0
0
Fork 0
mirror of https://github.com/id-Software/DOOM-3-BFG.git synced 2025-03-16 15:41:16 +00:00
doom3-bfg/doomclassic/doom/r_main.cpp

957 lines
17 KiB
C++

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "Precompiled.h"
#include "globaldata.h"
#include <stdlib.h>
#include <math.h>
#include "doomdef.h"
#include "d_net.h"
#include "m_bbox.h"
#include "r_local.h"
#include "r_sky.h"
#include "i_system.h"
// Fineangles in the SCREENWIDTH wide window.
// increment every time a check is made
// just for profiling purposes
// 0 = high, 1 = low
//
// precalculated math tables
//
// The ::g->viewangletox[::g->viewangle + FINEANGLES/4] lookup
// maps the visible view angles to screen X coordinates,
// flattening the arc to a flat ::g->projection plane.
// There will be many angles mapped to the same X.
// The xtoviewangleangle[] table maps a screen pixel
// to the lowest ::g->viewangle that maps back to x ranges
// from ::g->clipangle to -::g->clipangle.
// UNUSED.
// The finetangentgent[angle+FINEANGLES/4] table
// holds the fixed_t tangent values for view angles,
// ranging from MININT to 0 to MAXINT.
// fixed_t finetangent[FINEANGLES/2];
// fixed_t finesine[5*FINEANGLES/4];
const fixed_t* finecosine = &finesine[FINEANGLES / 4];
// bumped light from gun blasts
void ( *colfunc )( lighttable_t* dc_colormap,
byte* dc_source );
void ( *basecolfunc )( lighttable_t* dc_colormap,
byte* dc_source );
void ( *fuzzcolfunc )( lighttable_t* dc_colormap,
byte* dc_source );
void ( *transcolfunc )( lighttable_t* dc_colormap,
byte* dc_source );
void ( *spanfunc )( fixed_t xfrac,
fixed_t yfrac,
fixed_t ds_y,
int ds_x1,
int ds_x2,
fixed_t ds_xstep,
fixed_t ds_ystep,
lighttable_t* ds_colormap,
byte* ds_source );
//
// R_AddPointToBox
// Expand a given bbox
// so that it encloses a given point.
//
void
R_AddPointToBox
( int x,
int y,
fixed_t* box )
{
if( x < box[BOXLEFT] )
{
box[BOXLEFT] = x;
}
if( x > box[BOXRIGHT] )
{
box[BOXRIGHT] = x;
}
if( y < box[BOXBOTTOM] )
{
box[BOXBOTTOM] = y;
}
if( y > box[BOXTOP] )
{
box[BOXTOP] = y;
}
}
//
// R_PointOnSide
// Traverse BSP (sub) tree,
// check point against partition plane.
// Returns side 0 (front) or 1 (back).
//
int
R_PointOnSide
( fixed_t x,
fixed_t y,
node_t* node )
{
fixed_t dx;
fixed_t dy;
fixed_t left;
fixed_t right;
if( !node->dx )
{
if( x <= node->x )
{
return node->dy > 0;
}
return node->dy < 0;
}
if( !node->dy )
{
if( y <= node->y )
{
return node->dx < 0;
}
return node->dx > 0;
}
dx = ( x - node->x );
dy = ( y - node->y );
// Try to quickly decide by looking at sign bits.
if( ( node->dy ^ node->dx ^ dx ^ dy ) & 0x80000000 )
{
if( ( node->dy ^ dx ) & 0x80000000 )
{
// (left is negative)
return 1;
}
return 0;
}
left = FixedMul( node->dy >> FRACBITS , dx );
right = FixedMul( dy , node->dx >> FRACBITS );
if( right < left )
{
// front side
return 0;
}
// back side
return 1;
}
int
R_PointOnSegSide
( fixed_t x,
fixed_t y,
seg_t* line )
{
fixed_t lx;
fixed_t ly;
fixed_t ldx;
fixed_t ldy;
fixed_t dx;
fixed_t dy;
fixed_t left;
fixed_t right;
lx = line->v1->x;
ly = line->v1->y;
ldx = line->v2->x - lx;
ldy = line->v2->y - ly;
if( !ldx )
{
if( x <= lx )
{
return ldy > 0;
}
return ldy < 0;
}
if( !ldy )
{
if( y <= ly )
{
return ldx < 0;
}
return ldx > 0;
}
dx = ( x - lx );
dy = ( y - ly );
// Try to quickly decide by looking at sign bits.
