doom3-bfg/neo/idlib/MapFile_gltf.cpp

697 lines
21 KiB
C++

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 2022 Harrie van Ginneken
Copyright (C) 2022 Robert Beckebans
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "precompiled.h"
#pragma hdrstop
// files import as y-up. Use this transform to change the model to z-up.
static const idMat4 blenderToDoomTransform( idAngles( 0.0f, 0.0f, 90 ).ToMat3(), vec3_origin );
//static const idMat4 blenderToDoomTransform = mat4_identity;
MapPolygonMesh* MapPolygonMesh::ConvertFromMeshGltf( const gltfMesh_Primitive* prim, gltfData* _data , const idMat4& transform )
{
MapPolygonMesh* mesh = new MapPolygonMesh();
gltfAccessor* accessor = _data->AccessorList()[prim->indices];
gltfBufferView* bv = _data->BufferViewList()[accessor->bufferView];
gltfData* data = bv->parent;
gltfMaterial* mat = NULL;
if( prim->material != -1 )
{
mat = _data->MaterialList()[prim->material];
}
gltfBuffer* buff = data->BufferList()[bv->buffer];
uint idxDataSize = sizeof( uint ) * accessor->count;
uint* indices = ( uint* ) Mem_ClearedAlloc( idxDataSize , TAG_IDLIB_GLTF );
idFile_Memory idxBin = idFile_Memory( "gltfChunkIndices",
( const char* )( ( data->GetData( bv->buffer ) + bv->byteOffset + accessor->byteOffset ) ), bv->byteLength );
for( int i = 0; i < accessor->count; i++ )
{
idxBin.Read( ( void* )( &indices[i] ), accessor->typeSize );
if( bv->byteStride )
{
idxBin.Seek( bv->byteStride - accessor->typeSize, FS_SEEK_CUR );
}
}
int polyCount = accessor->count / 3;
mesh->polygons.AssureSize( polyCount );
mesh->polygons.SetNum( polyCount );
int cnt = 0;
for( int i = 0; i < accessor->count; i += 3 )
{
MapPolygon& polygon = mesh->polygons[cnt++];
if( mat != NULL )
{
polygon.SetMaterial( mat->name );
}
else
{
polygon.SetMaterial( "textures/base_wall/snpanel2rust" );
}
polygon.AddIndex( indices[i + 2] );
polygon.AddIndex( indices[i + 1] );
polygon.AddIndex( indices[i + 0] );
}
assert( cnt == polyCount );
Mem_Free( indices );
bool sizeSet = false;
//for( const auto& attrib : prim->attributes )
for( int a = 0; a < prim->attributes.Num(); a++ )
{
gltfMesh_Primitive_Attribute* attrib = prim->attributes[a];
gltfAccessor* attrAcc = data->AccessorList()[attrib->accessorIndex];
gltfBufferView* attrBv = data->BufferViewList()[attrAcc->bufferView];
gltfData* attrData = attrBv->parent;
gltfBuffer* attrbuff = attrData->BufferList()[attrBv->buffer];
idFile_Memory bin = idFile_Memory( "gltfChunkVertices",
( const char* )( ( attrData->GetData( attrBv->buffer ) + attrBv->byteOffset + attrAcc->byteOffset ) ), attrBv->byteLength );
if( !sizeSet )
{
mesh->verts.AssureSize( attrAcc->count );
sizeSet = true;
}
switch( attrib->type )
{
case gltfMesh_Primitive_Attribute::Type::Position:
{
for( int i = 0; i < attrAcc->count; i++ )
{
idVec3 pos;
bin.Read( ( void* )( &pos.x ), attrAcc->typeSize );
bin.Read( ( void* )( &pos.y ), attrAcc->typeSize );
bin.Read( ( void* )( &pos.z ), attrAcc->typeSize );
// move into entity space
pos *= transform;
mesh->verts[i].xyz.x = pos.x;
mesh->verts[i].xyz.y = pos.y;
mesh->verts[i].xyz.z = pos.z;
if( attrBv->byteStride )
{
bin.Seek( attrBv->byteStride - ( 3 * attrAcc->typeSize ), FS_SEEK_CUR );
}
}
break;
}
case gltfMesh_Primitive_Attribute::Type::Normal:
{
idVec3 vec;
for( int i = 0; i < attrAcc->count; i++ )
{
idVec3 vec;
bin.Read( ( void* )( &vec.x ), attrAcc->typeSize );
bin.Read( ( void* )( &vec.y ), attrAcc->typeSize );
bin.Read( ( void* )( &vec.z ), attrAcc->typeSize );
if( attrBv->byteStride )
{
bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR );
}
idVec3 normal;
normal.x = vec.x;
