/* * jdcoefct.c * * Copyright (C) 1994-1995, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains the coefficient buffer controller for decompression. * This controller is the top level of the JPEG decompressor proper. * The coefficient buffer lies between entropy decoding and inverse-DCT steps. * * In buffered-image mode, this controller is the interface between * input-oriented processing and output-oriented processing. * Also, the input side (only) is used when reading a file for transcoding. */ #define JPEG_INTERNALS #include "jinclude.h" #include "radiant_jpeglib.h" /* Block smoothing is only applicable for progressive JPEG, so: */ #ifndef D_PROGRESSIVE_SUPPORTED #undef BLOCK_SMOOTHING_SUPPORTED #endif /* Private buffer controller object */ typedef struct { struct jpeg_d_coef_controller pub; /* public fields */ /* These variables keep track of the current location of the input side. */ /* cinfo->input_iMCU_row is also used for this. */ JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ int MCU_vert_offset; /* counts MCU rows within iMCU row */ int MCU_rows_per_iMCU_row; /* number of such rows needed */ /* The output side's location is represented by cinfo->output_iMCU_row. */ /* In single-pass modes, it's sufficient to buffer just one MCU. * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, * and let the entropy decoder write into that workspace each time. * (On 80x86, the workspace is FAR even though it's not really very big; * this is to keep the module interfaces unchanged when a large coefficient * buffer is necessary.) * In multi-pass modes, this array points to the current MCU's blocks * within the virtual arrays; it is used only by the input side. */ JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; #ifdef D_MULTISCAN_FILES_SUPPORTED /* In multi-pass modes, we need a virtual block array for each component. */ jvirt_barray_ptr whole_image[MAX_COMPONENTS]; #endif #ifdef BLOCK_SMOOTHING_SUPPORTED /* When doing block smoothing, we latch coefficient Al values here */ int * coef_bits_latch; #define SAVED_COEFS 6 /* we save coef_bits[0..5] */ #endif } my_coef_controller; typedef my_coef_controller * my_coef_ptr; /* Forward declarations */ METHODDEF int decompress_onepass JPP( ( j_decompress_ptr cinfo, JSAMPIMAGE output_buf ) ); #ifdef D_MULTISCAN_FILES_SUPPORTED METHODDEF int decompress_data JPP( ( j_decompress_ptr cinfo, JSAMPIMAGE output_buf ) ); #endif #ifdef BLOCK_SMOOTHING_SUPPORTED LOCAL boolean smoothing_ok JPP( (j_decompress_ptr cinfo) ); METHODDEF int decompress_smooth_data JPP( ( j_decompress_ptr cinfo, JSAMPIMAGE output_buf ) ); #endif LOCAL void start_iMCU_row( j_decompress_ptr cinfo ){ /* Reset within-iMCU-row counters for a new row (input side) */ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; /* In an interleaved scan, an MCU row is the same as an iMCU row. * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. * But at the bottom of the image, process only what's left. */ if ( cinfo->comps_in_scan > 1 ) { coef->MCU_rows_per_iMCU_row = 1; } else { if ( cinfo->input_iMCU_row < ( cinfo->total_iMCU_rows - 1 ) ) { coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; } else{ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; } } coef->MCU_ctr = 0; coef->MCU_vert_offset = 0; } /* * Initialize for an input processing pass. */ METHODDEF void start_input_pass( j_decompress_ptr cinfo ){ cinfo->input_iMCU_row = 0; start_iMCU_row( cinfo ); } /* * Initialize for an output processing pass. */ METHODDEF void start_output_pass( j_decompress_ptr cinfo ){ #ifdef BLOCK_SMOOTHING_SUPPORTED my_coef_ptr coef = (my_coef_ptr) cinfo->coef; /* If multipass, check to see whether to use block smoothing on this pass */ if ( coef->pub.coef_arrays != NULL ) { if ( cinfo->do_block_smoothing && smoothing_ok( cinfo ) ) { coef->pub.decompress_data = decompress_smooth_data; } else{ coef->pub.decompress_data = decompress_data; } } #endif cinfo->output_iMCU_row = 0; } /* * Decompress and return some data in the single-pass case. * Always attempts to emit one fully interleaved MCU row ("iMCU" row). * Input and output must run in lockstep since we have only a one-MCU buffer. * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. * * NB: output_buf contains a plane for each component in image. * For single pass, this is the same as the components in the scan. */ METHODDEF int decompress_onepass( j_decompress_ptr cinfo, JSAMPIMAGE output_buf ){ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; int blkn, ci, xindex, yindex, yoffset, useful_width; JSAMPARRAY output_ptr; JDIMENSION start_col, output_col; jpeg_component_info *compptr; inverse_DCT_method_ptr inverse_DCT; /* Loop to process as much as one whole iMCU row */ for ( yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++ ) { for ( MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; MCU_col_num++ ) { /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ jzero_far( (void FAR *) coef->MCU_buffer[0], (size_t) ( cinfo->blocks_in_MCU * SIZEOF( JBLOCK ) ) ); if ( !( *cinfo->entropy->decode_mcu )( cinfo, coef->MCU_buffer ) ) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->MCU_ctr = MCU_col_num; return JPEG_SUSPENDED; } /* Determine where data should go in output_buf and do the IDCT thing. * We skip dummy blocks at the right and bottom edges (but blkn gets * incremented past them!). Note the inner loop relies on having * allocated the MCU_buffer[] blocks sequentially. */ blkn = 0; /* index of current DCT block within MCU */ for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) { compptr = cinfo->cur_comp_info[ci]; /* Don't bother to IDCT an uninteresting component. */ if ( !compptr->component_needed ) { blkn += compptr->MCU_blocks; continue; } inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; useful_width = ( MCU_col_num < last_MCU_col ) ? compptr->MCU_width : compptr->last_col_width; output_ptr = output_buf[ci] + yoffset * compptr->DCT_scaled_size; start_col = MCU_col_num * compptr->MCU_sample_width; for ( yindex = 0; yindex < compptr->MCU_height; yindex++ ) { if ( cinfo->input_iMCU_row < last_iMCU_row || yoffset + yindex < compptr->last_row_height ) { output_col = start_col; for ( xindex = 0; xindex < useful_width; xindex++ ) { ( *inverse_DCT )( cinfo, compptr, (JCOEFPTR) coef->MCU_buffer[blkn + xindex], output_ptr, output_col ); output_col += compptr->DCT_scaled_size; } } blkn += compptr->MCU_width; output_ptr += compptr->DCT_scaled_size; } } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->MCU_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ cinfo->output_iMCU_row++; if ( ++( cinfo->input_iMCU_row ) < cinfo->total_iMCU_rows ) { start_iMCU_row( cinfo ); return JPEG_ROW_COMPLETED; } /* Completed the scan */ ( *cinfo->inputctl->finish_input_pass )( cinfo ); return JPEG_SCAN_COMPLETED; } /* * Dummy consume-input routine for single-pass operation. */ METHODDEF int dummy_consume_data( j_decompress_ptr cinfo ){ return JPEG_SUSPENDED; /* Always indicate nothing was done */ } #ifdef D_MULTISCAN_FILES_SUPPORTED /* * Consume input data and store it in the full-image coefficient buffer. * We read as much as one fully interleaved MCU row ("iMCU" row) per call, * ie, v_samp_factor block rows for each component in the scan. * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. */ METHODDEF int consume_data( j_decompress_ptr cinfo ){ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ int blkn, ci, xindex, yindex, yoffset; JDIMENSION start_col; JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; JBLOCKROW