if( ( ldy ^ ldx ^ dx ^ dy ) & 0x80000000 )
{
if( ( ldy ^ dx ) & 0x80000000 )
{
// (left is negative)
return 1;
}
return 0;
}
left = FixedMul( ldy >> FRACBITS , dx );
right = FixedMul( dy , ldx >> FRACBITS );
if( right < left )
{
// front side
return 0;
}
// back side
return 1;
}
//
// R_PointToAngle
// To get a global angle from cartesian coordinates,
// the coordinates are flipped until they are in
// the first octant of the coordinate system, then
// the y (<=x) is scaled and divided by x to get a
// tangent (slope) value which is looked up in the
// tantoangle[] table.
//
angle_t
R_PointToAngle
( fixed_t x,
fixed_t y )
{
extern fixed_t GetViewX();
extern fixed_t GetViewY();
x -= GetViewX();
y -= GetViewY();
if( ( !x ) && ( !y ) )
{
return 0;
}
if( x >= 0 )
{
// x >=0
if( y >= 0 )
{
// y>= 0
if( x > y )
{
// octant 0
return tantoangle[ SlopeDiv( y, x )];
}
else
{
// octant 1
return ANG90 - 1 - tantoangle[ SlopeDiv( x, y )];
}
}
else
{
// y<0
y = -y;
if( x > y )
{
// octant 8
return UINT_MAX - tantoangle[SlopeDiv( y, x )] + 1; // ALANHACK UNSIGNED, SRS - make uint math explicit
}
else
{
// octant 7
return ANG270 + tantoangle[ SlopeDiv( x, y )];
}
}
}
else
{
// x<0
x = -x;
if( y >= 0 )
{
// y>= 0
if( x > y )
{
// octant 3
return ANG180 - 1 - tantoangle[ SlopeDiv( y, x )];
}
else
{
// octant 2
return ANG90 + tantoangle[ SlopeDiv( x, y )];
}
}
else
{
// y<0
y = -y;
if( x > y )
{
// octant 4
return ANG180 + tantoangle[ SlopeDiv( y, x )];
}
else
{
// octant 5
return ANG270 - 1 - tantoangle[ SlopeDiv( x, y )];
}
}
}
return 0;
}
angle_t
R_PointToAngle2
( fixed_t x1,
fixed_t y1,
fixed_t x2,
fixed_t y2 )
{
extern void SetViewX( fixed_t );
extern void SetViewY( fixed_t );
SetViewX( x1 );
SetViewY( y1 );
return R_PointToAngle( x2, y2 );
}
fixed_t
R_PointToDist
( fixed_t x,
fixed_t y )
{
int angle;
fixed_t dx;
fixed_t dy;
fixed_t temp;
fixed_t dist;
extern fixed_t GetViewX();
extern fixed_t GetViewY();
dx = abs( x - GetViewX() );
dy = abs( y - GetViewY() );
if( dy > dx )
{
temp = dx;
dx = dy;
dy = temp;
}
angle = ( tantoangle[ FixedDiv( dy, dx ) >> DBITS ] + ANG90 ) >> ANGLETOFINESHIFT;
// use as cosine
dist = FixedDiv( dx, finesine[angle] );
return dist;
}
//
// R_InitPointToAngle
//
void R_InitPointToAngle( void )
{
// UNUSED - now getting from tables.c
#if 0
int i;
long t;
float f;
//
// slope (tangent) to angle lookup
//
for( i = 0 ; i <= SLOPERANGE ; i++ )
{
f = atan( ( float )i / SLOPERANGE ) / ( 3.141592657 * 2 );
t = 0xffffffff * f;
tantoangle[i] = t;
}
#endif
}
//
// R_ScaleFromGlobalAngle
// Returns the texture mapping scale
// for the current line (horizontal span)
// at the given angle.
// ::g->rw_distance must be calculated first.
