mirror of
https://github.com/id-Software/quake2-rerelease-dll.git
synced 2024-11-23 12:52:41 +00:00
549 lines
No EOL
13 KiB
C++
549 lines
No EOL
13 KiB
C++
// Copyright (c) ZeniMax Media Inc.
|
|
// Licensed under the GNU General Public License 2.0.
|
|
|
|
#pragma once
|
|
|
|
// q_vec3 - vec3 stuff
|
|
#include <stdexcept>
|
|
#include <type_traits>
|
|
|
|
using nullptr_t = std::nullptr_t;
|
|
|
|
struct vec3_t
|
|
{
|
|
float x, y, z;
|
|
|
|
[[nodiscard]] constexpr const float &operator[](size_t i) const
|
|
{
|
|
if (i == 0)
|
|
return x;
|
|
else if (i == 1)
|
|
return y;
|
|
else if (i == 2)
|
|
return z;
|
|
throw std::out_of_range("i");
|
|
}
|
|
|
|
[[nodiscard]] constexpr float &operator[](size_t i)
|
|
{
|
|
if (i == 0)
|
|
return x;
|
|
else if (i == 1)
|
|
return y;
|
|
else if (i == 2)
|
|
return z;
|
|
throw std::out_of_range("i");
|
|
}
|
|
|
|
// comparison
|
|
[[nodiscard]] constexpr bool equals(const vec3_t &v) const
|
|
{
|
|
return x == v.x && y == v.y && z == v.z;
|
|
}
|
|
[[nodiscard]] inline bool equals(const vec3_t &v, const float &epsilon) const
|
|
{
|
|
return fabsf(x - v.x) <= epsilon && fabsf(y - v.y) <= epsilon && fabsf(z - v.z) <= epsilon;
|
|
}
|
|
[[nodiscard]] constexpr bool operator==(const vec3_t &v) const
|
|
{
|
|
return equals(v);
|
|
}
|
|
[[nodiscard]] constexpr bool operator!=(const vec3_t &v) const
|
|
{
|
|
return !(*this == v);
|
|
}
|
|
[[nodiscard]] constexpr explicit operator bool() const
|
|
{
|
|
return x || y || z;
|
|
}
|
|
|
|
// dot
|
|
[[nodiscard]] constexpr float dot(const vec3_t &v) const
|
|
{
|
|
return (x * v.x) + (y * v.y) + (z * v.z);
|
|
}
|
|
[[nodiscard]] constexpr vec3_t scaled(const vec3_t &v) const
|
|
{
|
|
return { x * v.x, y * v.y, z * v.z };
|
|
}
|
|
constexpr vec3_t &scale(const vec3_t &v)
|
|
{
|
|
*this = this->scaled(v);
|
|
return *this;
|
|
}
|
|
|
|
// basic operators
|
|
[[nodiscard]] constexpr vec3_t operator-(const vec3_t &v) const
|
|
{
|
|
return { x - v.x, y - v.y, z - v.z };
|
|
}
|
|
[[nodiscard]] constexpr vec3_t operator+(const vec3_t &v) const
|
|
{
|
|
return { x + v.x, y + v.y, z + v.z };
|
|
}
|
|
[[nodiscard]] constexpr vec3_t operator/(const vec3_t &v) const
|
|
{
|
|
return { x / v.x, y / v.y, z / v.z };
|
|
}
|
|
template<typename T, typename = std::enable_if_t<std::is_floating_point_v<T> || std::is_integral_v<T>>>
|
|
[[nodiscard]] constexpr vec3_t operator/(const T &v) const
|
|
{
|
|
return { static_cast<float>(x / v), static_cast<float>(y / v), static_cast<float>(z / v) };
|
|
}
|
|
template<typename T, typename = std::enable_if_t<std::is_floating_point_v<T> || std::is_integral_v<T>>>
|
|
[[nodiscard]] constexpr vec3_t operator*(const T &v) const
|
|
{
|
|
return { static_cast<float>(x * v), static_cast<float>(y * v), static_cast<float>(z * v) };
|
|
}
|
|
[[nodiscard]] constexpr vec3_t operator-() const
|
|
{
|
|
return { -x, -y, -z };
|
|
}
|
|
|
|
constexpr vec3_t &operator-=(const vec3_t &v)
