#if !defined( INCLUDED_MATH_MATRIX_H ) #define INCLUDED_MATH_MATRIX_H /// \file /// \brief Matrix data types and related operations. #include "math/vector.h" /// \brief A 4x4 matrix stored in single-precision floating-point. class Matrix4 { float m_elements[16]; public: Matrix4(){ } Matrix4( float xx_, float xy_, float xz_, float xw_, float yx_, float yy_, float yz_, float yw_, float zx_, float zy_, float zz_, float zw_, float tx_, float ty_, float tz_, float tw_ ){ xx() = xx_; xy() = xy_; xz() = xz_; xw() = xw_; yx() = yx_; yy() = yy_; yz() = yz_; yw() = yw_; zx() = zx_; zy() = zy_; zz() = zz_; zw() = zw_; tx() = tx_; ty() = ty_; tz() = tz_; tw() = tw_; } float& xx(){ return m_elements[0]; } const float& xx() const { return m_elements[0]; } float& xy(){ return m_elements[1]; } const float& xy() const { return m_elements[1]; } float& xz(){ return m_elements[2]; } const float& xz() const { return m_elements[2]; } float& xw(){ return m_elements[3]; } const float& xw() const { return m_elements[3]; } float& yx(){ return m_elements[4]; } const float& yx() const { return m_elements[4]; } float& yy(){ return m_elements[5]; } const float& yy() const { return m_elements[5]; } float& yz(){ return m_elements[6]; } const float& yz() const { return m_elements[6]; } float& yw(){ return m_elements[7]; } const float& yw() const { return m_elements[7]; } float& zx(){ return m_elements[8]; } const float& zx() const { return m_elements[8]; } float& zy(){ return m_elements[9]; } const float& zy() const { return m_elements[9]; } float& zz(){ return m_elements[10]; } const float& zz() const { return m_elements[10]; } float& zw(){ return m_elements[11]; } const float& zw() const { return m_elements[11]; } float& tx(){ return m_elements[12]; } const float& tx() const { return m_elements[12]; } float& ty(){ return m_elements[13]; } const float& ty() const { return m_elements[13]; } float& tz(){ return m_elements[14]; } const float& tz() const { return m_elements[14]; } float& tw(){ return m_elements[15]; } const float& tw() const { return m_elements[15]; } Vector4& x(){ return reinterpret_cast( xx() ); } const Vector4& x() const { return reinterpret_cast( xx() ); } Vector4& y(){ return reinterpret_cast( yx() ); } const Vector4& y() const { return reinterpret_cast( yx() ); } Vector4& z(){ return reinterpret_cast( zx() ); } const Vector4& z() const { return reinterpret_cast( zx() ); } Vector4& t(){ return reinterpret_cast( tx() ); } const Vector4& t() const { return reinterpret_cast( tx() ); } const float& index( std::size_t i ) const { return m_elements[i]; } float& index( std::size_t i ){ return m_elements[i]; } const float& operator[]( std::size_t i ) const { return m_elements[i]; } float& operator[]( std::size_t i ){ return m_elements[i]; } const float& index( std::size_t r, std::size_t c ) const { return m_elements[( r << 2 ) + c]; } float& index( std::size_t r, std::size_t c ){ return m_elements[( r << 2 ) + c]; } }; /// \brief The 4x4 identity matrix. const Matrix4 g_matrix4_identity( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); /// \brief Returns true if \p self and \p other are exactly element-wise equal. inline bool operator==( const Matrix4& self, const Matrix4& other ){ return self.xx() == other.xx() && self.xy() == other.xy() && self.xz() == other.xz() && self.xw() == other.xw() && self.yx() == other.yx() && self.yy() == other.yy() && self.yz() == other.yz() && self.yw() == other.yw() && self.zx() == other.zx() && self.zy() == other.zy() && self.zz() == other.zz() && self.zw() == other.zw() && self.tx() == other.tx() && self.ty() == other.ty() && self.tz() == other.tz() && self.tw() == other.tw(); } /// \brief Returns true if \p self and \p other are exactly element-wise equal. inline bool matrix4_equal( const Matrix4& self, const Matrix4& other ){ return self == other; } /// \brief Returns true if \p self and \p other are element-wise equal within \p epsilon. inline bool matrix4_equal_epsilon( const Matrix4& self, const Matrix4& other, float epsilon ){ return float_equal_epsilon( self.xx(), other.xx(), epsilon ) && float_equal_epsilon( self.xy(), other.xy(), epsilon ) && float_equal_epsilon( self.xz(), other.xz(), epsilon ) && float_equal_epsilon( self.xw(), other.xw(), epsilon ) && float_equal_epsilon( self.yx(), other.yx(), epsilon ) && float_equal_epsilon( self.yy(), other.yy(), epsilon ) && float_equal_epsilon( self.yz(), other.yz(), epsilon ) && float_equal_epsilon( self.yw(), other.yw(), epsilon ) && float_equal_epsilon( self.zx(), other.zx(), epsilon ) && float_equal_epsilon( self.zy(), other.zy(), epsilon ) && float_equal_epsilon( self.zz(), other.zz(), epsilon ) && float_equal_epsilon( self.zw(), other.zw(), epsilon ) && float_equal_epsilon( self.tx(), other.tx(), epsilon ) && float_equal_epsilon( self.ty(), other.ty(), epsilon ) && float_equal_epsilon( self.tz(), other.tz(), epsilon ) && float_equal_epsilon( self.tw(), other.tw(), epsilon ); } /// \brief Returns true if \p self and \p other are exactly element-wise equal. /// \p self and \p other must be affine. inline bool matrix4_affine_equal( const Matrix4& self, const Matrix4& other ){ return self[0] == other[0] && self[1] == other[1] && self[2] == other[2] && self[4] == other[4] && self[5] == other[5] && self[6] == other[6] && self[8] == other[8] && self[9] == other[9] && self[10] == other[10] && self[12] == other[12] && self[13] == other[13] && self[14] == other[14]; } enum Matrix4Handedness { MATRIX4_RIGHTHANDED = 0, MATRIX4_LEFTHANDED = 1, }; /// \brief Returns MATRIX4_RIGHTHANDED if \p self is right-handed, else returns MATRIX4_LEFTHANDED. inline Matrix4Handedness matrix4_handedness( const Matrix4& self ){ return ( vector3_dot( vector3_cross( vector4_to_vector3( self.x() ), vector4_to_vector3( self.y() ) ), vector4_to_vector3( self.z() ) ) < 0.0 ) ? MATRIX4_LEFTHANDED : MATRIX4_RIGHTHANDED; } /// \brief Returns \p self post-multiplied by \p other. inline Matrix4 matrix4_multiplied_by_matrix4( const Matrix4& self, const Matrix4& other ){ return Matrix4( other[0] * self[0] + other[1] * self[4] + other[2] * self[8] + other[3] * self[12], other[0] * self[1] + other[1] * self[5] + other[2] * self[9] + other[3] * self[13], other[0] * self[2] + other[1] * self[6] + other[2] * self[10] + other[3] * self[14], other[0] * self[3] + other[1] * self[7] + other[2] * self[11] + other[3] * self[15], other[4] * self[0] + other[5] * self[4] + other[6] * self[8] + other[7] * self[12], other[4] * self[1] + other[5] * self[5] + other[6] * self[9] + other[7] * self[13], other[4] * self[2] + other[5] * self[6] + other[6] * self[10] + other[7] * self[14], other[4] * self[3] + other[5] * self[7] + other[6] * self[11] + other[7] * self[15], other[8] * self[0] + other[9] * self[4] + other[10] * self[8] + other[11] * self[12], other[8] * self[1] + other[9] * self[5] + other[10] * self[9] + other[11] * self[13], other[8] * self[2] + other[9] * self[6] + other[10] * self[10] + other[11] * self[14], other[8] * self[3] + other[9] * self[7] + other[10] * self[11] + other[11] * self[15], other[12] * self[0] + other[13] * self[4] + other[14] * self[8] + other[15] * self[12], other[12] * self[1] + other[13] * self[5] + other[14] * self[9] + other[15] * self[13], other[12] * self[2] + other[13] * self[6] + other[14] * self[10] + other[15] * self[14], other[12] * self[3] + other[13] * self[7] + other[14] * self[11] + other[15] * self[15] ); } /// \brief Post-multiplies \p self by \p other in-place. inline void matrix4_multiply_by_matrix4( Matrix4& self, const Matrix4& other ){ self = matrix4_multiplied_by_matrix4( self, other ); } /// \brief Returns \p self pre-multiplied by \p other. inline Matrix4 matrix4_premultiplied_by_matrix4( const Matrix4& self, const Matrix4& other ){ #if 1 return matrix4_multiplied_by_matrix4( other, self ); #else return Matrix4( self[0] * other[0] + self[1] * other[4] + self[2] * other[8] + self[3] * other[12], self[0] * other[1] + self[1] * other[5] + self[2] * other[9] + self[3] * other[13], self[0] * other[2] + self[1] * other[6] + self[2] * other[10] + self[3] * other[14], self[0] * other[3] + self[1] * other[7] + self[2] * other[11] + self[3] * other[15], self[4] * other[0] + self[5] * other[4] + self[6] * other[8] + self[7] * other[12], self[4] * other[1] + self[5] * other[5] + self[6] * other[9] + self[7] * other[13], self[4] * other[2] + self[5] * other[6] + self[6] * other[10] + self[7] * other[14], self[4] * other[3] + self[5] * other[7] + self[6] * other[11] + self[7] * other[15], self[8] * other[0] + self[9] * other[4] + self[10] * other[8] + self[11] * other[12], self[8] * other[1] + self[9] * other[5] + self[10] * other[9] + self[11] * other[13], self[8] * other[2] + self[9] * other[6] + self[10] * other[10] + self[11] * other[14], self[8] * other[3] + self[9] * other[7] + self[10] * other[11] + self[11] * other[15], self[12] * other[0] + self[13] * other[4] + self[14] * other[8] + self[15] * other[12], self[12] * other[1] + self[13] * other[5] + self[14] * other[9] + self[15] * other[13], self[12] * other[2] + self[13] * other[6] + self[14] * other[10] + self[15] * other[14], self[12] * other[3] + self[13] * other[7] + self[14] * other[11] + self[15] * other[15] ); #endif } /// \brief Pre-multiplies \p self by \p other in-place. inline void matrix4_premultiply_by_matrix4( Matrix4& self, const Matrix4& other ){ self = matrix4_premultiplied_by_matrix4( self, other ); } /// \brief returns true if \p transform is affine. inline bool matrix4_is_affine( const Matrix4& transform ){ return transform[3] == 