//
fixed_t R_ScaleFromGlobalAngle( angle_t visangle )
{
fixed_t scale;
//int anglea;
//int angleb;
angle_t anglea;
angle_t angleb;
int sinea;
int sineb;
fixed_t num;
int den;
// UNUSED
#if 0
{
fixed_t dist;
fixed_t z;
fixed_t sinv;
fixed_t cosv;
sinv = finesine[( visangle -::g->rw_normalangle ) >> ANGLETOFINESHIFT];
dist = FixedDiv( ::g->rw_distance, sinv );
cosv = finecosine[( ::g->viewangle - visangle ) >> ANGLETOFINESHIFT];
z = abs( FixedMul( dist, cosv ) );
scale = FixedDiv( ::g->projection, z );
return scale;
}
#endif
extern angle_t GetViewAngle();
anglea = ANG90 + ( visangle - GetViewAngle() );
angleb = ANG90 + ( visangle -::g->rw_normalangle );
// both sines are allways positive
sinea = finesine[anglea >> ANGLETOFINESHIFT];
sineb = finesine[angleb >> ANGLETOFINESHIFT];
num = FixedMul( ::g->projection, sineb ) << ::g->detailshift;
den = FixedMul( ::g->rw_distance, sinea );
// DHM - Nerve :: If the den is pretty much 0, don't try the divide
if( den >> 8 > 0 && den > num >> 16 )
{
scale = FixedDiv( num, den );
if( scale > 64 * FRACUNIT )
{
scale = 64 * FRACUNIT;
}
else if( scale < 256 )
{
scale = 256;
}
}
else
{
scale = 64 * FRACUNIT;
}
return scale;
}
//
// R_InitTables
//
void R_InitTables( void )
{
// UNUSED: now getting from tables.c
#if 0
int i;
float a;
float fv;
int t;
// ::g->viewangle tangent table
for( i = 0 ; i < FINEANGLES / 2 ; i++ )
{
a = ( i - FINEANGLES / 4 + 0.5 ) * PI * 2 / FINEANGLES;
fv = FRACUNIT * tan( a );
t = fv;
finetangent[i] = t;
}
// finesine table
for( i = 0 ; i < 5 * FINEANGLES / 4 ; i++ )
{
// OPTIMIZE: mirror...
a = ( i + 0.5 ) * PI * 2 / FINEANGLES;
t = FRACUNIT * sin( a );
finesine[i] = t;
}
#endif
}
//
// R_InitTextureMapping
//
void R_InitTextureMapping( void )
{
int i;
int x;
int t;
fixed_t focallength;
// Use tangent table to generate viewangletox:
// ::g->viewangletox will give the next greatest x
// after the view angle.
//
// Calc focallength
// so FIELDOFVIEW angles covers SCREENWIDTH.
focallength = FixedDiv( ::g->centerxfrac,
finetangent[FINEANGLES / 4 + FIELDOFVIEW / 2] );
for( i = 0 ; i < FINEANGLES / 2 ; i++ )
{
if( finetangent[i] > FRACUNIT * 2 )
{
t = -1;
}
else if( finetangent[i] < -FRACUNIT * 2 )
{
t = ::g->viewwidth + 1;
}
else
{
t = FixedMul( finetangent[i], focallength );
t = ( ::g->centerxfrac - t + FRACUNIT - 1 ) >> FRACBITS;
if( t < -1 )
{
t = -1;
}
else if( t >::g->viewwidth + 1 )
{
t = ::g->viewwidth + 1;
}
}
::g->viewangletox[i] = t;
}
// Scan ::g->viewangletox[] to generate ::g->xtoviewangle[]:
// ::g->xtoviewangle will give the smallest view angle
// that maps to x.
for( x = 0; x <=::g->viewwidth; x++ )
{
i = 0;
while( ::g->viewangletox[i] > x )
{
i++;
}
::g->xtoviewangle[x] = ( i << ANGLETOFINESHIFT ) - ANG90;
}
// Take out the fencepost cases from ::g->viewangletox.
for( i = 0 ; i < FINEANGLES / 2 ; i++ )
{
t = FixedMul( finetangent[i], focallength );
t = ::g->centerx - t;
if( ::g->viewangletox[i] == -1 )
{
::g->viewangletox[i] = 0;
}
else if( ::g->viewangletox[i] == ::g->viewwidth + 1 )
{
::g->viewangletox[i] = ::g->viewwidth;
}
}
::g->clipangle = ::g->xtoviewangle[0];
}
//
// R_InitLightTables
// Only inits the ::g->zlight table,
// because the ::g->scalelight table changes with view size.