normal.y = vec.y;
normal.z = vec.z;
normal *= transform;
// renormalize because previous transforms may contain scale operations
normal.Normalize();
mesh->verts[i].SetNormal( normal );
}
break;
}
case gltfMesh_Primitive_Attribute::Type::TexCoord0:
{
idVec2 vec;
for( int i = 0; i < attrAcc->count; i++ )
{
bin.Read( ( void* )( &vec.x ), attrAcc->typeSize );
bin.Read( ( void* )( &vec.y ), attrAcc->typeSize );
if( attrBv->byteStride )
{
bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR );
}
//vec.y = 1.0f - vec.y;
mesh->verts[i].SetTexCoord( vec );
}
break;
}
case gltfMesh_Primitive_Attribute::Type::Tangent:
{
idVec4 vec;
for( int i = 0; i < attrAcc->count; i++ )
{
bin.Read( ( void* )( &vec.x ), attrAcc->typeSize );
bin.Read( ( void* )( &vec.y ), attrAcc->typeSize );
bin.Read( ( void* )( &vec.z ), attrAcc->typeSize );
bin.Read( ( void* )( &vec.w ), attrAcc->typeSize );
if( attrBv->byteStride )
{
bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR );
}
idVec3 tangent;
tangent.x = vec.x;
tangent.y = vec.y;
tangent.z = vec.z;
tangent *= transform;
tangent.Normalize();
mesh->verts[i].SetTangent( tangent );
mesh->verts[i].SetBiTangentSign( vec.w );
}
break;
}
case gltfMesh_Primitive_Attribute::Type::Weight:
{
idVec4 vec;
for( int i = 0; i < attrAcc->count; i++ )
{
bin.Read( ( void* )( &vec.x ), attrAcc->typeSize );
bin.Read( ( void* )( &vec.y ), attrAcc->typeSize );
bin.Read( ( void* )( &vec.z ), attrAcc->typeSize );
bin.Read( ( void* )( &vec.w ), attrAcc->typeSize );
if( attrBv->byteStride )
{
bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR );
}
mesh->verts[i].SetColor2( PackColor( vec ) );
}
break;
}
case gltfMesh_Primitive_Attribute::Type::Color0:
//case gltfMesh_Primitive_Attribute::Type::Color1:
//case gltfMesh_Primitive_Attribute::Type::Color2:
//case gltfMesh_Primitive_Attribute::Type::Color3:
{
if( attrAcc->typeSize == 4 )
{
idVec4 vec;
assert( sizeof( vec ) == ( attrAcc->typeSize * 4 ) );
for( int i = 0; i < attrAcc->count; i++ )
{
bin.Read( ( void* )( &vec[0] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[1] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[2] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[3] ), attrAcc->typeSize );
if( attrBv->byteStride )
{
bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR );
}
mesh->verts[i].color[0] = idMath::Ftob( vec.x * 255.0f );
mesh->verts[i].color[1] = idMath::Ftob( vec.y * 255.0f );
mesh->verts[i].color[2] = idMath::Ftob( vec.z * 255.0f );
mesh->verts[i].color[3] = 255;
}
}
else if( attrAcc->typeSize == 2 )
{
uint16_t vec[4];
assert( sizeof( vec ) == ( attrAcc->typeSize * 4 ) );
for( int i = 0; i < attrAcc->count; i++ )
{
bin.Read( ( void* )( &vec[0] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[1] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[2] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[3] ), attrAcc->typeSize );
if( attrBv->byteStride )
{
bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR );
}
mesh->verts[i].color[0] = idMath::Ftob( ( vec[0] * 1.0f / 65335 ) * 255.0f );
mesh->verts[i].color[1] = idMath::Ftob( ( vec[1] * 1.0f / 65335 ) * 255.0f );
mesh->verts[i].color[2] = idMath::Ftob( ( vec[2] * 1.0f / 65335 ) * 255.0f );
mesh->verts[i].color[3] = 255;
}
}
else
{
uint8_t vec[4];
for( int i = 0; i < attrAcc->count; i++ )
{
assert( sizeof( vec ) == ( attrAcc->typeSize * 4 ) );
bin.Read( ( void* )( &vec[0] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[1] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[2] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[3] ), attrAcc->typeSize );
