0
0
Fork 0
mirror of https://github.com/id-Software/DOOM-3-BFG.git synced 2025-03-16 15:41:16 +00:00
doom3-bfg/doomclassic/doom/p_maputl.cpp
2022-09-05 22:25:33 +02:00

945 lines
17 KiB
C++

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "Precompiled.h"
#include "globaldata.h"
#include <stdlib.h>
#include "m_bbox.h"
#include "doomdef.h"
#include "p_local.h"
// State.
#include "r_state.h"
//
// P_AproxDistance
// Gives an estimation of distance (not exact)
//
fixed_t
P_AproxDistance
( fixed_t dx,
fixed_t dy )
{
dx = abs( dx );
dy = abs( dy );
if( dx < dy )
{
return dx + dy - ( dx >> 1 );
}
return dx + dy - ( dy >> 1 );
}
//
// P_PointOnLineSide
// Returns 0 or 1
//
int
P_PointOnLineSide
( fixed_t x,
fixed_t y,
line_t* line )
{
fixed_t dx;
fixed_t dy;
fixed_t left;
fixed_t right;
if( !line->dx )
{
if( x <= line->v1->x )
{
return line->dy > 0;
}
return line->dy < 0;
}
if( !line->dy )
{
if( y <= line->v1->y )
{
return line->dx < 0;
}
return line->dx > 0;
}
dx = ( x - line->v1->x );
dy = ( y - line->v1->y );
left = FixedMul( line->dy >> FRACBITS , dx );
right = FixedMul( dy , line->dx >> FRACBITS );
if( right < left )
{
return 0; // front side
}
return 1; // back side
}
//
// P_BoxOnLineSide
// Considers the line to be infinite
// Returns side 0 or 1, -1 if box crosses the line.
//
int
P_BoxOnLineSide
( fixed_t* tmbox,
line_t* ld )
{
int p1 = 0;
int p2 = 0;
switch( ld->slopetype )
{
case ST_HORIZONTAL:
p1 = tmbox[BOXTOP] > ld->v1->y;
p2 = tmbox[BOXBOTTOM] > ld->v1->y;
if( ld->dx < 0 )
{
p1 ^= 1;
p2 ^= 1;
}
break;
case ST_VERTICAL:
p1 = tmbox[BOXRIGHT] < ld->v1->x;
p2 = tmbox[BOXLEFT] < ld->v1->x;
if( ld->dy < 0 )
{
p1 ^= 1;
p2 ^= 1;
}
break;
case ST_POSITIVE:
p1 = P_PointOnLineSide( tmbox[BOXLEFT], tmbox[BOXTOP], ld );
p2 = P_PointOnLineSide( tmbox[BOXRIGHT], tmbox[BOXBOTTOM], ld );
break;
case ST_NEGATIVE:
p1 = P_PointOnLineSide( tmbox[BOXRIGHT], tmbox[BOXTOP], ld );
p2 = P_PointOnLineSide( tmbox[BOXLEFT], tmbox[BOXBOTTOM], ld );
break;
}
if( p1 == p2 )
{
return p1;
}
return -1;
}
//
// P_PointOnDivlineSide
// Returns 0 or 1.
//
int
P_PointOnDivlineSide
( fixed_t x,
fixed_t y,
divline_t* line )
{
fixed_t dx;
fixed_t dy;
fixed_t left;
fixed_t right;
if( !line->dx )
{
if( x <= line->x )
{
return line->dy > 0;
}
return line->dy < 0;
}
if( !line->dy )
{
if( y <= line->y )
{
return line->dx < 0;
}
return line->dx > 0;
}
dx = ( x - line->x );
dy = ( y - line->y );
// try to quickly decide by looking at sign bits
if( ( line->dy ^ line->dx ^ dx ^ dy ) & 0x80000000 )
{
if( ( line->dy ^ dx ) & 0x80000000 )
{
return 1; // (left is negative)
}
return 0;
}
left = FixedMul( line->dy >> 8, dx >> 8 );
right = FixedMul( dy >> 8 , line->dx >> 8 );
if( right < left )
{
return 0; // front side
}
return 1; // back side
}
//
// P_MakeDivline
//
void
P_MakeDivline
( line_t* li,
divline_t* dl )
{
dl->x = li->v1->x;
dl->y = li->v1->y;
dl->dx = li->dx;
dl->dy = li->dy;
}
//
// P_InterceptVector
// Returns the fractional intercept point
// along the first divline.
