mirror of
https://github.com/id-Software/Wolf3D-iOS.git
synced 2024-11-10 07:22:02 +00:00
158 lines
5.1 KiB
C
158 lines
5.1 KiB
C
/*
|
|
|
|
Copyright (C) 2005 Michael Liebscher <johnnycanuck@users.sourceforge.net>
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*/
|
|
|
|
/*
|
|
* matrix.c: Matrix math routines.
|
|
*
|
|
* Author: Michael Liebscher <johnnycanuck@users.sourceforge.net>
|
|
*
|
|
*/
|
|
|
|
|
|
#include "../wolfiphone.h"
|
|
|
|
/*
|
|
-----------------------------------------------------------------------------
|
|
Function: Matrix3x3Multiply -Computes the product of two 3x3 matrices.
|
|
|
|
Parameters: in1, in2 -[in] 3x3 matrices.
|
|
out -[out] result.
|
|
|
|
Returns: Nothing
|
|
|
|
Notes:
|
|
Product of two 3x3 matrices
|
|
( a b c ) ( r u x ) ( ar + bs + ct au + bv + cw ax + by + cz )
|
|
( d e f ) ( s v y ) = ( dr + es + ft du + ev + fw dx + ey + fz )
|
|
( h i j ) ( t w z ) ( hr + hs + ht iu + iv + iw jx + jy + jz )
|
|
-----------------------------------------------------------------------------
|
|
*/
|
|
PUBLIC void Matrix3x3Multiply( mat3_t in1, mat3_t in2, mat3_t out )
|
|
{
|
|
out[0] = in1[0] * in2[0] + in1[1] * in2[3] + in1[2] * in2[6];
|
|
out[1] = in1[0] * in2[1] + in1[1] * in2[4] + in1[2] * in2[7];
|
|
out[2] = in1[0] * in2[2] + in1[1] * in2[5] + in1[2] * in2[8];
|
|
|
|
out[3] = in1[3] * in2[0] + in1[4] * in2[3] + in1[5] * in2[6];
|
|
out[4] = in1[3] * in2[1] + in1[4] * in2[4] + in1[5] * in2[7];
|
|
out[5] = in1[3] * in2[2] + in1[4] * in2[5] + in1[5] * in2[8];
|
|
|
|
out[6] = in1[6] * in2[0] + in1[7] * in2[3] + in1[8] * in2[6];
|
|
out[7] = in1[6] * in2[1] + in1[7] * in2[4] + in1[8] * in2[7];
|
|
out[8] = in1[6] * in2[2] + in1[7] * in2[5] + in1[8] * in2[8];
|
|
}
|
|
|
|
/*
|
|
-----------------------------------------------------------------------------
|
|
Function: MatrixIdentity -Set matrix to the identity matrix (unit matrix).
|
|
|
|
Parameters: matrix -[in/out] 4x4 matrix.
|
|
|
|
Returns: Nothing.
|
|
|
|
Notes:
|
|
-----------------------------------------------------------------------------
|
|
*/
|
|
PUBLIC void MatrixIdentity( mat4_t matrix )
|
|
{
|
|
matrix[ 0] = 1.0; matrix[ 1] = 0.0; matrix[ 2] = 0.0; matrix[ 3] = 0.0;
|
|
matrix[ 4] = 0.0; matrix[ 5] = 1.0; matrix[ 6] = 0.0; matrix[ 7] = 0.0;
|
|
matrix[ 8] = 0.0; matrix[ 9] = 0.0; matrix[10] = 1.0; matrix[11] = 0.0;
|
|
matrix[12] = 0.0; matrix[13] = 0.0; matrix[14] = 0.0; matrix[15] = 1.0;
|
|
}
|
|
|
|
/*
|
|
-----------------------------------------------------------------------------
|
|
Function: MatrixInvert -Invert a matrix.
|
|
|
|
Parameters:
|
|
in -[in] Input matrix
|
|
out -[out] Output matrix.
|
|
|
|
|
|
Returns: Nothing.
|
|
|
|
Notes: Matrix MUST be orthonormal
|
|
|
|
-----------------------------------------------------------------------------
|
|
*/
|
|
PUBLIC void MatrixInvert( mat4_t in, mat4_t out )
|
|
{
|
|
// Transpose rotation
|
|
out[ 0] = in[ 0]; out[ 1] = in[ 4]; out[ 2] = in[ 8];
|
|
out[ 4] = in[ 1]; out[ 5] = in[ 5]; out[ 6] = in[ 9];
|
|
out[ 8] = in[ 2]; out[ 9] = in[ 6]; out[10] = in[10];
|
|
|
|
// Clear shearing terms
|
|
out[3] = 0.0f; out[7] = 0.0f; out[11] = 0.0f; out[15] = 1.0f;
|
|
|
|
// Translation is minus the dot of translation and rotations
|
|
out[12] = -(in[12] * in[ 0]) - (in[13] * in[ 1]) - (in[14] * in[ 2]);
|
|
out[13] = -(in[12] * in[ 4]) - (in[13] * in[ 5]) - (in[14] * in[ 6]);
|
|
out[14] = -(in[12] * in[ 8]) - (in[13] * in[ 9]) - (in[14] * in[10]);
|
|
}
|
|
|
|
/*
|
|
-----------------------------------------------------------------------------
|
|
Function: VectorMatrixMultiply -Multiply a vector by a matrix.
|
|
|
|
Parameters:
|
|
vecIn -[in] Input vector.
|
|
m -[in] Input matrix.
|
|
vecOut -[out] Output vector.
|
|
|
|
|
|
Returns: Nothing.
|
|
|
|
Notes:
|
|
|
|
-----------------------------------------------------------------------------
|
|
*/
|
|
PUBLIC void VectorMatrixMultiply( vec3_t vecIn, mat4_t m, vec3_t vecOut )
|
|
{
|
|
vecOut[0] = (vecIn[0] * m[ 0]) + (vecIn[1] * m[ 4]) + (vecIn[2] * m[ 8]) + m[12];
|
|
vecOut[1] = (vecIn[0] * m[ 1]) + (vecIn[1] * m[ 5]) + (vecIn[2] * m[ 9]) + m[13];
|
|
vecOut[2] = (vecIn[0] * m[ 2]) + (vecIn[1] * m[ 6]) + (vecIn[2] * m[10]) + m[14];
|
|
}
|
|
|
|
/*
|
|
-----------------------------------------------------------------------------
|
|
Function: VectorMatrix3x3Multiply -Multiply a vector by just the 3x3 portion
|
|
of a matrix.
|
|
|
|
Parameters:
|
|
in -[in] Input vector.
|
|
m -[in] Input matrix.
|
|
out -[out] Output vector.
|
|
|
|
|
|
Returns: Nothing.
|
|
|
|
Notes:
|
|
|
|
-----------------------------------------------------------------------------
|
|
*/
|
|
PUBLIC void VectorMatrix3x3Multiply( vec3_t in, mat4_t m, vec3_t out )
|
|
{
|
|
out[0] = (in[0] * m[ 0]) + (in[1] * m[ 4]) + (in[2] * m[ 8]);
|
|
out[1] = (in[0] * m[ 1]) + (in[1] * m[ 5]) + (in[2] * m[ 9]);
|
|
out[2] = (in[0] * m[ 2]) + (in[1] * m[ 6]) + (in[2] * m[10]);
|
|
}
|
|
|