if( attrBv->byteStride )
{
bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR );
}
mesh->verts[i].color[0] = vec[0];
mesh->verts[i].color[1] = vec[1];
mesh->verts[i].color[2] = vec[2];
mesh->verts[i].color[3] = vec[3];
}
}
break;
}
case gltfMesh_Primitive_Attribute::Type::Joints:
{
if( attrAcc->typeSize == 2 )
{
uint16_t vec[4];
assert( sizeof( vec ) == ( attrAcc->typeSize * 4 ) );
for( int i = 0; i < attrAcc->count; i++ )
{
bin.Read( ( void* )( &vec[0] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[1] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[2] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[3] ), attrAcc->typeSize );
if( attrBv->byteStride )
{
bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR );
}
mesh->verts[i].color[0] = vec[0];
mesh->verts[i].color[1] = vec[1];
mesh->verts[i].color[2] = vec[2];
mesh->verts[i].color[3] = vec[3];
}
}
else
{
uint8_t vec[4];
for( int i = 0; i < attrAcc->count; i++ )
{
assert( sizeof( vec ) == ( attrAcc->typeSize * 4 ) );
bin.Read( ( void* )( &vec[0] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[1] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[2] ), attrAcc->typeSize );
bin.Read( ( void* )( &vec[3] ), attrAcc->typeSize );
if( attrBv->byteStride )
{
bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR );
}
mesh->verts[i].color[0] = vec[0];
mesh->verts[i].color[1] = vec[1];
mesh->verts[i].color[2] = vec[2];
mesh->verts[i].color[3] = vec[3];
}
}
break;
}
}
}
mesh->SetContents();
return mesh;
}
static void ProcessSceneNode_r( idMapEntity* newEntity, gltfNode* node, const idMat4& parentTransform, const idMat4& worldToEntityTransform, gltfData* data )
{
auto& nodeList = data->NodeList();
gltfData::ResolveNodeMatrix( node );
idMat4 nodeToWorldTransform = parentTransform * node->matrix;
if( node->mesh != -1 )
{
// bring mesh data into entity space
idMat4 nodeToEntityTransform = worldToEntityTransform * nodeToWorldTransform;
for( auto* prim : data->MeshList()[node->mesh]->primitives )
{
newEntity->AddPrimitive( MapPolygonMesh::ConvertFromMeshGltf( prim, data, blenderToDoomTransform * nodeToEntityTransform ) );
}
}
for( auto& child : node->children )
{
ProcessSceneNode_r( newEntity, nodeList[child], nodeToWorldTransform, worldToEntityTransform, data );
}
}
static void AddMeshesToWorldspawn_r( idMapEntity* entity, gltfNode* node, const idMat4& parentTransform, gltfData* data )
{
gltfData::ResolveNodeMatrix( node );
idMat4 nodeToWorldTransform = parentTransform * node->matrix;
if( node->mesh != -1 )
{
for( auto prim : data->MeshList()[node->mesh]->primitives )
{
entity->AddPrimitive( MapPolygonMesh::ConvertFromMeshGltf( prim, data, blenderToDoomTransform * nodeToWorldTransform ) );
}
}
for( auto& child : node->children )
{
AddMeshesToWorldspawn_r( entity, data->NodeList()[child], nodeToWorldTransform, data );
}
};
void ResolveLight( gltfData* data, idMapEntity* newEntity, gltfNode* node )
{
assert( node && node->extensions.KHR_lights_punctual );
int lightID = node->extensions.KHR_lights_punctual->light;
gltfExt_KHR_lights_punctual* light = nullptr;
auto& ext = data->ExtensionsList();
for( auto& it : ext )
{
if( it->KHR_lights_punctual.Num() )
{
assert( lightID + 1 <= it->KHR_lights_punctual.Num() );
light = it->KHR_lights_punctual[lightID];
}
}
assert( light );
newEntity->epairs.Set( "classname", "light" );
//newEntity->epairs.SetMatrix( "rotation", mat3_default );
newEntity->epairs.SetVector( "_color", light->color );
switch( gltfExt_KHR_lights_punctual::resolveType( light->type ) )
{
default:
common->Warning( "Unsupported Light Type" );
break;