// This is only called by the addthings
// and addlines traversers.
//
fixed_t
P_InterceptVector
( divline_t* v2,
divline_t* v1 )
{
#if 1
fixed_t frac;
fixed_t num;
fixed_t den;
den = FixedMul( v1->dy >> 8, v2->dx ) - FixedMul( v1->dx >> 8, v2->dy );
if( den == 0 )
{
return 0;
}
// I_Error ("P_InterceptVector: parallel");
num =
FixedMul( ( v1->x - v2->x ) >> 8 , v1->dy )
+ FixedMul( ( v2->y - v1->y ) >> 8, v1->dx );
frac = FixedDiv( num , den );
return frac;
#else // UNUSED, float debug.
float frac;
float num;
float den;
float v1x;
float v1y;
float v1dx;
float v1dy;
float v2x;
float v2y;
float v2dx;
float v2dy;
v1x = ( float )v1->x / FRACUNIT;
v1y = ( float )v1->y / FRACUNIT;
v1dx = ( float )v1->dx / FRACUNIT;
v1dy = ( float )v1->dy / FRACUNIT;
v2x = ( float )v2->x / FRACUNIT;
v2y = ( float )v2->y / FRACUNIT;
v2dx = ( float )v2->dx / FRACUNIT;
v2dy = ( float )v2->dy / FRACUNIT;
den = v1dy * v2dx - v1dx * v2dy;
if( den == 0 )
{
return 0; // parallel
}
num = ( v1x - v2x ) * v1dy + ( v2y - v1y ) * v1dx;
frac = num / den;
return frac * FRACUNIT;
#endif
}
//
// P_LineOpening
// Sets ::g->opentop and ::g->openbottom to the window
// through a two sided line.
// OPTIMIZE: keep this precalculated
//
void P_LineOpening( line_t* maputil_linedef )
{
sector_t* front;
sector_t* back;
if( maputil_linedef->sidenum[1] == -1 )
{
// single sided line
::g->openrange = 0;
return;
}
front = maputil_linedef->frontsector;
back = maputil_linedef->backsector;
if( front->ceilingheight < back->ceilingheight )
{
::g->opentop = front->ceilingheight;
}
else
{
::g->opentop = back->ceilingheight;
}
if( front->floorheight > back->floorheight )
{
::g->openbottom = front->floorheight;
::g->lowfloor = back->floorheight;
}
else
{
::g->openbottom = back->floorheight;
::g->lowfloor = front->floorheight;
}
::g->openrange = ::g->opentop - ::g->openbottom;
}
//
// THING POSITION SETTING
//
//
// P_UnsetThingPosition
// Unlinks a thing from block map and ::g->sectors.
// On each position change, BLOCKMAP and other
// lookups maintaining lists ot things inside
// these structures need to be updated.
//
void P_UnsetThingPosition( mobj_t* thing )
{
int blockx;
int blocky;
if( !( thing->flags & MF_NOSECTOR ) )
{
// inert things don't need to be in blockmap?
// unlink from subsector
if( thing->snext )
{
thing->snext->sprev = thing->sprev;
}
if( thing->sprev )
{
thing->sprev->snext = thing->snext;
}
else
{
thing->subsector->sector->thinglist = thing->snext;
}
}
if( !( thing->flags & MF_NOBLOCKMAP ) )
{
// inert things don't need to be in ::g->blockmap
// unlink from block map
if( thing->bnext )
{
thing->bnext->bprev = thing->bprev;
}
if( thing->bprev )
{
thing->bprev->bnext = thing->bnext;
}
else
{
blockx = ( thing->x - ::g->bmaporgx ) >> MAPBLOCKSHIFT;
blocky = ( thing->y - ::g->bmaporgy ) >> MAPBLOCKSHIFT;
if( blockx >= 0 && blockx < ::g->bmapwidth
&& blocky >= 0 && blocky < ::g->bmapheight )
{
::g->blocklinks[blocky*::g->bmapwidth + blockx] = thing->bnext;
}
}
}
}
//
// P_SetThingPosition
// Links a thing into both a block and a subsector
// based on it's x y.