|
|
{
|
|
*this = *this - v;
|
|
return *this;
|
|
}
|
|
constexpr vec3_t &operator+=(const vec3_t &v)
|
|
{
|
|
*this = *this + v;
|
|
return *this;
|
|
}
|
|
constexpr vec3_t &operator/=(const vec3_t &v)
|
|
{
|
|
*this = *this / v;
|
|
return *this;
|
|
}
|
|
template<typename T, typename = std::enable_if_t<std::is_floating_point_v<T> || std::is_integral_v<T>>>
|
|
constexpr vec3_t &operator/=(const T &v)
|
|
{
|
|
*this = *this / v;
|
|
return *this;
|
|
}
|
|
template<typename T, typename = std::enable_if_t<std::is_floating_point_v<T> || std::is_integral_v<T>>>
|
|
constexpr vec3_t &operator*=(const T &v)
|
|
{
|
|
*this = *this * v;
|
|
return *this;
|
|
}
|
|
|
|
// operations
|
|
[[nodiscard]] constexpr float lengthSquared() const
|
|
{
|
|
return this->dot(*this);
|
|
}
|
|
[[nodiscard]] inline float length() const
|
|
{
|
|
return sqrtf(lengthSquared());
|
|
}
|
|
[[nodiscard]] inline vec3_t normalized() const
|
|
{
|
|
float len = length();
|
|
return len ? (*this * (1.f / len)) : *this;
|
|
}
|
|
[[nodiscard]] inline vec3_t normalized(float &len) const
|
|
{
|
|
len = length();
|
|
return len ? (*this * (1.f / len)) : *this;
|
|
}
|
|
inline float normalize()
|
|
{
|
|
float len = length();
|
|
|
|
if (len)
|
|
*this *= (1.f / len);
|
|
|
|
return len;
|
|
}
|
|
[[nodiscard]] constexpr vec3_t cross(const vec3_t &v) const
|
|
{
|
|
return {
|
|
y * v.z - z * v.y,
|
|
z * v.x - x * v.z,
|
|
x * v.y - y * v.x
|
|
};
|
|
}
|
|
};
|
|
|
|
constexpr vec3_t vec3_origin{};
|
|
|
|
inline void AngleVectors(const vec3_t &angles, vec3_t *forward, vec3_t *right, vec3_t *up)
|
|
{
|
|
float angle = angles[YAW] * (PIf * 2 / 360);
|
|
float sy = sinf(angle);
|
|
float cy = cosf(angle);
|
|
angle = angles[PITCH] * (PIf * 2 / 360);
|
|
float sp = sinf(angle);
|
|
float cp = cosf(angle);
|
|
angle = angles[ROLL] * (PIf * 2 / 360);
|
|
float sr = sinf(angle);
|
|
float cr = cosf(angle);
|
|
|
|
if (forward)
|
|
{
|
|
forward->x = cp * cy;
|
|
forward->y = cp * sy;
|
|
forward->z = -sp;
|
|
}
|
|
if (right)
|
|
{
|
|
right->x = (-1 * sr * sp * cy + -1 * cr * -sy);
|
|
right->y = (-1 * sr * sp * sy + -1 * cr * cy);
|
|
right->z = -1 * sr * cp;
|
|
}
|
|
if (up)
|
|
{
|
|
up->x = (cr * sp * cy + -sr * -sy);
|
|
up->y = (cr * sp * sy + -sr * cy);
|
|
up->z = cr * cp;
|
|
}
|
|
}
|
|
|
|
struct angle_vectors_t {
|
|
vec3_t forward, right, up;
|
|
};
|
|
|
|
// for destructuring
|
|
inline angle_vectors_t AngleVectors(const vec3_t &angles)
|
|
{
|
|
angle_vectors_t v;
|
|
AngleVectors(angles, &v.forward, &v.right, &v.up);
|
|
return v;
|
|
}
|
|
|
|
// silly wrappers to allow old C code to work
|
|
inline void AngleVectors(const vec3_t &angles, vec3_t &forward, vec3_t &right, vec3_t &up)
|
|
{
|
|
AngleVectors(angles, &forward, &right, &up);
|
|
}
|
|
inline void AngleVectors(const vec3_t &angles, vec3_t &forward, vec3_t &right, nullptr_t)
|
|
{
|
|