0 && transform[7] == 0 && transform[11] == 0 && transform[15] == 1; } /// \brief Returns \p self post-multiplied by \p other. /// \p self and \p other must be affine. inline Matrix4 matrix4_affine_multiplied_by_matrix4( const Matrix4& self, const Matrix4& other ){ return Matrix4( other[0] * self[0] + other[1] * self[4] + other[2] * self[8], other[0] * self[1] + other[1] * self[5] + other[2] * self[9], other[0] * self[2] + other[1] * self[6] + other[2] * self[10], 0, other[4] * self[0] + other[5] * self[4] + other[6] * self[8], other[4] * self[1] + other[5] * self[5] + other[6] * self[9], other[4] * self[2] + other[5] * self[6] + other[6] * self[10], 0, other[8] * self[0] + other[9] * self[4] + other[10] * self[8], other[8] * self[1] + other[9] * self[5] + other[10] * self[9], other[8] * self[2] + other[9] * self[6] + other[10] * self[10], 0, other[12] * self[0] + other[13] * self[4] + other[14] * self[8] + self[12], other[12] * self[1] + other[13] * self[5] + other[14] * self[9] + self[13], other[12] * self[2] + other[13] * self[6] + other[14] * self[10] + self[14], 1 ); } /// \brief Post-multiplies \p self by \p other in-place. /// \p self and \p other must be affine. inline void matrix4_affine_multiply_by_matrix4( Matrix4& self, const Matrix4& other ){ self = matrix4_affine_multiplied_by_matrix4( self, other ); } /// \brief Returns \p self pre-multiplied by \p other. /// \p self and \p other must be affine. inline Matrix4 matrix4_affine_premultiplied_by_matrix4( const Matrix4& self, const Matrix4& other ){ #if 1 return matrix4_affine_multiplied_by_matrix4( other, self ); #else return Matrix4( self[0] * other[0] + self[1] * other[4] + self[2] * other[8], self[0] * other[1] + self[1] * other[5] + self[2] * other[9], self[0] * other[2] + self[1] * other[6] + self[2] * other[10], 0, self[4] * other[0] + self[5] * other[4] + self[6] * other[8], self[4] * other[1] + self[5] * other[5] + self[6] * other[9], self[4] * other[2] + self[5] * other[6] + self[6] * other[10], 0, self[8] * other[0] + self[9] * other[4] + self[10] * other[8], self[8] * other[1] + self[9] * other[5] + self[10] * other[9], self[8] * other[2] + self[9] * other[6] + self[10] * other[10], 0, self[12] * other[0] + self[13] * other[4] + self[14] * other[8] + other[12], self[12] * other[1] + self[13] * other[5] + self[14] * other[9] + other[13], self[12] * other[2] + self[13] * other[6] + self[14] * other[10] + other[14], 1 ) ); #endif } /// \brief Pre-multiplies \p self by \p other in-place. /// \p self and \p other must be affine. inline void matrix4_affine_premultiply_by_matrix4( Matrix4& self, const Matrix4& other ){ self = matrix4_affine_premultiplied_by_matrix4( self, other ); } /// \brief Returns \p point transformed by \p self. template inline BasicVector3 matrix4_transformed_point( const Matrix4& self, const BasicVector3& point ){ return BasicVector3( static_cast( self[0] * point[0] + self[4] * point[1] + self[8] * point[2] + self[12] ), static_cast( self[1] * point[0] + self[5] * point[1] + self[9] * point[2] + self[13] ), static_cast( self[2] * point[0] + self[6] * point[1] + self[10] * point[2] + self[14] ) ); } /// \brief Transforms \p point by \p self in-place. template inline void matrix4_transform_point( const Matrix4& self, BasicVector3& point ){ point = matrix4_transformed_point( self, point ); } /// \brief Returns \p vector4 transformed by \p self. template inline BasicVector3 matrix4_transformed_direction( const Matrix4& self, const BasicVector3& direction ){ return BasicVector3( static_cast( self[0] * direction[0] + self[4] * direction[1] + self[8] * direction[2] ), static_cast( self[1] * direction[0] + self[5] * direction[1] + self[9] * direction[2] ), static_cast( self[2] * direction[0] + self[6] * direction[1] + self[10] * direction[2] ) ); } /// \brief Transforms \p direction by \p self in-place. template inline void matrix4_transform_direction( const Matrix4& self, BasicVector3& normal ){ normal = matrix4_transformed_direction( self, normal ); } /// \brief Returns \p vector4 transformed by \p self. inline Vector4 matrix4_transformed_vector4( const Matrix4& self, const Vector4& vector4 ){ return Vector4( self[0] * vector4[0] + self[4] * vector4[1] + self[8] * vector4[2] + self[12] * vector4[3], self[1] * vector4[0] + self[5] * vector4[1] + self[9] * vector4[2] + self[13] * vector4[3], self[2] * vector4[0] + self[6] * vector4[1] + self[10] * vector4[2] + self[14] * vector4[3], self[3] * vector4[0] + self[7] * vector4[1] + self[11] * vector4[2] + self[15] * vector4[3] ); } /// \brief Transforms \p vector4 by \p self in-place. inline void matrix4_transform_vector4( const Matrix4& self, Vector4& vector4 ){ vector4 = matrix4_transformed_vector4( self, vector4 ); } /// \brief Transposes \p self in-place. inline