case gltfExt_KHR_lights_punctual::Directional:
{
common->Warning( "KHR_lights_punctual::Directional not implemented" );
break;
}
case gltfExt_KHR_lights_punctual::Point:
{
float radius = 300;
if( light->range != -1 )
{
radius = light->range;
}
newEntity->epairs.SetVector( "light_radius", idVec3( radius ) );
idStr texture;
if( !newEntity->epairs.GetString( "texture", "", texture ) )
{
newEntity->epairs.Set( "texture", "lights/biground1" );
}
break;
}
case gltfExt_KHR_lights_punctual::Spot:
{
// RB: this code is based on Cmd_TestLight_f which sets the light properties in world space
idMat4 entityToWorldTransform = mat4_identity;
gltfData::ResolveNodeMatrix( node, &entityToWorldTransform );
float fov = tan( light->spot.outerConeAngle ) / 2 ;
// HarrievG: TODO cleanup this was done by try & error until it worked
idQuat q = ( entityToWorldTransform ).ToMat3().ToQuat();
q = idAngles( 90.0f, 0.0, -90.0f ).ToQuat() * q * idAngles( 180.0f, 180.0f, -90.0f ).ToQuat();
idMat3 axis = q.ToMat3();
newEntity->epairs.SetVector( "light_target", axis[0] );
newEntity->epairs.SetVector( "light_right", axis[1] * -fov );
newEntity->epairs.SetVector( "light_up", axis[2] * fov );
newEntity->epairs.SetVector( "light_start", axis[0] * 16 );
newEntity->epairs.SetVector( "light_end", axis[0] * ( light->range - 16 ) );
idStr texture;
if( !newEntity->epairs.GetString( "texture", "", texture ) )
{
newEntity->epairs.Set( "texture", "lights/spot01" );
}
break;
}
case gltfExt_KHR_lights_punctual::count:
break;
}
}
void ResolveEntity( gltfData* data, idMapEntity* newEntity, gltfNode* node )
{
const char* classname = node->extras.strPairs.GetString( "classname" );
if( node->name.Length() )
{
idStr name;
idStrList names;
gltfNode* parent = node->parent;
while( parent )
{
names.Alloc() = parent->name;
parent = parent->parent;
}
for( int i = names.Num() ; i >= 1 ; i-- )
{
name += names[i - 1] + ".";
}
newEntity->epairs.Set( "name", name + node->name );
}
// copy custom properties filled in Blender
idDict newPairs = node->extras.strPairs;
newPairs.SetDefaults( &newEntity->epairs );
newEntity->epairs = newPairs;
// gather entity transform and bring it into id Tech 4 space
idMat4 entityToWorldTransform = mat4_identity;
gltfData::ResolveNodeMatrix( node, &entityToWorldTransform );
// set entity transform in a way the game and physics code understand it
idVec3 origin = blenderToDoomTransform * node->translation;
// RB: should be idVec3 origin = ( blenderToDoomTransform * entityToWorldTransform ).GetTranslation();
newEntity->epairs.SetVector( "origin", origin );
if( node->extensions.KHR_lights_punctual != nullptr )
{
ResolveLight( data, newEntity, node );
}
// HarrievG: TODO cleanup this was done by try & error until it worked
if( node->camera >= 0 && !newEntity->epairs.FindKey( "rotation" ) )
{
idQuat q = entityToWorldTransform.ToMat3().ToQuat();
q = idAngles( 90.0f, 0.0, -90.0f ).ToQuat() * q * blenderToDoomTransform.ToMat3().ToQuat();
newEntity->epairs.SetMatrix( "rotation", q.ToMat3() );
}
else if( idStr::Icmp( classname, "info_player_start" ) == 0 && !newEntity->epairs.FindKey( "rotation" ) )
{
idQuat q = entityToWorldTransform.ToMat3().ToQuat();
q = idAngles( -90.0f, 0.0, -90.0f ).ToQuat() * q * blenderToDoomTransform.ToMat3().ToQuat();
newEntity->epairs.SetMatrix( "rotation", q.ToMat3() );
}
else if( node->extras.strPairs.GetBool( "useNodeOrientation", false ) )
{
//Nodes that are an instance of an collection containing a mesh that is not inline, ea; a gltfModel; static _or_ dynamic,
//which has its transformations applied on vertex level so we do not apply it here.
