert[0]; dvertexes[numvertexes].point[1] = vert[1]; dvertexes[numvertexes].point[2] = vert[2]; vertexchain[numvertexes] = hashverts[h]; hashverts[h] = numvertexes; c_uniqueverts++; numvertexes++; return numvertexes - 1; } #else /* ================== GetVertexnum Dumb linear search ================== */ int GetVertexnum( vec3_t v ){ int i, j; dvertex_t *dv; vec_t d; c_totalverts++; // make really close values exactly integral for ( i = 0 ; i < 3 ; i++ ) { if ( fabs( v[i] - (int)( v[i] + 0.5 ) ) < INTEGRAL_EPSILON ) { v[i] = (int)( v[i] + 0.5 ); } if ( v[i] < -4096 || v[i] > 4096 ) { Error( "GetVertexnum: outside +/- 4096" ); } } // search for an existing vertex match for ( i = 0, dv = dvertexes ; i < numvertexes ; i++, dv++ ) { for ( j = 0 ; j < 3 ; j++ ) { d = v[j] - dv->point[j]; if ( d > POINT_EPSILON || d < -POINT_EPSILON ) { break; } } if ( j == 3 ) { return i; // a match } } // new point if ( numvertexes == MAX_MAP_VERTS ) { Error( "MAX_MAP_VERTS" ); } VectorCopy( v, dv->point ); numvertexes++; c_uniqueverts++; return numvertexes - 1; } #endif /* ================== FaceFromSuperverts The faces vertexes have beeb added to the superverts[] array, and there may be more there than can be held in a face (MAXEDGES). If less, the faces vertexnums[] will be filled in, otherwise face will reference a tree of split[] faces until all of the vertexnums can be added. superverts[base] will become face->vertexnums[0], and the others will be circularly filled in. ================== */ void FaceFromSuperverts( node_t *node, face_t *f, int base ){ face_t *newf; int remaining; int i; remaining = numsuperverts; while ( remaining > MAXEDGES ) { // must split into two faces, because of vertex overload c_faceoverflows++; newf = f->split[0] = NewFaceFromFace( f ); newf = f->split[0]; newf->next = node->faces; node->faces = newf; newf->numpoints = MAXEDGES; for ( i = 0 ; i < MAXEDGES ; i++ ) newf->vertexnums[i] = superverts[( i + base ) % numsuperverts]; f->split[1] = NewFaceFromFace( f ); f = f->split[1]; f->next = node->faces; node->faces = f; remaining -= ( MAXEDGES - 2 ); base = ( base + MAXEDGES - 1 ) % numsuperverts; } // copy the vertexes back to the face f->numpoints = remaining; for ( i = 0 ; i < remaining ; i++ ) f->vertexnums[i] = superverts[( i + base ) % numsuperverts]; } /* ================== EmitFaceVertexes ================== */ void EmitFaceVertexes( node_t *node, face_t *f ){ winding_t *w; int i; if ( f->merged || f->split[0] || f->split[1] ) { return; } w = f->w; for ( i = 0 ; i < w->numpoints ; i++ ) { if ( noweld ) { // make every point unique if ( numvertexes == MAX_MAP_VERTS ) { Error( "MAX_MAP_VERTS" ); } superverts[i] = numvertexes; VectorCopy( w->p[i], dvertexes[numvertexes].point ); numvertexes++; c_uniqueverts++; c_totalverts++; } else{ superverts[i] = GetVertexnum( w->p[i] ); } } numsuperverts = w->numpoints; // this may fragment the face if > MAXEDGES FaceFromSuperverts( node, f, 0 ); } /* ================== EmitVertexes_r ================== */ void EmitVertexes_r( node_t *node ){ int i; face_t *f; if ( node->planenum == PLANENUM_LEAF ) { return; } for ( f = node->faces ; f ; f = f->next ) { EmitFaceVertexes( node, f ); } for ( i = 0 ; i < 2 ; i++ ) EmitVertexes_r( node->children[i] ); } #ifdef USE_HASHING /* ========== FindEdgeVerts Uses the hash tables to cut down to a small number ========== */ void FindEdgeVerts( vec3_t v1, vec3_t v2 ){ int x1, x2, y1, y2, t; int x, y; int vnum; #if 