buffer_ptr; jpeg_component_info *compptr; /* Align the virtual buffers for the components used in this scan. */ for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) { compptr = cinfo->cur_comp_info[ci]; buffer[ci] = ( *cinfo->mem->access_virt_barray ) ( (j_common_ptr) cinfo, coef->whole_image[compptr->component_index], cinfo->input_iMCU_row * compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, TRUE ); /* Note: entropy decoder expects buffer to be zeroed, * but this is handled automatically by the memory manager * because we requested a pre-zeroed array. */ } /* Loop to process one whole iMCU row */ for ( yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++ ) { for ( MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++ ) { /* Construct list of pointers to DCT blocks belonging to this MCU */ blkn = 0; /* index of current DCT block within MCU */ for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) { compptr = cinfo->cur_comp_info[ci]; start_col = MCU_col_num * compptr->MCU_width; for ( yindex = 0; yindex < compptr->MCU_height; yindex++ ) { buffer_ptr = buffer[ci][yindex + yoffset] + start_col; for ( xindex = 0; xindex < compptr->MCU_width; xindex++ ) { coef->MCU_buffer[blkn++] = buffer_ptr++; } } } /* Try to fetch the MCU. */ if ( !( *cinfo->entropy->decode_mcu )( cinfo, coef->MCU_buffer ) ) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->MCU_ctr = MCU_col_num; return JPEG_SUSPENDED; } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->MCU_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ if ( ++( cinfo->input_iMCU_row ) < cinfo->total_iMCU_rows ) { start_iMCU_row( cinfo ); return JPEG_ROW_COMPLETED; } /* Completed the scan */ ( *cinfo->inputctl->finish_input_pass )( cinfo ); return JPEG_SCAN_COMPLETED; } /* * Decompress and return some data in the multi-pass case. * Always attempts to emit one fully interleaved MCU row ("iMCU" row). * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. * * NB: output_buf contains a plane for each component in image. */ METHODDEF int decompress_data( j_decompress_ptr cinfo, JSAMPIMAGE output_buf ){ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; JDIMENSION block_num; int ci, block_row, block_rows; JBLOCKARRAY buffer; JBLOCKROW buffer_ptr; JSAMPARRAY output_ptr; JDIMENSION output_col; jpeg_component_info *compptr; inverse_DCT_method_ptr inverse_DCT; /* Force some input to be done if we are getting ahead of the input. */ while ( cinfo->input_scan_number < cinfo->output_scan_number || ( cinfo->input_scan_number == cinfo->output_scan_number && cinfo->input_iMCU_row <= cinfo->output_iMCU_row ) ) { if ( ( *cinfo->inputctl->consume_input )( cinfo ) == JPEG_SUSPENDED ) { return JPEG_SUSPENDED; } } /* OK, output from the virtual arrays. */ for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++ ) { /* Don't bother to IDCT an uninteresting component. */ if ( !compptr->component_needed ) { continue; } /* Align the virtual buffer for this component. */ buffer = ( *cinfo->mem->access_virt_barray ) ( (j_common_ptr) cinfo, coef->whole_image[ci], cinfo->output_iMCU_row * compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, FALSE ); /* Count non-dummy DCT block rows in this iMCU row. */ if ( cinfo->output_iMCU_row < last_iMCU_row ) { block_rows = compptr->v_samp_factor; } else { /* NB: can't use last_row_height here; it is input-side-dependent! */ block_rows = (int) ( compptr->height_in_blocks % compptr->v_samp_factor ); if ( block_rows == 0 ) { block_rows = compptr->v_samp_factor; } } inverse_DCT = cinfo->idct->inverse_DCT[ci]; output_ptr = output_buf[ci]; /* Loop over all DCT blocks to be processed. */ for ( block_row = 0; block_row < block_rows; block_row++ ) { buffer_ptr = buffer[block_row]; output_col = 0; for ( block_num = 0; block_num < compptr->width_in_blocks; block_num++ ) { ( *inverse_DCT )( cinfo, compptr, (JCOEFPTR) buffer_ptr, output_ptr, output_col ); buffer_ptr++; output_col += compptr->DCT_scaled_size; } output_ptr += compptr->DCT_scaled_size; } } if ( ++( cinfo->output_iMCU_row ) < cinfo->total_iMCU_rows ) { return JPEG_ROW_COMPLETED; } return JPEG_SCAN_COMPLETED; } #endif /* D_MULTISCAN_FILES_SUPPORTED */ #ifdef BLOCK_SMOOTHING_SUPPORTED /* * This code applies interblock smoothing as described by section K.8 * of the JPEG standard: the first 5 AC coefficients are estimated from * the DC values of a DCT block and its 8 neighboring blocks. * We apply smoothing only for progressive JPEG decoding, and only if * the coefficients it can estimate are not yet known to full precision. */ /* * Determine whether block smoothing is applicable and safe. * We also latch the current states of the coef_bits[] entries for the * AC coefficients; otherwise, if the input side of the decompressor * advances into a new scan, we might think the coefficients are known * more accurately than they really are. */ LOCAL boolean smoothing_ok( j_decompress_ptr cinfo ){ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; boolean smoothing_useful = FALSE; int ci, coefi; jpeg_component_info *compptr; JQUANT_TBL * qtable; int * coef_bits; int * coef_bits_latch; if ( !cinfo->progressive_mode || cinfo->coef_bits == NULL ) { return FALSE; } /* Allocate latch area if not already done */ if ( coef->coef_bits_latch == NULL ) { coef->coef_bits_latch = (int *) ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->num_components * ( SAVED_COEFS * SIZEOF( int ) ) ); } coef_bits_latch = coef->coef_bits_latch; for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++ ) { /* All components' quantization values must already be latched. */ if ( ( qtable = compptr->quant_table ) == NULL ) { return FALSE; } /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ for ( coefi = 0; coefi <= 5; coefi++ ) { if ( qtable->quantval[coefi] == 0 ) { return FALSE; } } /* DC values must be at least partly known for all components. */ coef_bits = cinfo->coef_bits[ci]; if ( coef_bits[0] < 0 ) { return FALSE; } /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ for ( coefi = 1; coefi <= 5; coefi++ ) { coef_bits_latch[coefi] = coef_bits[coefi]; if ( coef_bits[coefi] != 0 ) { smoothing_useful = TRUE; } } coef_bits_latch += SAVED_COEFS; } return smoothing_useful; } /* * Variant of decompress_data for use when doing block smoothing. */ METHODDEF int decompress_smooth_data( j_decompress_ptr cinfo, JSAMPIMAGE output_buf ){ my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; JDIMENSION block_num, last_block_column; int ci, block_row, block_rows, access_rows; JBLOCKARRAY buffer; JBLOCKROW buffer_ptr, prev_block_row, next_block_row; JSAMPARRAY output_ptr; JDIMENSION output_col; jpeg_component_info *compptr; inverse_DCT_method_ptr inverse_DCT; boolean first_row, last_row; JBLOCK workspace; int *coef_bits; JQUANT_TBL *quanttbl; INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; int Al, pred; /* Force some input to be done if we are getting ahead of the input. */ while ( cinfo->input_scan_number <= cinfo->output_scan_number && !cinfo->inputctl->eoi_reached ) { if ( cinfo->input_scan_number == cinfo->output_scan_number ) { /* If input is working on current scan, we ordinarily want it to * have completed the current row. But if input scan is DC, * we want it to keep one row ahead so that next block row's DC * values are up to date. */ JDIMENSION delta = ( cinfo->Ss == 0 ) ? 