#if !defined( INCLUDED_MATH_PLANE_H ) #define INCLUDED_MATH_PLANE_H /// \file /// \brief Plane data types and related operations. #include "math/matrix.h" /// \brief A plane equation stored in double-precision floating-point. class Plane3 { public: double a, b, c, d; Plane3(){ } Plane3( double _a, double _b, double _c, double _d ) : a( _a ), b( _b ), c( _c ), d( _d ){ } template Plane3( const BasicVector3& normal, double dist ) : a( normal.x() ), b( normal.y() ), c( normal.z() ), d( dist ){ } BasicVector3& normal(){ return reinterpret_cast&>( *this ); } const BasicVector3& normal() const { return reinterpret_cast&>( *this ); } double& dist(){ return d; } const double& dist() const { return d; } }; inline Plane3 plane3_normalised( const Plane3& plane ){ double rmagnitude = 1.0 / sqrt( plane.a * plane.a + plane.b * plane.b + plane.c * plane.c ); return Plane3( plane.a * rmagnitude, plane.b * rmagnitude, plane.c * rmagnitude, plane.d * rmagnitude ); } inline Plane3 plane3_translated( const Plane3& plane, const Vector3& translation ){ Plane3 transformed; transformed.a = plane.a; transformed.b = plane.b; transformed.c = plane.c; transformed.d = -( ( -plane.d * transformed.a + translation.x() ) * transformed.a + ( -plane.d * transformed.b + translation.y() ) * transformed.b + ( -plane.d * transformed.c + translation.z() ) * transformed.c ); return transformed; } inline Plane3 plane3_transformed( const Plane3& plane, const Matrix4& transform ){ Plane3 transformed; transformed.a = transform[0] * plane.a + transform[4] * plane.b + transform[8] * plane.c; transformed.b = transform[1] * plane.a + transform[5] * plane.b + transform[9] * plane.c; transformed.c = transform[2] * plane.a + transform[6] * plane.b + transform[10] * plane.c; transformed.d = -( ( -plane.d * transformed.a + transform[12] ) * transformed.a + ( -plane.d * transformed.b + transform[13] ) * transformed.b + ( -plane.d * transformed.c + transform[14] ) * transformed.c ); return transformed; } inline Plane3 plane3_inverse_transformed( const Plane3& plane, const Matrix4& transform ){ return Plane3 ( transform[ 0] * plane.a + transform[ 1] * plane.b + transform[ 2] * plane.c + transform[ 3] * plane.d, transform[ 4] * plane.a + transform[ 5] * plane.b + transform[ 6] * plane.c + transform[ 7] * plane.d, transform[ 8] * plane.a + transform[ 9] * plane.b + transform[10] * plane.c + transform[11] * plane.d, transform[12] * plane.a + transform[13] * plane.b + transform[14] * plane.c + transform[15] * plane.d ); } inline Plane3 plane3_flipped( const Plane3& plane ){ return Plane3( vector3_negated( plane.normal() ), -plane.dist() ); } const double c_PLANE_NORMAL_EPSILON = 0.0001f; const double c_PLANE_DIST_EPSILON = 0.02; inline bool plane3_equal( const Plane3& self, const Plane3& other ){ return vector3_equal_epsilon( self.normal(), other.normal(), c_PLANE_NORMAL_EPSILON ) && float_equal_epsilon( self.dist(), other.dist(), c_PLANE_DIST_EPSILON ); } inline bool plane3_opposing( const Plane3& self, const Plane3& other ){ return plane3_equal( self, plane3_flipped( other ) ); } inline bool plane3_valid( const Plane3& self ){ return float_equal_epsilon( vector3_dot( self.normal(), self.normal() ), 1.0, 0.01 ); } template inline Plane3 plane3_for_points( const BasicVector3& p0, const BasicVector3& p1, const BasicVector3& p2 ){ Plane3 self; self.normal() = vector3_normalised( vector3_cross( vector3_subtracted( p1, p0 ), vector3_subtracted( p2, p0 ) ) ); self.dist() = vector3_dot( p0, self.normal() ); return self; } template inline Plane3 plane3_for_points( const BasicVector3 planepts[3] ){ return plane3_for_points( planepts[2], planepts[1], planepts[0] ); } #endif