0 { int i; num_edge_verts = numvertexes - 1; for ( i = 0 ; i < numvertexes - 1 ; i++ ) edge_verts[i] = i + 1; } #endif x1 = ( 4096 + (int)( v1[0] + 0.5 ) ) >> 7; y1 = ( 4096 + (int)( v1[1] + 0.5 ) ) >> 7; x2 = ( 4096 + (int)( v2[0] + 0.5 ) ) >> 7; y2 = ( 4096 + (int)( v2[1] + 0.5 ) ) >> 7; if ( x1 > x2 ) { t = x1; x1 = x2; x2 = t; } if ( y1 > y2 ) { t = y1; y1 = y2; y2 = t; } #if 0 x1--; x2++; y1--; y2++; if ( x1 < 0 ) { x1 = 0; } if ( x2 >= HASH_SIZE ) { x2 = HASH_SIZE; } if ( y1 < 0 ) { y1 = 0; } if ( y2 >= HASH_SIZE ) { y2 = HASH_SIZE; } #endif num_edge_verts = 0; for ( x = x1 ; x <= x2 ; x++ ) { for ( y = y1 ; y <= y2 ; y++ ) { for ( vnum = hashverts[y * HASH_SIZE + x] ; vnum ; vnum = vertexchain[vnum] ) { edge_verts[num_edge_verts++] = vnum; } } } } #else /* ========== FindEdgeVerts Forced a dumb check of everything ========== */ void FindEdgeVerts( vec3_t v1, vec3_t v2 ){ int i; num_edge_verts = numvertexes - 1; for ( i = 0 ; i < num_edge_verts ; i++ ) edge_verts[i] = i + 1; } #endif /* ========== TestEdge Can be recursively reentered ========== */ void TestEdge( vec_t start, vec_t end, int p1, int p2, int startvert ){ int j, k; vec_t dist; vec3_t delta; vec3_t exact; vec3_t off; vec_t error; vec3_t p; if ( p1 == p2 ) { c_degenerate++; return; // degenerate edge } for ( k = startvert ; k < num_edge_verts ; k++ ) { j = edge_verts[k]; if ( j == p1 || j == p2 ) { continue; } VectorCopy( dvertexes[j].point, p ); VectorSubtract( p, edge_start, delta ); dist = DotProduct( delta, edge_dir ); if ( dist <= start || dist >= end ) { continue; // off an end } VectorMA( edge_start, dist, edge_dir, exact ); VectorSubtract( p, exact, off ); error = VectorLength( off ); if ( fabs( error ) > OFF_EPSILON ) { continue; // not on the edge } // break the edge c_tjunctions++; TestEdge( start, dist, p1, j, k + 1 ); TestEdge( dist, end, j, p2, k + 1 ); return; } // the edge p1 to p2 is now free of tjunctions if ( numsuperverts >= MAX_SUPERVERTS ) { Error( "MAX_SUPERVERTS" ); } superverts[numsuperverts] = p1; numsuperverts++; } /* ================== FixFaceEdges ================== */ void FixFaceEdges( node_t *node, face_t *f ){ int p1, p2; int i; vec3_t e2; vec_t len; int count[MAX_SUPERVERTS], start[MAX_SUPERVERTS]; int base; if ( f->merged || f->split[0] || f->split[1] ) { return; } numsuperverts = 0; for ( i = 0 ; i < f->numpoints ; i++ ) { p1 = f->vertexnums[i]; p2 = f->vertexnums[( i + 1 ) % f->numpoints]; VectorCopy( dvertexes[p1].point, edge_start ); VectorCopy( dvertexes[p2].point, e2 ); FindEdgeVerts( edge_start, e2 ); VectorSubtract( e2, edge_start, edge_dir ); len = VectorNormalize( edge_dir, edge_dir ); start[i] = numsuperverts; TestEdge( 0, len, p1, p2, 0 ); count[i] = numsuperverts - start[i]; } if ( numsuperverts < 3 ) { // entire face collapsed f->numpoints = 0; c_facecollapse++; return; } // we want to pick a vertex that doesn't have tjunctions // on either side, which can cause artifacts on trifans, // especially underwater for ( i = 0 ; i < f->numpoints ; i++ ) { if ( count[i] == 1 && count[( i + f->numpoints - 1 ) % f->numpoints] == 1 ) { break; } } if ( i == f->numpoints ) { f->badstartvert = true; c_badstartverts++; base = 0; } else { // rotate the vertex order base = start[i]; } // this may fragment the face if > MAXEDGES FaceFromSuperverts( node, f, base ); } /* ================== FixEdges_r ================== */ void FixEdges_r( node_t *node ){ int i; face_t *f; if ( node->planenum == PLANENUM_LEAF ) { return; } for ( f = node->faces ; f ; f = f->next ) FixFaceEdges( node, f ); for ( i = 0 ; i < 2 ; i++ ) FixEdges_r( node->children[i] ); } /* =========== FixTjuncs =========== */ void FixTjuncs( node_t *headnode ){ // snap and merge all vertexes Sys_FPrintf( SYS_VRB, "---- snap verts ----\n" ); memset( hashverts, 0, sizeof( hashverts ) ); c_totalverts = 0; c_uniqueverts = 0; c_faceoverflows = 0; EmitVertexes_r( headnode ); Sys_FPrintf( SYS_VRB, "%i unique from %i\n", c_uniqueverts, c_totalverts ); // break edges on tjunctions Sys_FPrintf( SYS_VRB, "---- tjunc ----\n" ); c_tryedges = 0; c_degenerate = 0; c_facecollapse = 0; c_tjunctions = 0; if ( !notjunc ) { FixEdges_r( headnode ); } Sys_FPrintf( SYS_VRB, "%5i edges degenerated\n", c_degenerate ); Sys_FPrintf( SYS_VRB, "%5i faces degenerated\n", c_facecollapse ); Sys_FPrintf( SYS_VRB, "%5i edges added by tjunctions\n", c_tjunctions ); Sys_FPrintf( SYS_VRB, "%5i faces added by tjunctions\n", c_faceoverflows ); Sys_FPrintf( SYS_VRB, "%5i bad start verts\n", c_badstartverts ); } //======================================================== int c_faces; face_t *AllocFace( void ){ face_t *f; f = malloc( sizeof( *f ) ); memset( f, 0, sizeof( *f ) ); c_faces++; return f; } face_t *NewFaceFromFace( face_t *f ){ face_t *newf; newf = AllocFace(); *newf = *f; newf->merged = NULL; newf->split[0] = newf->split[1] = NULL; newf->w = NULL; return newf; } void FreeFace( face_t *f ){ if ( f->w ) { FreeWinding( f->w ); } free( f ); c_faces--; } //======================================================== /* ================== GetEdge Called by writebsp. Don't allow four way edges ================== */ int GetEdge2( int v1, int v2, face_t *f ){ dedge_t *edge; int i; c_tryedges++; if ( !noshare ) { for ( i = firstmodeledge ; i < numedges ; i++ ) { edge = &dedges[i]; if ( v1 == edge->v[1] && v2 == edge->v[0] && edgefaces[i][0]->contents == f->contents ) { if ( edgefaces[i][1] ) { // Sys_Printf ("WARNING: multiple backward edge\n"); continue; } edgefaces[i][1] = f; return -i; } #if 0 if ( v1 == edge->v[0] && v2 == edge->v[1] ) { Sys_Printf( "WARNING: multiple forward edge\n" ); return i; } #endif } } // emit an edge if ( numedges >= MAX_MAP_EDGES ) { Error( "numedges == MAX_MAP_EDGES" ); } edge = &dedges[numedges]; numedges++; edge->v[0] = v1; edge->v[1] = v2; edgefaces[numedges - 1][0] = f; return numedges - 1; } /* =========================================================================== FACE MERGING =========================================================================== */ #define CONTINUOUS_EPSILON 0.001 /* ============= TryMergeWinding If two polygons share a common edge and the edges that meet at the common points are both inside the other polygons, merge them Returns NULL if the faces couldn't be merged, or the new face. The originals will NOT be freed. ============= */ winding_t *TryMergeWinding( winding_t *f1, winding_t *f2, vec3_t planenormal ){ vec_t *p1, *p2, *p3, *p4, *back; winding_t *newf; int i, j, k, l; vec3_t normal, delta; vec_t dot; qboolean keep1, keep2; // // find a common edge // p1 = p2 = NULL; // stop compiler warning j = 0; // for ( i = 0 ; i < f1->numpoints ; i++ ) { p1 = f1->p[i]; p2 = f1->p[( i + 1 ) % f1->numpoints]; for ( j = 0 ; j < f2->numpoints ; j++ ) { p3 = f2->p[j]; p4 = f2->p[( j + 1 ) % f2->numpoints]; for ( k = 0 ; k < 3 ; k++ ) { if ( fabs( p1[k] - p4[k] ) > EQUAL_EPSILON ) { break; } if ( fabs( p2[k] - p3[k] ) > EQUAL_EPSILON ) { break; } } if ( k == 3 ) { break; } } if ( j < f2->numpoints ) { break; } } if ( i == f1->numpoints ) { return NULL; // no matching edges } // // check slope of connected lines // if the slopes are colinear, the point can be removed // back = f1->p[( i + f1->numpoints - 1 ) % f1->numpoints]; VectorSubtract( p1, back, delta ); CrossProduct( planenormal, delta, normal ); VectorNormalize( normal, normal ); back = f2->p[( j + 2 ) % f2->numpoints]; VectorSubtract( back, p1, delta ); dot = DotProduct( delta, normal ); if ( dot > CONTINUOUS_EPSILON ) { return NULL; // not a convex polygon } keep1 = (qboolean)( dot < -CONTINUOUS_EPSILON ); back = f1->p[( i + 2 ) % f1->numpoints]; VectorSubtract( back, p2, delta ); CrossProduct( planenormal, delta, normal ); VectorNormalize( normal, normal ); back = f2->p[( j + f2->numpoints - 1 ) % f2->numpoints]; VectorSubtract( back, p2, delta ); dot = DotProduct( delta, normal ); if ( dot > CONTINUOUS_EPSILON ) { return NULL; // not a convex polygon } keep2 = (qboolean)( dot < -CONTINUOUS_EPSILON ); // // build the new polygon // newf = AllocWinding( f1->numpoints + f2->numpoints ); // copy first polygon for ( k = ( i + 1 ) % f1->numpoints ; k != i ; k = ( k + 1 ) % f1->numpoints ) { if ( k == ( i + 1 ) % f1->numpoints && !keep2 ) { continue; } VectorCopy( f1->p[k], newf->p[newf->numpoints] ); newf->numpoints++; } // copy second polygon for ( l = ( j + 1 ) % f2->numpoints ; l != j ; l = ( l + 1 ) % f2->numpoints ) { if ( l == ( j + 1 ) % f2->numpoints && !keep1 ) { continue; } VectorCopy( f2->p[l], newf->p[newf->numpoints] ); newf->numpoints++; } return newf; } /* ============= TryMerge If two polygons share a common edge and the edges that meet at the common points are both inside the other polygons, merge them Returns NULL if the faces couldn't be merged, or the new face. The originals will NOT be freed. ============= */ face_t *TryMerge( face_t *f1, face_t *f2, vec3_t planenormal ){ face_t *newf; winding_t *nw; if ( !f1->w || !f2->w ) { return NULL; } if ( f1->texinfo != f2->texinfo ) { return NULL; } if ( f1->planenum != f2->planenum ) { // on front and back sides return NULL; } if ( f1->contents != f2->contents ) { return NULL; } nw = TryMergeWinding( f1->w, f2->w, planenormal ); if ( !nw ) { return NULL; } c_merge++; newf = NewFaceFromFace( f1 ); newf->w = nw; f1->merged = newf; f2->merged = newf; return newf; } /* =============== MergeNodeFaces =============== */ void MergeNodeFaces( node_t *node ){ face_t *f1, *f2, *end; face_t *merged; plane_t *plane; plane = &mapplanes[node->planenum]; merged = NULL; for ( f1 = node->faces ; f1 ; f1 = f1->next ) { if ( f1->merged || f1->split[0] || f1->split[1] ) { continue; } for ( f2 = node->faces ; f2 != f1 ; f2 = f2->next ) { if ( f2->merged || f2->split[0] || f2->split[1] ) { continue; } merged = TryMerge( f1, f2, plane->normal ); if ( !merged ) { continue; } // add merged to the end of the node face list // so it will be checked against all the faces again for ( end = node->faces ; end->next ; end = end->next ) ; merged->next = NULL; end->next = merged; break; } } } //===================================================================== /* =============== SubdivideFace Chop up faces that are larger than we want in the surface cache =============== */ void SubdivideFace( node_t *node, face_t *f ){ float mins, maxs; vec_t v; int axis, i; texinfo_t *tex; vec3_t temp; vec_t dist; winding_t *w, *frontw, *backw; if ( f->merged ) { return; } // special (non-surface cached) faces don't need subdivision tex = &texinfo[f->texinfo]; if ( tex->flags & ( SURF_WARP | SURF_SKY ) ) { return; } for ( axis = 0 ; axis < 2 ; axis++ ) { while ( 1 ) { mins = 999999; maxs = -999999; VectorCopy( tex->vecs[axis], temp ); w = f->w; for ( i = 0 ; i < w->numpoints ; i++ ) { v = DotProduct( w->p[i], temp ); if ( v < mins ) { mins = v; } if ( v > maxs ) { maxs = v; } } #if 0 if ( maxs - mins <= 0 ) { Error( "zero extents" ); } #endif if ( axis == 2 ) { // allow double high walls if ( maxs - mins <= subdivide_size /* *2 */ ) { break; } } else if ( maxs - mins <= subdivide_size ) { break; } // split it c_subdivide++; v = VectorNormalize( temp, temp ); dist = ( mins + subdivide_size - 16 ) / v; ClipWindingEpsilon( w, temp, dist, ON_EPSILON, &frontw, &backw ); if ( !frontw || !backw ) { Error( "SubdivideFace: didn't split the polygon" ); } f->split[0] = NewFaceFromFace( f ); f->split[0]->w = frontw; f->split[0]->next = node->faces; node->faces = f->split[0]; f->split[1] = NewFaceFromFace( f ); f->split[1]->w = backw; f->split[1]->next = node->faces; node->faces = f->split[1]; SubdivideFace( node, f->split[0] ); SubdivideFace( node, f->split[1] ); return; } } } void SubdivideNodeFaces( node_t *node ){ face_t *f; for ( f = node->faces ; f ; f = f->next ) { SubdivideFace( node, f ); } } //=========================================================================== int c_nodefaces; /* ============ FaceFromPortal ============ */ face_t *FaceFromPortal( portal_t *p, int pside ){ face_t *f; side_t *side; side = p->side; if ( !side ) { return NULL; // portal does not bridge different visible contents } f = AllocFace(); f->texinfo = side->texinfo; f->planenum = ( side->planenum & ~1 ) | pside; f->portal = p; if ( ( p->nodes[pside]->contents & CONTENTS_WINDOW ) && VisibleContents( p->nodes[!pside]->contents ^ p->nodes[pside]->contents ) == CONTENTS_WINDOW ) { return NULL; // don't show insides of windows } if ( pside ) { f->w = ReverseWinding( p->winding ); f->contents = p->nodes[1]->contents; } else { f->w = CopyWinding( p->winding ); f->contents = p->nodes[0]->contents; } return f; } /* =============== MakeFaces_r If a portal will make a visible face, mark the side that originally created it solid / empty : solid solid / water : solid water / empty : water water / water : none =============== */ void MakeFaces_r( node_t *node ){ portal_t *p; int s; // recurse down to leafs if ( node->planenum != PLANENUM_LEAF ) { MakeFaces_r( node->children[0] ); MakeFaces_r( node->children[1] ); // merge together all visible faces on the node if ( !nomerge ) { MergeNodeFaces( node ); } if ( !nosubdiv ) { SubdivideNodeFaces( node ); } return; } // solid leafs never have visible faces if ( node->contents & CONTENTS_SOLID ) { return; } // see which portals are valid for ( p = node->portals ; p ; p = p->next[s] ) { s = ( p->nodes[1] == node ); p->face[s] = FaceFromPortal( p, s ); if ( p->face[s] ) { c_nodefaces++; p->face[s]->next = p->onnode->faces; p->onnode->faces = p->face[s]; } } } /* ============ MakeFaces ============ */ void MakeFaces( node_t *node ){ Sys_FPrintf( SYS_VRB, "--- MakeFaces ---\n" ); c_merge = 0; c_subdivide = 0; c_nodefaces = 0; MakeFaces_r( node ); Sys_FPrintf( SYS_VRB, "%5i makefaces\n", c_nodefaces ); Sys_FPrintf( SYS_VRB, "%5i merged\n", c_merge ); Sys_FPrintf( SYS_VRB, "%5i subdivided\n", c_subdivide ); }