
libcurl(3) libcurl overview libcurl(3)

NAME
libcurl − client-side URL transfers

DESCRIPTION
This is an overview on how to use libcurl in your C programs. There are specific man pages for each func-
tion mentioned in here. There are also the libcurl-easy(3) man page, the libcurl-multi(3) man page, the
libcurl-share(3) man page and the libcurl-the-guide document for further reading on how to do program-
ming with libcurl.

There exist more than a dozen custom bindings that bring libcurl access to your favourite language. Look
elsewhere for documentation on those.

All applications that use libcurl should call curl_global_init(3) exactly once before any libcurl function can
be used. After all usage of libcurl is complete, it must call curl_global_cleanup(3). In between those two
calls, you can use libcurl as described below.

To transfer files, you always set up an "easy handle" using curl_easy_init(3), but when you want the file(s)
transfered you have the option of using the "easy" interface, or the "multi" interface.

The easy interface is a synchronous interface with which you call curl_easy_perform(3) and let it perform
the transfer. When it is completed, the function return and you can continue. More details are found in the
libcurl-easy(3) man page.

The multi interface on the other hand is an asynchronous interface, that you call and that performs only a
little piece of the tranfer on each invoke. It is perfect if you want to do things while the transfer is in
progress, or similar. The multi interface allows you to select() on libcurl action, and even to easily down-
load multiple files simultaneously using a single thread.

You can have multiple easy handles share certain data, even if they are used in different threads. This magic
is setup using the share interface, as described in the libcurl-share(3) man page.

There is also a series of other helpful functions to use. They are:

curl_version()
displays the libcurl version

curl_getdate()
converts a date string to time_t

curl_getenv()
portable environment variable reader

curl_easy_getinfo()
get information about a performed transfer

curl_formadd()
helps building a HTTP form POST

curl_formfree()
free a list built with curl_formadd(3)

curl_slist_append()
builds a linked list

curl_slist_free_all()
frees a whole curl_slist

libcurl 7.9.6 19 March 2002 1



libcurl(3) libcurl overview libcurl(3)

curl_mprintf()
portable printf() functions

curl_strequal()
portable case insensitive string comparisons

LINKING WITH LIBCURL
On unix-like machines, there’s a tool named curl-config that gets installed with the rest of the curl stuff
when ’make install’ is performed.

curl-config is added to make it easier for applications to link with libcurl and developers to learn about
libcurl and how to use it.

Run ’curl-config --libs’ to get the (additional) linker options you need to link with the particular version of
libcurl you’ve installed.

For details, see the curl-config.1 man page.

LIBCURL SYMBOL NAMES
All public functions in the libcurl interface are prefixed with ’curl_’ (with a lowercase c). You can find
other functions in the library source code, but other prefixes indicate the functions are private and may
change without further notice in the next release.

Only use documented functions and functionality!

PORTABILITY
libcurl works exactly the same, on any of the platforms it compiles and builds on.

THREADS
Never ever call curl-functions simultaneously using the same handle from several threads. libcurl is thread-
safe and can be used in any number of threads, but you must use separate curl handles if you want to use
libcurl in more than one thread simultaneously.

PERSISTENT CONNECTIONS
Persistent connections means that libcurl can re-use the same connection for several transfers, if the condi-
tions are right.

libcurl will always attempt to use persistent connections. Whenever you use curl_easy_perform(3) or
curl_multi_perform(3), libcurl will attempt to use an existing connection to do the transfer, and if none
exists it’ll open a new one that will be subject for re-use on a possible following call to curl_easy_per-
form(3) or curl_multi_perform(3).

To allow libcurl to take full advantage of persistent connections, you should do as many of your file trans-
fers as possible using the same curl handle. When you call curl_easy_cleanup(3), all the possibly open con-
nections held by libcurl will be closed and forgotten.

Note that the options set with curl_easy_setopt(3) will be used in on every repeated curl_easy_perform(3)
call.

libcurl 7.9.6 19 March 2002 2