origin = blenderToDoomTransform * ( node->translation * ( entityToWorldTransform * node->matrix.Inverse() ) );
newEntity->epairs.SetVector( "origin", origin );
idQuat q = ( entityToWorldTransform * node->matrix.Inverse() ).ToMat3().ToQuat();
q = blenderToDoomTransform.Inverse().ToMat3().ToQuat() * q * blenderToDoomTransform.ToMat3().ToQuat();
idMat3 rot = q.ToMat3();
//idMat3 rot = ( blenderToDoomTransform * entityToWorldTransform ).ToMat3();
newEntity->epairs.SetMatrix( "rotation", rot );
}
#if 0
for( int i = 0; i < newEntity->epairs.GetNumKeyVals(); i++ )
{
const idKeyValue* kv = newEntity->epairs.GetKeyVal( i );
idLib::Printf( "entity[ %s ] key = '%s' value = '%s'\n", node->name.c_str(), kv->GetKey().c_str(), kv->GetValue().c_str() );
}
#endif
}
int FindEntities( gltfData* data, idMapEntity::EntityListRef entities, gltfNode* node , idDict epairs , idMapEntity* worldspawn )
{
int entityCount = 0;
const char* classname = node->extras.strPairs.GetString( "classname" );
// skip all nodes with "worldspawn." or "BSP" in the name
if( idStr::Icmpn( node->name, "BSP", 3 ) != 0
&& idStr::Icmpn( node->name, "worldspawn.", 11 ) != 0 )
{
idStr classnameStr = node->extras.strPairs.GetString( "classname" );
// skip everything that is not an entity
if( !classnameStr.IsEmpty() )
{
auto* newEntity = new( TAG_IDLIB_GLTF ) idMapEntity();
entities.Append( newEntity );
newEntity->epairs.Copy( epairs );
epairs.Clear();
ResolveEntity( data, newEntity, node );
entityCount++;
}
else
{
idStr bindTarget = node->extras.strPairs.GetString( "bind" );
if( !bindTarget.IsEmpty() )
{
epairs.Set( "bind", bindTarget );
}
}
}
else
{
AddMeshesToWorldspawn_r( worldspawn, node, mat4_identity, data );
}
for( auto& child : node->children )
{
entityCount += FindEntities( data, entities, data->NodeList()[child], epairs , worldspawn );
}
return entityCount;
}
int idMapEntity::GetEntities( gltfData* data, EntityListRef entities, int sceneID )
{
idMapEntity* worldspawn = new( TAG_IDLIB_GLTF ) idMapEntity();
worldspawn->epairs.Set( "classname", "worldspawn" );
entities.Append( worldspawn );
bool wpSet = false;
int entityCount = 0;
for( auto& nodeID : data->SceneList()[sceneID]->nodes )
{
auto* node = data->NodeList()[nodeID];
const char* classname = node->extras.strPairs.GetString( "classname" );
bool isWorldSpawn = idStr::Icmp( classname, "worldspawn" ) == 0;
if( isWorldSpawn )
{
assert( !wpSet );
worldspawn->epairs.Copy( node->extras.strPairs );
wpSet = true;
}
else
{
// account all meshes starting with "worldspawn." or "BSP" in the name
if( idStr::Icmpn( node->name, "BSP", 3 ) == 0 || idStr::Icmpn( node->name, "worldspawn.", 11 ) == 0 )
{
AddMeshesToWorldspawn_r( worldspawn, node, mat4_identity, data );
}
else
{
idStr classnameStr = node->extras.strPairs.GetString( "classname" );
bool skipInline = !node->extras.strPairs.GetBool( "inline", true );
idDict epairs;
// skip everything that is not an entity except lights
if( !classnameStr.IsEmpty() || node->extensions.KHR_lights_punctual )
{
idMapEntity* newEntity = new( TAG_IDLIB_GLTF ) idMapEntity();
entities.Append( newEntity );
ResolveEntity( data, newEntity, node );
// add meshes from all subnodes
if( !skipInline )
{
gltfData::ResolveNodeMatrix( node );
idMat4 entityToWorldTransform = node->matrix;
idMat4 worldToEntityTransform = entityToWorldTransform.Inverse();
ProcessSceneNode_r( newEntity, node, mat4_identity, worldToEntityTransform, data );
}
entityCount++;
}
else
{
idStr bindTarget = node->extras.strPairs.GetString( "bind" );
if( !bindTarget.IsEmpty() )
{
epairs.Copy( node->extras.strPairs );
}
}
// add entities from all subnodes
for( auto& child : node->children )
{
entityCount += FindEntities( data, entities, data->NodeList()[child] , epairs, worldspawn );
}
}
}
}
return entityCount;
}