1 : 0; if ( cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta ) { break; } } if ( ( *cinfo->inputctl->consume_input )( cinfo ) == JPEG_SUSPENDED ) { return JPEG_SUSPENDED; } } /* OK, output from the virtual arrays. */ for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++ ) { /* Don't bother to IDCT an uninteresting component. */ if ( !compptr->component_needed ) { continue; } /* Count non-dummy DCT block rows in this iMCU row. */ if ( cinfo->output_iMCU_row < last_iMCU_row ) { block_rows = compptr->v_samp_factor; access_rows = block_rows * 2; /* this and next iMCU row */ last_row = FALSE; } else { /* NB: can't use last_row_height here; it is input-side-dependent! */ block_rows = (int) ( compptr->height_in_blocks % compptr->v_samp_factor ); if ( block_rows == 0 ) { block_rows = compptr->v_samp_factor; } access_rows = block_rows; /* this iMCU row only */ last_row = TRUE; } /* Align the virtual buffer for this component. */ if ( cinfo->output_iMCU_row > 0 ) { access_rows += compptr->v_samp_factor; /* prior iMCU row too */ buffer = ( *cinfo->mem->access_virt_barray ) ( (j_common_ptr) cinfo, coef->whole_image[ci], ( cinfo->output_iMCU_row - 1 ) * compptr->v_samp_factor, (JDIMENSION) access_rows, FALSE ); buffer += compptr->v_samp_factor; /* point to current iMCU row */ first_row = FALSE; } else { buffer = ( *cinfo->mem->access_virt_barray ) ( (j_common_ptr) cinfo, coef->whole_image[ci], (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE ); first_row = TRUE; } /* Fetch component-dependent info */ coef_bits = coef->coef_bits_latch + ( ci * SAVED_COEFS ); quanttbl = compptr->quant_table; Q00 = quanttbl->quantval[0]; Q01 = quanttbl->quantval[1]; Q10 = quanttbl->quantval[2]; Q20 = quanttbl->quantval[3]; Q11 = quanttbl->quantval[4]; Q02 = quanttbl->quantval[5]; inverse_DCT = cinfo->idct->inverse_DCT[ci]; output_ptr = output_buf[ci]; /* Loop over all DCT blocks to be processed. */ for ( block_row = 0; block_row < block_rows; block_row++ ) { buffer_ptr = buffer[block_row]; if ( first_row && block_row == 0 ) { prev_block_row = buffer_ptr; } else{ prev_block_row = buffer[block_row - 1]; } if ( last_row && block_row == block_rows - 1 ) { next_block_row = buffer_ptr; } else{ next_block_row = buffer[block_row + 1]; } /* We fetch the surrounding DC values using a sliding-register approach. * Initialize all nine here so as to do the right thing on narrow pics. */ DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; DC7 = DC8 = DC9 = (int) next_block_row[0][0]; output_col = 0; last_block_column = compptr->width_in_blocks - 1; for ( block_num = 0; block_num <= last_block_column; block_num++ ) { /* Fetch current DCT block into workspace so we can modify it. */ jcopy_block_row( buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1 ); /* Update DC values */ if ( block_num < last_block_column ) { DC3 = (int) prev_block_row[1][0]; DC6 = (int) buffer_ptr[1][0]; DC9 = (int) next_block_row[1][0]; } /* Compute coefficient estimates per K.8. * An estimate is applied only if coefficient is still zero, * and is not known to be fully accurate. */ /* AC01 */ if ( ( Al = coef_bits[1] ) != 0 && workspace[1] == 0 ) { num = 36 * Q00 * ( DC4 - DC6 ); if ( num >= 0 ) { pred = (int) ( ( ( Q01 << 7 ) + num ) / ( Q01 << 8 ) ); if ( Al > 0 && pred >= ( 1 << Al ) ) { pred = ( 1 << Al ) - 1; } } else { pred = (int) ( ( ( Q01 << 7 ) - num ) / ( Q01 << 8 ) ); if ( Al > 0 && pred >= ( 1 << Al ) ) { pred = ( 1 << Al ) - 1; } pred = -pred; } workspace[1] = (JCOEF) pred; } /* AC10 */ if ( ( Al = coef_bits[2] ) != 0 && workspace[8] == 0 ) { num = 36 * Q00 * ( DC2 - DC8 ); if ( num >= 0 ) { pred = (int) ( ( ( Q10 << 7 ) + num ) / ( Q10 << 8 ) ); if ( Al > 0 && pred >= ( 1 << Al ) ) { pred = ( 1 << Al ) - 1; } } else { pred = (int) ( ( ( Q10 << 7 ) - num ) / ( Q10 << 8 ) ); if ( Al > 0 && pred >= ( 1 << Al ) ) { pred = ( 1 << Al ) - 1; } pred = -pred; } workspace[8] = (JCOEF) pred; } /* AC20 */ if ( ( Al = coef_bits[3] ) != 0 && workspace[16] == 0 ) { num = 9 * Q00 * ( DC2 + DC8 - 2 * DC5 ); if ( num >= 0 ) { pred = (int) ( ( ( Q20 << 7 ) + num ) / ( Q20 << 8 ) ); if ( Al > 0 && pred >= ( 1 << Al ) ) { pred = ( 1 << Al ) - 1; } } else { pred = (int) ( ( ( Q20 << 7 ) - num ) / ( Q20 << 8 ) ); if ( Al > 0 && pred >= ( 1 << Al ) ) { pred = ( 1 << Al ) - 1; } pred = -pred; } workspace[16] = (JCOEF) pred; } /* AC11 */ if ( ( Al = coef_bits[4] ) != 0 && workspace[9] == 0 ) { num = 5 * Q00 * ( DC1 - DC3 - DC7 + DC9 ); if ( num >= 0 ) { pred = (int) ( ( ( Q11 << 7 ) + num ) / ( Q11 << 8 ) ); if ( Al > 0 && pred >= ( 1 << Al ) ) { pred = ( 1 << Al ) - 1; } } else { pred = (int) ( ( ( Q11 << 7 ) - num ) / ( Q11 << 8 ) ); if ( Al > 0 && pred >= ( 1 << Al ) ) { pred = ( 1 << Al ) - 1; } pred = -pred; } workspace[9] = (JCOEF) pred; } /* AC02 */ if ( ( Al = coef_bits[5] ) != 0 && workspace[2] == 0 ) { num = 9 * Q00 * ( DC4 + DC6 - 2 * DC5 ); if ( num >= 0 ) { pred = (int) ( ( ( Q02 << 7 ) + num ) / ( Q02 << 8 ) ); if ( Al > 0 && pred >= ( 1 << Al ) ) { pred = ( 1 << Al ) - 1; } } else { pred = (int) ( ( ( Q02 << 7 ) - num ) / ( Q02 << 8 ) ); if ( Al > 0 && pred >= ( 1 << Al ) ) { pred = ( 1 << Al ) - 1; } pred = -pred; } workspace[2] = (JCOEF) pred; } /* OK, do the IDCT */ ( *inverse_DCT )( cinfo, compptr, (JCOEFPTR) workspace, output_ptr, output_col ); /* Advance for next column */ DC1 = DC2; DC2 = DC3; DC4 = DC5; DC5 = DC6; DC7 = DC8; DC8 = DC9; buffer_ptr++, prev_block_row++, next_block_row++; output_col += compptr->DCT_scaled_size; } output_ptr += compptr->DCT_scaled_size; } } if ( ++( cinfo->output_iMCU_row ) < cinfo->total_iMCU_rows ) { return JPEG_ROW_COMPLETED; } return JPEG_SCAN_COMPLETED; } #endif /* BLOCK_SMOOTHING_SUPPORTED */ /* * Initialize coefficient buffer controller. */ GLOBAL void jinit_d_coef_controller( j_decompress_ptr cinfo, boolean need_full_buffer ){ my_coef_ptr coef; coef = (my_coef_ptr) ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF( my_coef_controller ) ); cinfo->coef = (struct jpeg_d_coef_controller *) coef; coef->pub.start_input_pass = start_input_pass; coef->pub.start_output_pass = start_output_pass; #ifdef BLOCK_SMOOTHING_SUPPORTED coef->coef_bits_latch = NULL; #endif /* Create the coefficient buffer. */ if ( need_full_buffer ) { #ifdef D_MULTISCAN_FILES_SUPPORTED /* Allocate a full-image virtual array for each component, */ /* padded to a multiple of samp_factor DCT blocks in each direction. */ /* Note we ask for a pre-zeroed array. */ int ci, access_rows; jpeg_component_info *compptr; for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++ ) { access_rows = compptr->v_samp_factor; #ifdef BLOCK_SMOOTHING_SUPPORTED /* If block smoothing could be used, need a bigger window */ if ( cinfo->progressive_mode ) { access_rows *= 3; } #endif coef->whole_image[ci] = ( *cinfo->mem->request_virt_barray ) ( (j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, (JDIMENSION) jround_up( (long) compptr->width_in_blocks, (long) compptr->h_samp_factor ), (JDIMENSION) jround_up( (long) compptr->height_in_blocks, (long) compptr->v_samp_factor ), (JDIMENSION) access_rows ); } coef->pub.consume_data = consume_data; coef->pub.decompress_data = decompress_data; coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ #else ERREXIT( cinfo, JERR_NOT_COMPILED ); #endif } else { /* We only need a single-MCU buffer. */ JBLOCKROW buffer; int i; buffer = (JBLOCKROW) ( *cinfo->mem->alloc_large )( (j_common_ptr) cinfo, JPOOL_IMAGE, D_MAX_BLOCKS_IN_MCU * SIZEOF( JBLOCK ) ); for ( i = 0; i < D_MAX_BLOCKS_IN_MCU; i++ ) { coef->MCU_buffer[i] = buffer + i; } coef->pub.consume_data = dummy_consume_data; coef->pub.decompress_data = decompress_onepass; coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ } }