mirror of
https://github.com/TTimo/GtkRadiant.git
synced 2025-01-11 04:21:08 +00:00
208 lines
6.8 KiB
C
208 lines
6.8 KiB
C
|
|
|||
|
#include <stdlib.h>
|
|||
|
#include <limits.h>
|
|||
|
#include <float.h>
|
|||
|
|
|||
|
#include "mathlib.h"
|
|||
|
|
|||
|
#define TINY FLT_MIN
|
|||
|
|
|||
|
void lubksb(float **a, int n, int *indx, float b[])
|
|||
|
// Solves the set of n linear equations A.X=B. Here a[n][n] is input, not as the matrix
|
|||
|
// A but rather as its LU decomposition determined by the routine ludcmp. indx[n] is input
|
|||
|
// as the permutation vector returned by ludcmp. b[n] is input as the right-hand side vector
|
|||
|
// B, and returns with the solution vector X. a, n and indx are not modified by this routine
|
|||
|
// and can be left in place for successive calls with different right-hand sides b. This routine takes
|
|||
|
// into account the possibility that b will begin with many zero elements, so it is efficient for use
|
|||
|
// in matrix inversion
|
|||
|
{
|
|||
|
int i,ii=-1,ip,j;
|
|||
|
float sum;
|
|||
|
|
|||
|
for (i=0;i<n;i++) {
|
|||
|
ip=indx[i];
|
|||
|
sum=b[ip];
|
|||
|
b[ip]=b[i];
|
|||
|
if (ii>=0)
|
|||
|
for (j=ii;j<i;j++) sum -= a[i][j]*b[j];
|
|||
|
else if (sum) ii=i;
|
|||
|
b[i]=sum;
|
|||
|
}
|
|||
|
for (i=n-1;i>=0;i--) {
|
|||
|
sum=b[i];
|
|||
|
for (j=i+1;j<n;j++) sum -= a[i][j]*b[j];
|
|||
|
b[i]=sum/a[i][i];
|
|||
|
}
|
|||
|
}
|
|||
|
/* (C) Copr. 1986-92 Numerical Recipes Software */
|
|||
|
|
|||
|
|
|||
|
int ludcmp(float **a, int n, int *indx, float *d)
|
|||
|
// given a matrix a[n][n] this routine replaces it with the LU decomposition of a rowwise
|
|||
|
// permutation of itself. a and n are input. a is output, arranged as in above equation;
|
|||
|
// indx[n] is an output vector that records the row permutation effected by the partial
|
|||
|
// pivoting; d is output as +/-1 depending on whether the number of row interchanges was even
|
|||
|
// or odd, respectively. This routine is used in combination with lubksb to solve linear
|
|||
|
// equations or invert a matrix.
|
|||
|
{
|
|||
|
int i,imax,j,k;
|
|||
|
float big,dum,sum,temp;
|
|||
|
float *vv;
|
|||
|
|
|||
|
vv=(float*)malloc(sizeof(float)*n);
|
|||
|
*d=1.0;
|
|||
|
for (i=0;i<n;i++) {
|
|||
|
big=0.0;
|
|||
|
for (j=0;j<n;j++)
|
|||
|
if ((temp=(float)fabs(a[i][j])) > big) big=temp;
|
|||
|
if (big == 0.0) return 1;
|
|||
|
vv[i]=1.0f/big;
|
|||
|
}
|
|||
|
for (j=0;j<n;j++) {
|
|||
|
for (i=0;i<j;i++) {
|
|||
|
sum=a[i][j];
|
|||
|
for (k=0;k<i;k++) sum -= a[i][k]*a[k][j];
|
|||
|
a[i][j]=sum;
|
|||
|
}
|
|||
|
big=0.0;
|
|||
|
for (i=j;i<n;i++) {
|
|||
|
sum=a[i][j];
|
|||
|
for (k=0;k<j;k++)
|
|||
|
sum -= a[i][k]*a[k][j];
|
|||
|
a[i][j]=sum;
|
|||
|
if ( (dum=vv[i]*(float)fabs(sum)) >= big) {
|
|||
|
big=dum;
|
|||
|
imax=i;
|
|||
|
}
|
|||
|
}
|
|||
|
if (j != imax) {
|
|||
|
for (k=0;k<n;k++) {
|
|||
|
dum=a[imax][k];
|
|||
|
a[imax][k]=a[j][k];
|
|||
|
a[j][k]=dum;
|
|||
|
}
|
|||
|
*d = -(*d);
|
|||
|
vv[imax]=vv[j];
|
|||
|
}
|
|||
|
indx[j]=imax;
|
|||
|
if (a[j][j] == 0.0) a[j][j]=TINY;
|
|||
|
if (j != n) {
|
|||
|
dum=1.0f/(a[j][j]);
|
|||
|
for (i=j+1;i<n;i++) a[i][j] *= dum;
|
|||
|
}
|
|||
|
}
|
|||
|
free(vv);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
/* (C) Copr. 1986-92 Numerical Recipes Software */
|
|||
|
|
|||
|
|
|||
|
/*
|
|||
|
void ludcmp(float **a, int n, int *indx, float *d)
|
|||
|
//Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a rowwise
|
|||
|
//permutation of itself. a and n are input. a is output, arranged as in equation (2.3.14) above;
|
|||
|
//indx[1..n] is an output vector that records the row permutation eected by the partial
|
|||
|
//pivoting; d is output as .1 depending on whether the number of row interchanges was even
|
|||
|
//or odd, respectively. This routine is used in combination with lubksb to solve linear equations
|
|||
|
//or invert a matrix.
|
|||
|
{
|
|||
|
int i,imax,j,k;
|
|||
|
float big,dum,sum,temp;
|
|||
|
float *vv; //vv stores the implicit scaling of each row.
|
|||
|
vv=vector(1,n);
|
|||
|
*d=1.0; //No row interchanges yet.
|
|||
|
for (i=1;i<=n;i++) { //Loop over rows to get the implicit scaling information.
|
|||
|
big=0.0;
|
|||
|
for (j=1;j<=n;j++)
|
|||
|
if ((temp=fabs(a[i][j])) > big) big=temp;
|
|||
|
if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
|
|||
|
//No nonzero largest element.
|
|||
|
vv[i]=1.0/big; //Save the scaling.
|
|||
|
}
|
|||
|
for (j=1;j<=n;j++) { //This is the loop over columns of Crout's method.
|
|||
|
for (i=1;i<j;i++) { //This is equation (2.3.12) except for i = j.
|
|||
|
sum=a[i][j];
|
|||
|
for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
|
|||
|
a[i][j]=sum;
|
|||
|
}
|
|||
|
big=0.0; //Initialize for the search for largest pivot element.
|
|||
|
for (i=j;i<=n;i++) { //This is i = j of equation (2.3.12) and i = j+1 : ::N
|
|||
|
of equation (2.3.13). sum=a[i][j];
|
|||
|
for (k=1;k<j;k++)
|
|||
|
sum -= a[i][k]*a[k][j];
|
|||
|
a[i][j]=sum;
|
|||
|
if ( (dum=vv[i]*fabs(sum)) >= big) {
|
|||
|
//Is the figure of merit for the pivot better than the best so far?
|
|||
|
big=dum;
|
|||
|
imax=i;
|
|||
|
}
|
|||
|
}
|
|||
|
if (j != imax) { //Do we need to interchange rows?
|
|||
|
for (k=1;k<=n;k++) { Yes, do so...
|
|||
|
dum=a[imax][k];
|
|||
|
a[imax][k]=a[j][k];
|
|||
|
a[j][k]=dum;
|
|||
|
}
|
|||
|
*d = -(*d); //...and change the parity of d.
|
|||
|
vv[imax]=vv[j]; //Also interchange the scale factor.
|
|||
|
}
|
|||
|
indx[j]=imax;
|
|||
|
if (a[j][j] == 0.0) a[j][j]=TINY;
|
|||
|
//If the pivot element is zero the matrix is singular (at least to the precision of the
|
|||
|
// algorithm). For some applications on singular matrices, it is desirable to substitute
|
|||
|
// TINY for zero.
|
|||
|
if (j != n) { //Now, finally, divide by the pivot element.
|
|||
|
dum=1.0/(a[j][j]);
|
|||
|
for (i=j+1;i<=n;i++) a[i][j] *= dum;
|
|||
|
}
|
|||
|
} //Go back for the next column in the reduction.
|
|||
|
free_vector(vv,1,n);
|
|||
|
}
|
|||
|
|
|||
|
void lubksb(float **a, int n, int *indx, float b[])
|
|||
|
//Solves the set of n linear equations A.X = B. Here a[1..n][1..n] is input, not as the matrix
|
|||
|
//A but rather as its LU decomposition, determined by the routine ludcmp. indx[1..n] is input
|
|||
|
//as the permutation vector returned by ludcmp. b[1..n] is input as the right-hand side vector
|
|||
|
//B, and returns with the solution vector X. a, n, and indx are not modied by this routine
|
|||
|
//and can be left in place for successive calls with dierent right-hand sides b. This routine takes
|
|||
|
//into account the possibility that b will begin with many zero elements, so it is e.cient for use
|
|||
|
//in matrix inversion.
|
|||
|
{
|
|||
|
int i,ii=0,ip,j;
|
|||
|
float sum;
|
|||
|
for (i=1;i<=n;i++) { //When ii is set to a positive value, it will become the
|
|||
|
//index of the first nonvanishing element of b. Wenow
|
|||
|
//do the forward substitution, equation (2.3.6). The
|
|||
|
//only new wrinkle is to unscramble the permutation
|
|||
|
//as we go.
|
|||
|
ip=indx[i];
|
|||
|
sum=b[ip];
|
|||
|
b[ip]=b[i];
|
|||
|
if (ii)
|
|||
|
for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
|
|||
|
else if (sum) ii=i; //A nonzero element was encountered, so from now on we
|
|||
|
//will have to do the sums in the loop above. b[i]=sum;
|
|||
|
}
|
|||
|
for (i=n;i>=1;i--) { //Now we do the backsubstitution, equation (2.3.7).
|
|||
|
sum=b[i];
|
|||
|
for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
|
|||
|
b[i]=sum/a[i][i]; //Store a component of the solution vector X.
|
|||
|
} //All done!
|
|||
|
}
|
|||
|
|
|||
|
void bleh()
|
|||
|
{
|
|||
|
#define N ...
|
|||
|
float **a,**y,d,*col;
|
|||
|
int i,j,*indx;
|
|||
|
...
|
|||
|
ludcmp(a,N,indx,&d); //Decompose the matrix just once.
|
|||
|
for(j=1;j<=N;j++) { //Find inverse by columns.
|
|||
|
for(i=1;i<=N;i++) col[i]=0.0;
|
|||
|
col[j]=1.0;
|
|||
|
lubksb(a,N,indx,col);
|
|||
|
for(i=1;i<=N;i++) y[i][j]=col[i];
|
|||
|
}
|
|||
|
}
|
|||
|
*/
|