void matrix4_transpose( Matrix4& self ){ std::swap( self.xy(), self.yx() ); std::swap( self.xz(), self.zx() ); std::swap( self.xw(), self.tx() ); std::swap( self.yz(), self.zy() ); std::swap( self.yw(), self.ty() ); std::swap( self.zw(), self.tz() ); } /// \brief Returns \p self transposed. inline Matrix4 matrix4_transposed( const Matrix4& self ){ return Matrix4( self.xx(), self.yx(), self.zx(), self.tx(), self.xy(), self.yy(), self.zy(), self.ty(), self.xz(), self.yz(), self.zz(), self.tz(), self.xw(), self.yw(), self.zw(), self.tw() ); } /// \brief Inverts an affine transform in-place. /// Adapted from Graphics Gems 2. inline void matrix4_affine_invert( Matrix4& self ){ Matrix4 other( self ); // determinant of rotation submatrix float det = other[0] * ( other[5] * other[10] - other[9] * other[6] ) - other[1] * ( other[4] * other[10] - other[8] * other[6] ) + other[2] * ( other[4] * other[9] - other[8] * other[5] ); // throw exception here if (det*det < 1e-25) // invert rotation submatrix det = 1.0f / det; self[0] = ( ( other[5] * other[10] - other[6] * other[9] ) * det ); self[1] = ( -( other[1] * other[10] - other[2] * other[9] ) * det ); self[2] = ( ( other[1] * other[6] - other[2] * other[5] ) * det ); self[4] = ( -( other[4] * other[10] - other[6] * other[8] ) * det ); self[5] = ( ( other[0] * other[10] - other[2] * other[8] ) * det ); self[6] = ( -( other[0] * other[6] - other[2] * other[4] ) * det ); self[8] = ( ( other[4] * other[9] - other[5] * other[8] ) * det ); self[9] = ( -( other[0] * other[9] - other[1] * other[8] ) * det ); self[10] = ( ( other[0] * other[5] - other[1] * other[4] ) * det ); // multiply translation part by rotation self[12] = -( other[12] * self[0] + other[13] * self[4] + other[14] * self[8] ); self[13] = -( other[12] * self[1] + other[13] * self[5] + other[14] * self[9] ); self[14] = -( other[12] * self[2] + other[13] * self[6] + other[14] * self[10] ); } /// \brief A compile-time-constant integer. template struct ct_int { enum { value = Value }; }; /// \brief A compile-time-constant row/column index into a 4x4 matrix. template class Matrix4Index { public: typedef ct_int r; typedef ct_int c; typedef ct_int<( r::value * 4 ) + c::value> i; }; /// \brief A functor which returns the cofactor of a 3x3 submatrix obtained by ignoring a given row and column of a 4x4 matrix. /// \param Row Defines the compile-time-constant integers x, y and z with values corresponding to the indices of the three rows to use. /// \param Col Defines the compile-time-constant integers x, y and z with values corresponding to the indices of the three columns to use. template class Matrix4Cofactor { public: typedef typename Matrix4Index::i xx; typedef typename Matrix4Index::i xy; typedef typename Matrix4Index::i xz; typedef typename Matrix4Index::i yx; typedef typename Matrix4Index::i yy; typedef typename Matrix4Index::i yz; typedef typename Matrix4Index::i zx; typedef typename Matrix4Index::i zy; typedef typename Matrix4Index::i zz; static double apply( const Matrix4& self ){ return self[xx::value] * ( self[yy::value] * self[zz::value] - self[zy::value] * self[yz::value] ) - self[xy::value] * ( self[yx::value] * self[zz::value] - self[zx::value] * self[yz::value] ) + self[xz::value] * ( self[yx::value] * self[zy::value] - self[zx::value] * self[yy::value] ); } }; /// \brief The cofactor element indices for a 4x4 matrix row or column. /// \param Element The index of the element to ignore. template class Cofactor4 { public: typedef ct_int<( Element <= 0 ) ? 1 : 0> x; typedef ct_int<( Element <= 1 ) ? 2 : 1> y; typedef ct_int<( Element <= 2 ) ? 3 : 2> z; }; /// \brief Returns the determinant of \p self. inline double matrix4_determinant( const Matrix4& self ){ return self.xx() * Matrix4Cofactor< Cofactor4<0>, Cofactor4<0> >::apply( self ) - self.xy() * Matrix4Cofactor< Cofactor4<0>, Cofactor4<1> >::apply( self ) + self.xz() * Matrix4Cofactor< Cofactor4<0>, Cofactor4<2> >::apply( self ) - self.xw() * Matrix4Cofactor< Cofactor4<0>, Cofactor4<3> >::apply( self ); } /// \brief Returns the inverse of \p self using the Adjoint method. /// \todo Throw an exception if the determinant is zero. inline Matrix4 matrix4_full_inverse( const Matrix4& self ){ double determinant = 1.0 / matrix4_determinant( self ); return Matrix4( static_cast( Matrix4Cofactor< Cofactor4<0>, Cofactor4<0> >::apply( self ) * determinant ), static_cast( -Matrix4Cofactor< Cofactor4<1>, Cofactor4<0> >::apply( self ) * determinant ), static_cast( Matrix4Cofactor< Cofactor4<2>, Cofactor4<0> >::apply( self ) * determinant ), static_cast( -Matrix4Cofactor< Cofactor4<3>, Cofactor4<0> >::apply( self ) * determinant ), static_cast( -Matrix4Cofactor< Cofactor4<0>, Cofactor4<1> >::apply( self ) * determinant ), static_cast( Matrix4Cofactor< Cofactor4<1>, Cofactor4<1> >::apply( self ) * determinant ), static_cast( -Matrix4Cofactor< Cofactor4<2>, Cofactor4<1> >::apply( self ) * determinant ), static_cast( Matrix4Cofactor< Cofactor4<3>, Cofactor4<1> >::apply( self ) * determinant ), static_cast( Matrix4Cofactor< Cofactor4<0>, Cofactor4<2> >::apply( self ) * determinant ), static_cast( -Matrix4Cofactor< Cofactor4<1>, Cofactor4<2> >::apply( self ) * determinant ), static_cast( Matrix4Cofactor< Cofactor4<2>, Cofactor4<2> >::apply( self ) * determinant ), static_cast( -Matrix4Cofactor< Cofactor4<3>, Cofactor4<2> >::apply( self ) * determinant ), static_cast( -Matrix4Cofactor< Cofactor4<0>, Cofactor4<3> >::apply( self ) * determinant ), static_cast( Matrix4Cofactor< Cofactor4<1>, Cofactor4<3> >::apply( self ) * determinant ), static_cast( -Matrix4Cofactor< Cofactor4<2>, Cofactor4<3> >::apply( self ) * determinant ), static_cast( Matrix4Cofactor< Cofactor4<3>, Cofactor4<3> >::apply( self ) * determinant ) ); } /// \brief Inverts \p self in-place using the Adjoint method. inline void matrix4_full_invert( Matrix4& self ){ self = matrix4_full_inverse( self ); } /// \brief Constructs a pure-translation matrix from \p translation. inline Matrix4 matrix4_translation_for_vec3( const Vector3& translation ){ return Matrix4( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, translation[0], translation[1], translation[2], 1 ); } /// \brief Returns the translation part of \p self. inline Vector3 matrix4_get_translation_vec3( const Matrix4& self ){ return vector4_to_vector3( self.t() ); } /// \brief Concatenates \p self with \p translation. /// The concatenated \p translation occurs before \p self. inline void matrix4_translate_by_vec3( Matrix4& self, const Vector3& translation ){ matrix4_multiply_by_matrix4( self, matrix4_translation_for_vec3( translation ) ); } /// \brief Returns \p self Concatenated with \p translation. /// The concatenated translation occurs before \p self. inline Matrix4 matrix4_translated_by_vec3( const Matrix4& self, const Vector3& translation ){ return matrix4_multiplied_by_matrix4( self, matrix4_translation_for_vec3( translation ) ); } #include "math/pi.h" /// \brief Returns \p angle modulated by the range [0, 360). /// \p angle must be in the range [-360, 360). inline float angle_modulate_degrees_range( float angle ){ return static_cast( float_mod_range( angle, 360.0 ) ); } /// \brief Returns \p euler angles converted from radians to degrees. inline Vector3 euler_radians_to_degrees( const Vector3& euler ){ return Vector3( static_cast( radians_to_degrees( euler.x() ) ), static_cast( radians_to_degrees( euler.y() ) ), static_cast( radians_to_degrees( euler.z() ) ) ); } /// \brief Returns \p euler angles converted from degrees to radians. inline Vector3 euler_degrees_to_radians( const Vector3& euler ){ return Vector3( static_cast( degrees_to_radians( euler.x() ) ), static_cast( degrees_to_radians( euler.y() ) ), static_cast( degrees_to_radians( euler.z() ) ) ); } /// \brief Constructs a pure-rotation matrix about the x axis from sin \p s and cosine \p c of an angle. inline Matrix4 matrix4_rotation_for_sincos_x( float s, float c ){ return Matrix4( 1, 0, 0, 0, 0, c, s, 0, 0,-s, c, 0, 0, 0, 0, 1 ); } /// \brief Constructs a pure-rotation matrix about the x axis from an angle in radians. inline Matrix4 matrix4_rotation_for_x( double x ){ return matrix4_rotation_for_sincos_x( static_cast( sin( x ) ), static_cast( cos( x ) ) ); } /// \brief Constructs a pure-rotation matrix about the x axis from an angle in degrees. inline Matrix4 matrix4_rotation_for_x_degrees( float x ){ return matrix4_rotation_for_x( degrees_to_radians( x ) ); } /// \brief Constructs a pure-rotation matrix about the y axis from sin \p s and cosine \p c of an angle. inline Matrix4 matrix4_rotation_for_sincos_y( float s, float c ){ return Matrix4( c, 0,-s, 0, 0, 1, 0, 0, s, 0, c, 0, 0, 0, 0, 1 ); } /// \brief Constructs a pure-rotation matrix about the y axis from an angle in radians. inline Matrix4 matrix4_rotation_for_y( double y ){ return matrix4_rotation_for_sincos_y( static_cast( sin( y ) ), static_cast( cos( y ) ) ); } /// \brief Constructs a pure-rotation matrix about the y axis from an angle in degrees. inline Matrix4 matrix4_rotation_for_y_degrees( float y ){ return matrix4_rotation_for_y( degrees_to_radians( y ) ); } /// \brief Constructs a pure-rotation matrix about the z axis from sin \p s and cosine \p c of an angle. inline Matrix4 matrix4_rotation_for_sincos_z( float s, float c ){ return Matrix4( c, s, 0, 0, -s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); } /// \brief Constructs a pure-rotation matrix about the z axis from an angle in radians. inline Matrix4 matrix4_rotation_for_z( double z ){ return matrix4_rotation_for_sincos_z( static_cast( sin( z ) ), static_cast( cos( z ) ) ); } /// \brief Constructs a pure-rotation matrix about the z axis from an angle in degrees. inline Matrix4 matrix4_rotation_for_z_degrees( float z ){ return matrix4_rotation_for_z( degrees_to_radians( z ) ); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (x, y, z). /*! \verbatim clockwise rotation around X, Y, Z, facing along axis 1 0 0 cy 0 -sy cz sz 0 0 cx sx 0 1 0 -sz cz 0 0 -sx cx sy 0 cy 0 0 1 rows of Z by cols of Y cy*cz -sy*cz+sz -sy*sz+cz -sz*cy -sz*sy+cz .. or something like that.. final rotation is Z * Y * X cy*cz -sx*-sy*cz+cx*sz cx*-sy*sz+sx*cz -cy*sz sx*sy*sz+cx*cz -cx*-sy*sz+sx*cz sy -sx*cy cx*cy transposed cy.cz + 0.sz + sy.0 cy.