// Sets thing->subsector properly
//
void
P_SetThingPosition( mobj_t* thing )
{
subsector_t* ss;
sector_t* sec;
int blockx;
int blocky;
mobj_t** link;
// link into subsector
ss = R_PointInSubsector( thing->x, thing->y );
thing->subsector = ss;
if( !( thing->flags & MF_NOSECTOR ) )
{
// invisible things don't go into the sector links
sec = ss->sector;
thing->sprev = NULL;
thing->snext = sec->thinglist;
if( sec->thinglist )
{
sec->thinglist->sprev = thing;
}
sec->thinglist = thing;
}
// link into ::g->blockmap
if( !( thing->flags & MF_NOBLOCKMAP ) )
{
// inert things don't need to be in ::g->blockmap
blockx = ( thing->x - ::g->bmaporgx ) >> MAPBLOCKSHIFT;
blocky = ( thing->y - ::g->bmaporgy ) >> MAPBLOCKSHIFT;
if( blockx >= 0
&& blockx < ::g->bmapwidth
&& blocky >= 0
&& blocky < ::g->bmapheight )
{
link = &::g->blocklinks[blocky*::g->bmapwidth + blockx];
thing->bprev = NULL;
thing->bnext = *link;
if( *link )
{
( *link )->bprev = thing;
}
*link = thing;
}
else
{
// thing is off the map
thing->bnext = thing->bprev = NULL;
}
}
}
//
// BLOCK MAP ITERATORS
// For each line/thing in the given mapblock,
// call the passed PIT_* function.
// If the function returns false,
// exit with false without checking anything else.
//
//
// P_BlockLinesIterator
// The ::g->validcount flags are used to avoid checking ::g->lines
// that are marked in multiple mapblocks,
// so increment ::g->validcount before the first call
// to P_BlockLinesIterator, then make one or more calls
// to it.
//
qboolean
P_BlockLinesIterator
( int x,
int y,
qboolean( *func )( line_t* ) )
{
int offset;
short* list;
line_t* ld;
if( x < 0
|| y < 0
|| x >=::g->bmapwidth
|| y >=::g->bmapheight )
{
return true;
}
offset = y*::g->bmapwidth + x;
offset = *( ::g->blockmap + offset );
for( list = ::g->blockmaplump + offset ; *list != -1 ; list++ )
{
ld = &::g->lines[*list];
if( ld->validcount == ::g->validcount )
{
continue; // line has already been checked
}
ld->validcount = ::g->validcount;
if( !func( ld ) )
{
return false;
}
}
return true; // everything was checked
}
//
// P_BlockThingsIterator
//
qboolean
P_BlockThingsIterator
( int x,
int y,
qboolean( *func )( mobj_t* ) )
{
mobj_t* mobj;
if( x < 0
|| y < 0
|| x >=::g->bmapwidth
|| y >=::g->bmapheight )
{
return true;
}
for( mobj = ::g->blocklinks[y*::g->bmapwidth + x] ;
mobj ;
mobj = mobj->bnext )
{
if( !func( mobj ) )
{
return false;
}
}
return true;
}
//
// INTERCEPT ROUTINES
//
//
// PIT_AddLineIntercepts.
// Looks for ::g->lines in the given block
// that intercept the given ::g->trace
// to add to the ::g->intercepts list.
//
// A line is crossed if its endpoints
// are on opposite ::g->sides of the ::g->trace.
// Returns true if ::g->earlyout and a solid line hit.