AngleVectors(angles, &forward, &right, nullptr);
|
|
}
|
|
inline void AngleVectors(const vec3_t &angles, vec3_t &forward, nullptr_t, vec3_t &up)
|
|
{
|
|
AngleVectors(angles, &forward, nullptr, &up);
|
|
}
|
|
inline void AngleVectors(const vec3_t &angles, vec3_t &forward, nullptr_t, nullptr_t)
|
|
{
|
|
AngleVectors(angles, &forward, nullptr, nullptr);
|
|
}
|
|
inline void AngleVectors(const vec3_t &angles, nullptr_t, nullptr_t, vec3_t &up)
|
|
{
|
|
AngleVectors(angles, nullptr, nullptr, &up);
|
|
}
|
|
inline void AngleVectors(const vec3_t &angles, nullptr_t, vec3_t &right, nullptr_t)
|
|
{
|
|
AngleVectors(angles, nullptr, &right, nullptr);
|
|
}
|
|
|
|
inline void ClearBounds(vec3_t &mins, vec3_t &maxs)
|
|
{
|
|
mins[0] = mins[1] = mins[2] = std::numeric_limits<float>::infinity();
|
|
maxs[0] = maxs[1] = maxs[2] = -std::numeric_limits<float>::infinity();
|
|
}
|
|
|
|
inline void AddPointToBounds(const vec3_t &v, vec3_t &mins, vec3_t &maxs)
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
float val = v[i];
|
|
if (val < mins[i])
|
|
mins[i] = val;
|
|
if (val > maxs[i])
|
|
maxs[i] = val;
|
|
}
|
|
}
|
|
|
|
[[nodiscard]] constexpr vec3_t ProjectPointOnPlane(const vec3_t &p, const vec3_t &normal)
|
|
{
|
|
float inv_denom = 1.0f / normal.dot(normal);
|
|
float d = normal.dot(p) * inv_denom;
|
|
return p - ((normal * inv_denom) * d);
|
|
}
|
|
|
|
/*
|
|
** assumes "src" is normalized
|
|
*/
|
|
[[nodiscard]] inline vec3_t PerpendicularVector(const vec3_t &src)
|
|
{
|
|
int pos;
|
|
int i;
|
|
float minelem = 1.0F;
|
|
vec3_t tempvec;
|
|
|
|
/*
|
|
** find the smallest magnitude axially aligned vector
|
|
*/
|
|
for (pos = 0, i = 0; i < 3; i++)
|
|
{
|
|
if (fabsf(src[i]) < minelem)
|
|
{
|
|
pos = i;
|
|
minelem = fabsf(src[i]);
|
|
}
|
|
}
|
|
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
|
|
tempvec[pos] = 1.0F;
|
|
|
|
/*
|
|
** project the point onto the plane defined by src & normalize the result
|
|
*/
|
|
return ProjectPointOnPlane(tempvec, src).normalized();
|
|
}
|
|
|
|
using mat3_t = std::array<std::array<float, 3>, 3>;
|
|
|
|
/*
|
|
================
|
|
R_ConcatRotations
|
|
================
|
|
*/
|
|
[[nodiscard]] constexpr mat3_t R_ConcatRotations(const mat3_t &in1, const mat3_t &in2)
|
|
{
|
|
return {
|
|
std::array<float, 3> {
|
|
in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0],
|
|
in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1],
|
|
in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]
|
|
},
|
|
{
|
|
in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0],
|
|
in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1],
|
|
in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]
|
|
},
|
|
{
|
|
in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0],
|
|
in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1],
|
|
in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]
|
|
}
|
|
};
|
|
}
|
|
|
|
[[nodiscard]] inline vec3_t RotatePointAroundVector(const vec3_t &dir, const vec3_t &point, float degrees)
|
|
{
|
|
mat3_t m;
|
|
mat3_t im;
|
|
mat3_t zrot;
|
|
mat3_t rot;
|
|
vec3_t vr, vup, vf;
|
|
|
|
vf = dir;
|
|
|
|
vr = PerpendicularVector(dir);
|
|
vup = vr.cross(vf);
|
|
|
|
m[0][0] = vr[0];
|
|
m[1][0] = vr[1];
|
|
m[2][0] = vr[2];
|
|
|
|
m[0][1] = vup[0];
|
|
m[1][1] = vup[1];
|
|
m[2][1] = vup[2];
|
|
|
|
m[0][2] = vf[0];
|
|
m[1][2] = vf[1];
|
|
m[2][2] = vf[2];
|
|
|
|
im = m;
|
|
|
|
im[0][1] = m[1][0];
|
|
im[0][2] = m[2][0];
|
|
im[1][0] = m[0][1];
|
|
im[1][2] = m[2][1];
|
|
im[2][0] = m[0][2];
|
|
im[2][1] = m[1][2];
|
|
|
|
zrot = {};
|
|
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
|
|
|
|
zrot[0][0] = cosf(DEG2RAD(degrees));
|
|
zrot[0][1] = sinf(DEG2RAD(degrees));
|
|
zrot[1][0] = -sinf(DEG2RAD(degrees));
|
|
zrot[1][1] = cosf(DEG2RAD(degrees));
|
|
|
|
rot = R_ConcatRotations(R_ConcatRotations(m, zrot), im);
|
|
|
|
return {
|
|
rot[0][0] * point[0] + rot[0][1] * point[1] + rot[0][2] * point[2],
|
|
rot[1][0] * point[0] + rot[1][1] * point[1] + rot[1][2] * point[2],
|
|
rot[2][0] * point[0] + rot[2][1] * point[1] + rot[2][2] * point[2]
|
|
};
|
|
}
|
|
|
|
[[nodiscard]] constexpr vec3_t closest_point_to_box(const vec3_t &from, const vec3_t &absmins, const vec3_t &absmaxs)
|
|
{
|
|
return {
|
|
(from[0] < absmins[0]) ? absmins[0] : (from[0] > absmaxs[0]) ? absmaxs[0] : from[0],
|
|
(from[1] < absmins[1]) ? absmins[1] : (from[1] > absmaxs[1]) ? absmaxs[1] : from[1],
|
|
(from[2] < absmins[2]) ? absmins[2] : (from[2] > absmaxs[2]) ? absmaxs[2] : from[2]
|
|
};
|
|
}
|
|
|
|
[[nodiscard]] inline float distance_between_boxes(const vec3_t &absminsa, const vec3_t &absmaxsa, const vec3_t &absminsb, const vec3_t &absmaxsb)
|
|
{
|
|
float len = 0;
|
|
|
|
for (size_t i = 0; i < 3; i++)
|
|
{
|
|
if (absmaxsa[i] < absminsb[i])
|
|
{
|
|
float d = absmaxsa[i] - absminsb[i];
|
|
len += d * d;
|
|
}
|
|
else if (absminsa[i] > absmaxsb[i])
|
|
{
|
|
float d = absminsa[i] - absmaxsb[i];
|
|
len += d * d;
|
|
}
|
|
}
|
|
|
|
return sqrt(len);
|
|
}
|
|
|
|
[[nodiscard]] constexpr bool boxes_intersect(const vec3_t &amins, const vec3_t &amaxs, const vec3_t &bmins, const vec3_t &bmaxs)
|
|
{
|
|
return amins.x <= bmaxs.x &&
|
|
amaxs.x >= bmins.x &&
|
|
amins.y <= bmaxs.y &&
|
|
amaxs.y >= bmins.y &&
|
|
amins.z <= bmaxs.z &&
|
|
amaxs.z >= bmins.z;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
ClipVelocity
|
|
|
|
Slide off of the impacting object
|
|
==================
|
|
*/
|
|
constexpr float STOP_EPSILON = 0.1f;
|
|
|
|
[[nodiscard]] constexpr vec3_t ClipVelocity(const vec3_t &in, const vec3_t &normal, float overbounce)
|
|
{
|
|
float dot = in.dot(normal);
|
|
vec3_t out = in + (normal * (-2 * dot));
|
|
out *= overbounce - 1.f;
|
|
|
|
if (out.lengthSquared() < STOP_EPSILON * STOP_EPSILON)
|
|
out = {};
|
|
|
|
return out;
|
|
}
|
|
|
|