-sz + 0 .cz + sy.0 cy.0 + 0 .0 + sy.1 | sx.sy.cz + cx.sz + -sx.cy.0 sx.sy.-sz + cx.cz + -sx.cy.0 sx.sy.0 + cx.0 + -sx.cy.1 | -cx.sy.cz + sx.sz + cx.cy.0 -cx.sy.-sz + sx.cz + cx.cy.0 -cx.sy.0 + 0 .0 + cx.cy.1 | \endverbatim */ inline Matrix4 matrix4_rotation_for_euler_xyz( const Vector3& euler ){ #if 1 double cx = cos( euler[0] ); double sx = sin( euler[0] ); double cy = cos( euler[1] ); double sy = sin( euler[1] ); double cz = cos( euler[2] ); double sz = sin( euler[2] ); return Matrix4( static_cast( cy * cz ), static_cast( cy * sz ), static_cast( -sy ), 0, static_cast( sx * sy * cz + cx * -sz ), static_cast( sx * sy * sz + cx * cz ), static_cast( sx * cy ), 0, static_cast( cx * sy * cz + sx * sz ), static_cast( cx * sy * sz + -sx * cz ), static_cast( cx * cy ), 0, 0, 0, 0, 1 ); #else return matrix4_premultiply_by_matrix4( matrix4_premultiply_by_matrix4( matrix4_rotation_for_x( euler[0] ), matrix4_rotation_for_y( euler[1] ) ), matrix4_rotation_for_z( euler[2] ) ); #endif } /// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (x, y, z). inline Matrix4 matrix4_rotation_for_euler_xyz_degrees( const Vector3& euler ){ return matrix4_rotation_for_euler_xyz( euler_degrees_to_radians( euler ) ); } /// \brief Concatenates \p self with the rotation transform produced by \p euler angles (degrees) in the order (x, y, z). /// The concatenated rotation occurs before \p self. inline void matrix4_rotate_by_euler_xyz_degrees( Matrix4& self, const Vector3& euler ){ matrix4_multiply_by_matrix4( self, matrix4_rotation_for_euler_xyz_degrees( euler ) ); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (y, z, x). inline Matrix4 matrix4_rotation_for_euler_yzx( const Vector3& euler ){ return matrix4_premultiplied_by_matrix4( matrix4_premultiplied_by_matrix4( matrix4_rotation_for_y( euler[1] ), matrix4_rotation_for_z( euler[2] ) ), matrix4_rotation_for_x( euler[0] ) ); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (y, z, x). inline Matrix4 matrix4_rotation_for_euler_yzx_degrees( const Vector3& euler ){ return matrix4_rotation_for_euler_yzx( euler_degrees_to_radians( euler ) ); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (x, z, y). inline Matrix4 matrix4_rotation_for_euler_xzy( const Vector3& euler ){ return matrix4_premultiplied_by_matrix4( matrix4_premultiplied_by_matrix4( matrix4_rotation_for_x( euler[0] ), matrix4_rotation_for_z( euler[2] ) ), matrix4_rotation_for_y( euler[1] ) ); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (x, z, y). inline Matrix4 matrix4_rotation_for_euler_xzy_degrees( const Vector3& euler ){ return matrix4_rotation_for_euler_xzy( euler_degrees_to_radians( euler ) ); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (y, x, z). /*! \verbatim | cy.cz + sx.sy.-sz + -cx.sy.0 0.cz + cx.-sz + sx.0 sy.cz + -sx.cy.-sz + cx.cy.0 | | cy.sz + sx.sy.cz + -cx.sy.0 0.sz + cx.cz + sx.0 sy.sz + -sx.cy.cz + cx.cy.0 | | cy.0 + sx.sy.0 + -cx.sy.1 0.0 + cx.0 + sx.1 sy.0 + -sx.cy.0 + cx.cy.1 | \endverbatim */ inline Matrix4 matrix4_rotation_for_euler_yxz( const Vector3& euler ){ #if 1 double cx = cos( euler[0] ); double sx = sin( euler[0] ); double cy = cos( euler[1] ); double sy = sin( euler[1] ); double cz = cos( euler[2] ); double sz = sin( euler[2] ); return Matrix4( static_cast( cy * cz + sx * sy * -sz ), static_cast( cy * sz + sx * sy * cz ), static_cast( -cx * sy ), 0, static_cast( cx * -sz ), static_cast( cx * cz ), static_cast( sx ), 0, static_cast( sy * cz + -sx * cy * -sz ), static_cast( sy * sz + -sx * cy * cz ), static_cast( cx * cy ), 0, 0, 0, 0, 1 ); #else return matrix4_premultiply_by_matrix4( matrix4_premultiply_by_matrix4( matrix4_rotation_for_y( euler[1] ), matrix4_rotation_for_x( euler[0] ) ), matrix4_rotation_for_z( euler[2] ) ); #endif } /// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (y, x, z). inline Matrix4 matrix4_rotation_for_euler_yxz_degrees( const Vector3& euler ){ return matrix4_rotation_for_euler_yxz( euler_degrees_to_radians( euler ) ); } /// \brief Returns \p self concatenated with the rotation transform produced by \p euler angles (degrees) in the order (y, x, z). /// The concatenated rotation occurs before \p self. inline Matrix4 matrix4_rotated_by_euler_yxz_degrees( const Matrix4& self, const Vector3& euler ){ return matrix4_multiplied_by_matrix4( self, matrix4_rotation_for_euler_yxz_degrees( euler ) ); } /// \brief Concatenates \p self with the rotation transform produced by \p euler angles (degrees) in the order (y, x, z). /// The concatenated rotation occurs before \p self. inline void matrix4_rotate_by_euler_yxz_degrees( Matrix4& self, const Vector3& euler ){ self = matrix4_rotated_by_euler_yxz_degrees( self, euler ); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (z, x, y). inline Matrix4 matrix4_rotation_for_euler_zxy( const Vector3& euler ){ #if 1 return matrix4_premultiplied_by_matrix4( matrix4_premultiplied_by_matrix4( matrix4_rotation_for_z( euler[2] ), matrix4_rotation_for_x( euler[0] ) ), matrix4_rotation_for_y( euler[1] ) ); #else double cx = cos( euler[0] ); double sx = sin( euler[0] ); double cy = cos( euler[1] ); double sy = sin( euler[1] ); double cz = cos( euler[2] ); double sz = sin( euler[2] ); return Matrix4( static_cast( cz * cy + sz * sx * sy ), static_cast( sz * cx ), static_cast( cz * -sy + sz * sx * cy ), 0, static_cast( -sz * cy + cz * sx * sy ), static_cast( cz * cx ), static_cast( -sz * -sy + cz * cx * cy ), 0, static_cast( cx * sy ), static_cast( -sx ), static_cast( cx * cy ), 0, 0, 0, 0, 1 ); #endif } /// \brief Constructs a pure-rotation matrix from a set of euler angles (degres=es) in the order (z, x, y). inline Matrix4 matrix4_rotation_for_euler_zxy_degrees( const Vector3& euler ){ return matrix4_rotation_for_euler_zxy( euler_degrees_to_radians( euler ) ); } /// \brief Returns \p self concatenated with the rotation transform produced by \p euler angles (degrees) in the order (z, x, y). /// The concatenated rotation occurs before \p self. inline Matrix4 matrix4_rotated_by_euler_zxy_degrees( const Matrix4& self, const Vector3& euler ){ return matrix4_multiplied_by_matrix4( self, matrix4_rotation_for_euler_zxy_degrees( euler ) ); } /// \brief Concatenates \p self with the rotation transform produced by \p euler angles (degrees) in the order (z, x, y). /// The concatenated rotation occurs before \p self. inline void matrix4_rotate_by_euler_zxy_degrees( Matrix4& self, const Vector3& euler ){ self = matrix4_rotated_by_euler_zxy_degrees( self, euler ); } /// \brief Constructs a pure-rotation matrix from a set of euler angles (radians) in the order (z, y, x). inline Matrix4 matrix4_rotation_for_euler_zyx( const Vector3& euler ){ #if 1 double cx = cos( euler[0] ); double sx = sin( euler[0] ); double cy = cos( euler[1] ); double sy = sin( euler[1] ); double cz = cos( euler[2] ); double sz = sin( euler[2] ); return Matrix4( static_cast( cy * cz ), static_cast( sx * sy * cz + cx * sz ), static_cast( cx * -sy * cz + sx * sz ), 0, static_cast( cy * -sz ), static_cast( sx * sy * -sz + cx * cz ), static_cast( cx * -sy * -sz + sx * cz ), 0, static_cast( sy ), static_cast( -sx * cy ), static_cast( cx * cy ), 0, 0, 0, 0, 1 ); #else return matrix4_premultiply_by_matrix4( matrix4_premultiply_by_matrix4( matrix4_rotation_for_z( euler[2] ), matrix4_rotation_for_y( euler[1] ) ), matrix4_rotation_for_x( euler[0] ) ); #endif } /// \brief Constructs a pure-rotation matrix from a set of euler angles (degrees) in the order (z, y, x). inline Matrix4 matrix4_rotation_for_euler_zyx_degrees( const Vector3& euler ){ return matrix4_rotation_for_euler_zyx( euler_degrees_to_radians( euler ) ); } /// \brief Calculates and returns a set of euler angles that produce the rotation component of \p self when applied in the order (x, y, z). /// \p self must be affine and orthonormal (unscaled) to produce a meaningful result. inline Vector3 matrix4_get_rotation_euler_xyz( const Matrix4& self ){ double a = asin( -self[2] ); double ca = cos( a ); if ( fabs( ca ) > 0.005 ) { // Gimbal lock? return Vector3( static_cast( atan2( self[6] / ca, self[10] / ca ) ), static_cast( a ), static_cast( atan2( self[1] / ca, self[0] / ca ) ) ); } else // Gimbal lock has occurred { return Vector3( static_cast( atan2( -self[9], self[5] ) ), static_cast( a ), 0 ); } } /// \brief \copydoc matrix4_get_rotation_euler_xyz(const Matrix4&) inline Vector3 matrix4_get_rotation_euler_xyz_degrees( const Matrix4& self ){ return euler_radians_to_degrees( matrix4_get_rotation_euler_xyz( self ) ); } /// \brief Calculates and returns a set of euler angles that produce the rotation component of \p self when applied in the order (y, x, z). /// \p self must be affine and orthonormal (unscaled) to produce a meaningful result. inline Vector3 matrix4_get_rotation_euler_yxz( const Matrix4& self ){ double a = asin( self[6] ); double ca = cos( a ); if ( fabs( ca ) > 