//
qboolean
PIT_AddLineIntercepts( line_t* ld )
{
int s1;
int s2;
fixed_t frac;
divline_t dl;
// avoid precision problems with two routines
if( ::g->trace.dx > FRACUNIT * 16
|| ::g->trace.dy > FRACUNIT * 16
|| ::g->trace.dx < -FRACUNIT * 16
|| ::g->trace.dy < -FRACUNIT * 16 )
{
s1 = P_PointOnDivlineSide( ld->v1->x, ld->v1->y, &::g->trace );
s2 = P_PointOnDivlineSide( ld->v2->x, ld->v2->y, &::g->trace );
}
else
{
s1 = P_PointOnLineSide( ::g->trace.x, ::g->trace.y, ld );
s2 = P_PointOnLineSide( ::g->trace.x +::g->trace.dx, ::g->trace.y +::g->trace.dy, ld );
}
if( s1 == s2 )
{
return true; // line isn't crossed
}
// hit the line
P_MakeDivline( ld, &dl );
frac = P_InterceptVector( &::g->trace, &dl );
if( frac < 0 )
{
return true; // behind source
}
// try to early out the check
if( ::g->earlyout
&& frac < FRACUNIT
&& !ld->backsector )
{
return false; // stop checking
}
::g->intercept_p->frac = frac;
::g->intercept_p->isaline = true;
::g->intercept_p->d.line = ld;
::g->intercept_p++;
return true; // continue
}
//
// PIT_AddThingIntercepts
//
qboolean PIT_AddThingIntercepts( mobj_t* thing )
{
fixed_t x1;
fixed_t y1;
fixed_t x2;
fixed_t y2;
int s1;
int s2;
qboolean tracepositive;
divline_t dl;
fixed_t frac;
tracepositive = ( ::g->trace.dx ^ ::g->trace.dy ) > 0;
// check a corner to corner crossection for hit
if( tracepositive )
{
x1 = thing->x - thing->radius;
y1 = thing->y + thing->radius;
x2 = thing->x + thing->radius;
y2 = thing->y - thing->radius;
}
else
{
x1 = thing->x - thing->radius;
y1 = thing->y - thing->radius;
x2 = thing->x + thing->radius;
y2 = thing->y + thing->radius;
}
s1 = P_PointOnDivlineSide( x1, y1, &::g->trace );
s2 = P_PointOnDivlineSide( x2, y2, &::g->trace );
if( s1 == s2 )
{
return true; // line isn't crossed
}
dl.x = x1;
dl.y = y1;
dl.dx = x2 - x1;
dl.dy = y2 - y1;
frac = P_InterceptVector( &::g->trace, &dl );
if( frac < 0 )
{
return true; // behind source
}
::g->intercept_p->frac = frac;
::g->intercept_p->isaline = false;
::g->intercept_p->d.thing = thing;
::g->intercept_p++;
return true; // keep going
}
//
// P_TraverseIntercepts
// Returns true if the traverser function returns true
// for all ::g->lines.
//
qboolean
P_TraverseIntercepts
( traverser_t func,
fixed_t maxfrac )
{
int count;
fixed_t dist;
intercept_t* scan;
intercept_t* in;
count = ::g->intercept_p - ::g->intercepts;
in = 0; // shut up compiler warning
while( count-- )
{
dist = MAXINT;
for( scan = ::g->intercepts ; scan < ::g->intercept_p ; scan++ )
{
if( scan->frac < dist )
{
dist = scan->frac;
in = scan;
}
}
if( dist > maxfrac )
{
return true; // checked everything in range
}
#if 0 // UNUSED
{
// don't check these yet, there may be others inserted
in = scan = ::g->intercepts;
for( scan = ::g->intercepts ; scan <::g->intercept_p ; scan++ )
if( scan->frac > maxfrac )
{
*in++ = *scan;
}
::g->intercept_p = in;
return false;
}
#endif
if( !func( in ) )
{
return false; // don't bother going farther
}
in->frac = MAXINT;
}
return true; // everything was traversed
}
//
// P_PathTraverse
// Traces a line from x1,y1 to x2,y2,
// calling the traverser function for each.
// Returns true if the traverser function returns true
// for all ::g->lines.