[[nodiscard]] constexpr vec3_t SlideClipVelocity(const vec3_t &in, const vec3_t &normal, float overbounce)
|
|
{
|
|
float backoff = in.dot(normal) * overbounce;
|
|
vec3_t out = in - (normal * backoff);
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
if (out[i] > -STOP_EPSILON && out[i] < STOP_EPSILON)
|
|
out[i] = 0;
|
|
|
|
return out;
|
|
}
|
|
|
|
[[nodiscard]] inline float vectoyaw(const vec3_t &vec)
|
|
{
|
|
// PMM - fixed to correct for pitch of 0
|
|
if (vec[PITCH] == 0)
|
|
{
|
|
if (vec[YAW] == 0)
|
|
return 0.f;
|
|
else if (vec[YAW] > 0)
|
|
return 90.f;
|
|
else
|
|
return 270.f;
|
|
}
|
|
|
|
float yaw = (atan2(vec[YAW], vec[PITCH]) * (180.f / PIf));
|
|
|
|
if (yaw < 0)
|
|
yaw += 360;
|
|
|
|
return yaw;
|
|
}
|
|
|
|
[[nodiscard]] inline vec3_t vectoangles(const vec3_t &vec)
|
|
{
|
|
float forward;
|
|
float yaw, pitch;
|
|
|
|
if (vec[1] == 0 && vec[0] == 0)
|
|
{
|
|
if (vec[2] > 0)
|
|
return { -90.f, 0.f, 0.f };
|
|
else
|
|
return { -270.f, 0.f, 0.f };
|
|
}
|
|
|
|
// PMM - fixed to correct for pitch of 0
|
|
if (vec[0])
|
|
yaw = (atan2(vec[1], vec[0]) * (180.f / PIf));
|
|
else if (vec[1] > 0)
|
|
yaw = 90;
|
|
else
|
|
yaw = 270;
|
|
|
|
if (yaw < 0)
|
|
yaw += 360;
|
|
|
|
forward = sqrt(vec[0] * vec[0] + vec[1] * vec[1]);
|
|
pitch = (atan2(vec[2], forward) * (180.f / PIf));
|
|
|
|
if (pitch < 0)
|
|
pitch += 360;
|
|
|
|
return { -pitch, yaw, 0 };
|
|
}
|
|
|
|
[[nodiscard]] constexpr vec3_t G_ProjectSource(const vec3_t &point, const vec3_t &distance, const vec3_t &forward, const vec3_t &right)
|
|
{
|
|
return point + (forward * distance[0]) + (right * distance[1]) + vec3_t{0.f, 0.f, distance[2]};
|
|
}
|
|
|
|
[[nodiscard]] constexpr vec3_t G_ProjectSource2(const vec3_t &point, const vec3_t &distance, const vec3_t &forward, const vec3_t &right, const vec3_t &up)
|
|
{
|
|
return point + (forward * distance[0]) + (right * distance[1]) + (up * distance[2]);
|
|
}
|
|
|
|
[[nodiscard]] inline vec3_t slerp(const vec3_t &from, const vec3_t &to, float t)
|
|
{
|
|
float dot = from.dot(to);
|
|
float aFactor;
|
|
float bFactor;
|
|
if (fabsf(dot) > 0.9995f)
|
|
{
|
|
aFactor = 1.0f - t;
|
|
bFactor = t;
|
|
}
|
|
else
|
|
{
|
|
float ang = acos(dot);
|
|
float sinOmega = sin(ang);
|
|
float sinAOmega = sin((1.0f - t) * ang);
|
|
float sinBOmega = sin(t * ang);
|
|
aFactor = sinAOmega / sinOmega;
|
|
bFactor = sinBOmega / sinOmega;
|
|
}
|
|
return from * aFactor + to * bFactor;
|
|
}
|
|
|
|
// Fmt support
|
|
template<>
|
|
struct fmt::formatter<vec3_t> : fmt::formatter<float>
|
|
{
|
|
template<typename FormatContext>
|
|
auto format(const vec3_t &p, FormatContext &ctx) -> decltype(ctx.out())
|
|
{
|
|
auto out = fmt::formatter<float>::format(p.x, ctx);
|
|
out = fmt::format_to(out, " ");
|
|
ctx.advance_to(out);
|
|
out = fmt::formatter<float>::format(p.y, ctx);
|
|
out = fmt::format_to(out, " ");
|
|
ctx.advance_to(out);
|
|
return fmt::formatter<float>::format(p.z, ctx);
|
|
}
|
|
}; |