0.005 ) { // Gimbal lock? return Vector3( static_cast( a ), static_cast( atan2( -self[2] / ca, self[10] / ca ) ), static_cast( atan2( -self[4] / ca, self[5] / ca ) ) ); } else // Gimbal lock has occurred { return Vector3( static_cast( a ), static_cast( atan2( self[8], self[0] ) ), 0 ); } } /// \brief \copydoc matrix4_get_rotation_euler_yxz(const Matrix4&) inline Vector3 matrix4_get_rotation_euler_yxz_degrees( const Matrix4& self ){ return euler_radians_to_degrees( matrix4_get_rotation_euler_yxz( self ) ); } /// \brief Calculates and returns a set of euler angles that produce the rotation component of \p self when applied in the order (z, x, y). /// \p self must be affine and orthonormal (unscaled) to produce a meaningful result. inline Vector3 matrix4_get_rotation_euler_zxy( const Matrix4& self ){ double a = asin( -self[9] ); double ca = cos( a ); if ( fabs( ca ) > 0.005 ) { // Gimbal lock? return Vector3( static_cast( a ), static_cast( atan2( self[8] / ca, self[10] / ca ) ), static_cast( atan2( self[1] / ca, self[5] / ca ) ) ); } else // Gimbal lock has occurred { return Vector3( static_cast( a ), 0, static_cast( atan2( -self[4], self[0] ) ) ); } } /// \brief \copydoc matrix4_get_rotation_euler_zxy(const Matrix4&) inline Vector3 matrix4_get_rotation_euler_zxy_degrees( const Matrix4& self ){ return euler_radians_to_degrees( matrix4_get_rotation_euler_zxy( self ) ); } /// \brief Calculates and returns a set of euler angles that produce the rotation component of \p self when applied in the order (z, y, x). /// \p self must be affine and orthonormal (unscaled) to produce a meaningful result. inline Vector3 matrix4_get_rotation_euler_zyx( const Matrix4& self ){ double a = asin( self[8] ); double ca = cos( a ); if ( fabs( ca ) > 0.005 ) { // Gimbal lock? return Vector3( static_cast( atan2( -self[9] / ca, self[10] / ca ) ), static_cast( a ), static_cast( atan2( -self[4] / ca, self[0] / ca ) ) ); } else // Gimbal lock has occurred { return Vector3( 0, static_cast( a ), static_cast( atan2( self[1], self[5] ) ) ); } } /// \brief \copydoc matrix4_get_rotation_euler_zyx(const Matrix4&) inline Vector3 matrix4_get_rotation_euler_zyx_degrees( const Matrix4& self ){ return euler_radians_to_degrees( matrix4_get_rotation_euler_zyx( self ) ); } /// \brief Rotate \p self by \p euler angles (degrees) applied in the order (x, y, z), using \p pivotpoint. inline void matrix4_pivoted_rotate_by_euler_xyz_degrees( Matrix4& self, const Vector3& euler, const Vector3& pivotpoint ){ matrix4_translate_by_vec3( self, pivotpoint ); matrix4_rotate_by_euler_xyz_degrees( self, euler ); matrix4_translate_by_vec3( self, vector3_negated( pivotpoint ) ); } /// \brief Constructs a pure-scale matrix from \p scale. inline Matrix4 matrix4_scale_for_vec3( const Vector3& scale ){ return Matrix4( scale[0], 0, 0, 0, 0, scale[1], 0, 0, 0, 0, scale[2], 0, 0, 0, 0, 1 ); } /// \brief Calculates and returns the (x, y, z) scale values that produce the scale component of \p self. /// \p self must be affine and orthogonal to produce a meaningful result. inline Vector3 matrix4_get_scale_vec3( const Matrix4& self ){ return Vector3( static_cast( vector3_length( vector4_to_vector3( self.x() ) ) ), static_cast( vector3_length( vector4_to_vector3( self.y() ) ) ), static_cast( vector3_length( vector4_to_vector3( self.z() ) ) ) ); } /// \brief Scales \p self by \p scale. inline void matrix4_scale_by_vec3( Matrix4& self, const Vector3& scale ){ matrix4_multiply_by_matrix4( self, matrix4_scale_for_vec3( scale ) ); } /// \brief Scales \p self by \p scale, using \p pivotpoint. inline void matrix4_pivoted_scale_by_vec3( Matrix4& self, const Vector3& scale, const Vector3& pivotpoint ){ matrix4_translate_by_vec3( self, pivotpoint ); matrix4_scale_by_vec3( self, scale ); matrix4_translate_by_vec3( self, vector3_negated( pivotpoint ) ); } /// \brief Transforms \p self by \p translation, \p euler and \p scale. /// The transforms are combined in the order: scale, rotate-z, rotate-y, rotate-x, translate. inline void matrix4_transform_by_euler_xyz_degrees( Matrix4& self, const Vector3& translation, const Vector3& euler, const Vector3& scale ){ matrix4_translate_by_vec3( self, translation ); matrix4_rotate_by_euler_xyz_degrees( self, euler ); matrix4_scale_by_vec3( self, scale ); } /// \brief Transforms \p self by \p translation, \p euler and \p scale, using \p pivotpoint. inline void matrix4_pivoted_transform_by_euler_xyz_degrees( Matrix4& self, const Vector3& translation, const Vector3& euler, const Vector3& scale, const Vector3& pivotpoint ){ matrix4_translate_by_vec3( self, pivotpoint + translation ); matrix4_rotate_by_euler_xyz_degrees( self, euler ); matrix4_scale_by_vec3( self, scale ); matrix4_translate_by_vec3( self, vector3_negated( pivotpoint ) ); } #endif