//
qboolean
P_PathTraverse
( fixed_t x1,
fixed_t y1,
fixed_t x2,
fixed_t y2,
int flags,
qboolean( *trav )( intercept_t* ) )
{
fixed_t xt1;
fixed_t yt1;
fixed_t xt2;
fixed_t yt2;
fixed_t xstep;
fixed_t ystep;
fixed_t partial;
fixed_t xintercept;
fixed_t yintercept;
int mapx;
int mapy;
int mapxstep;
int mapystep;
int count;
::g->earlyout = flags & PT_EARLYOUT;
::g->validcount++;
::g->intercept_p = ::g->intercepts;
if( ( ( x1 -::g->bmaporgx ) & ( MAPBLOCKSIZE - 1 ) ) == 0 )
{
x1 += FRACUNIT; // don't side exactly on a line
}
if( ( ( y1 -::g->bmaporgy ) & ( MAPBLOCKSIZE - 1 ) ) == 0 )
{
y1 += FRACUNIT; // don't side exactly on a line
}
::g->trace.x = x1;
::g->trace.y = y1;
::g->trace.dx = x2 - x1;
::g->trace.dy = y2 - y1;
x1 -= ::g->bmaporgx;
y1 -= ::g->bmaporgy;
xt1 = x1 >> MAPBLOCKSHIFT;
yt1 = y1 >> MAPBLOCKSHIFT;
x2 -= ::g->bmaporgx;
y2 -= ::g->bmaporgy;
xt2 = x2 >> MAPBLOCKSHIFT;
yt2 = y2 >> MAPBLOCKSHIFT;
if( xt2 > xt1 )
{
mapxstep = 1;
partial = FRACUNIT - ( ( x1 >> MAPBTOFRAC ) & ( FRACUNIT - 1 ) );
ystep = FixedDiv( y2 - y1, abs( x2 - x1 ) );
}
else if( xt2 < xt1 )
{
mapxstep = -1;
partial = ( x1 >> MAPBTOFRAC ) & ( FRACUNIT - 1 );
ystep = FixedDiv( y2 - y1, abs( x2 - x1 ) );
}
else
{
mapxstep = 0;
partial = FRACUNIT;
ystep = 256 * FRACUNIT;
}
yintercept = ( y1 >> MAPBTOFRAC ) + FixedMul( partial, ystep );
if( yt2 > yt1 )
{
mapystep = 1;
partial = FRACUNIT - ( ( y1 >> MAPBTOFRAC ) & ( FRACUNIT - 1 ) );
xstep = FixedDiv( x2 - x1, abs( y2 - y1 ) );
}
else if( yt2 < yt1 )
{
mapystep = -1;
partial = ( y1 >> MAPBTOFRAC ) & ( FRACUNIT - 1 );
xstep = FixedDiv( x2 - x1, abs( y2 - y1 ) );
}
else
{
mapystep = 0;
partial = FRACUNIT;
xstep = 256 * FRACUNIT;
}
xintercept = ( x1 >> MAPBTOFRAC ) + FixedMul( partial, xstep );
// Step through map blocks.
// Count is present to prevent a round off error
// from skipping the break.
mapx = xt1;
mapy = yt1;
for( count = 0 ; count < 64 ; count++ )
{
if( flags & PT_ADDLINES )
{
if( !P_BlockLinesIterator( mapx, mapy, PIT_AddLineIntercepts ) )
{
return false; // early out
}
}
if( flags & PT_ADDTHINGS )
{
if( !P_BlockThingsIterator( mapx, mapy, PIT_AddThingIntercepts ) )
{
return false; // early out
}
}
if( mapx == xt2
&& mapy == yt2 )
{
break;
}
if( ( yintercept >> FRACBITS ) == mapy )
{
yintercept += ystep;
mapx += mapxstep;
}
else if( ( xintercept >> FRACBITS ) == mapx )
{
xintercept += xstep;
mapy += mapystep;
}
}
// go through the sorted list
return P_TraverseIntercepts( trav, FRACUNIT );
}