//
void R_InitLightTables( void )
{
int i;
int j;
int level;
int nocollide_startmap;
int scale;
// Calculate the light levels to use
// for each level / distance combination.
for( i = 0 ; i < LIGHTLEVELS ; i++ )
{
nocollide_startmap = ( ( LIGHTLEVELS - 1 - i ) * 2 ) * NUMCOLORMAPS / LIGHTLEVELS;
for( j = 0 ; j < MAXLIGHTZ ; j++ )
{
scale = FixedDiv( ( SCREENWIDTH / 2 * FRACUNIT ), ( j + 1 ) << LIGHTZSHIFT );
scale >>= LIGHTSCALESHIFT;
level = nocollide_startmap - scale / DISTMAP;
if( level < 0 )
{
level = 0;
}
if( level >= NUMCOLORMAPS )
{
level = NUMCOLORMAPS - 1;
}
::g->zlight[i][j] = ::g->colormaps + level * 256;
}
}
}
//
// R_SetViewSize
// Do not really change anything here,
// because it might be in the middle of a refresh.
// The change will take effect next refresh.
//
void
R_SetViewSize
( int blocks,
int detail )
{
::g->setsizeneeded = true;
::g->setblocks = blocks;
::g->setdetail = detail;
}
//
// R_ExecuteSetViewSize
//
void R_ExecuteSetViewSize( void )
{
fixed_t cosadj;
fixed_t dy;
int i;
int j;
int level;
int nocollide_startmap;
::g->setsizeneeded = false;
if( ::g->setblocks == 11 )
{
::g->scaledviewwidth = ORIGINAL_WIDTH;
::g->viewheight = ORIGINAL_HEIGHT;
}
else
{
::g->scaledviewwidth = ::g->setblocks * 32;
::g->viewheight = ( ::g->setblocks * 168 / 10 ) & ~7;
}
// SMF - temp
::g->scaledviewwidth *= GLOBAL_IMAGE_SCALER;
::g->viewheight *= GLOBAL_IMAGE_SCALER;
::g->detailshift = ::g->setdetail;
::g->viewwidth = ::g->scaledviewwidth >>::g->detailshift;
::g->centery = ::g->viewheight / 2;
::g->centerx = ::g->viewwidth / 2;
::g->centerxfrac = ::g->centerx << FRACBITS;
::g->centeryfrac = ::g->centery << FRACBITS;
::g->projection = ::g->centerxfrac;
if( !::g->detailshift )
{
colfunc = basecolfunc = R_DrawColumn;
fuzzcolfunc = R_DrawFuzzColumn;
transcolfunc = R_DrawTranslatedColumn;
spanfunc = R_DrawSpan;
}
else
{
colfunc = basecolfunc = R_DrawColumnLow;
fuzzcolfunc = R_DrawFuzzColumn;
transcolfunc = R_DrawTranslatedColumn;
spanfunc = R_DrawSpanLow;
}
R_InitBuffer( ::g->scaledviewwidth, ::g->viewheight );
R_InitTextureMapping();
// psprite scales
::g->pspritescale = FRACUNIT*::g->viewwidth / ORIGINAL_WIDTH;
::g->pspriteiscale = FRACUNIT * ORIGINAL_WIDTH /::g->viewwidth;
// thing clipping
for( i = 0 ; i < ::g->viewwidth ; i++ )
{
::g->screenheightarray[i] = ::g->viewheight;
}
// planes
for( i = 0 ; i < ::g->viewheight ; i++ )
{
dy = ( ( i -::g->viewheight / 2 ) << FRACBITS ) + FRACUNIT / 2;
dy = abs( dy );
::g->yslope[i] = FixedDiv( ( ::g->viewwidth << ::g->detailshift ) / 2 * FRACUNIT, dy );
}
for( i = 0 ; i < ::g->viewwidth ; i++ )
{
cosadj = abs( finecosine[::g->xtoviewangle[i] >> ANGLETOFINESHIFT] );
::g->distscale[i] = FixedDiv( FRACUNIT, cosadj );
}
// Calculate the light levels to use
// for each level / scale combination.
for( i = 0 ; i < LIGHTLEVELS ; i++ )
{
nocollide_startmap = ( ( LIGHTLEVELS - 1 - i ) * 2 ) * NUMCOLORMAPS / LIGHTLEVELS;
for( j = 0 ; j < MAXLIGHTSCALE ; j++ )
{
level = nocollide_startmap - j * SCREENWIDTH / ( ::g->viewwidth << ::g->detailshift ) / DISTMAP;
if( level < 0 )
{
level = 0;
}
if( level >= NUMCOLORMAPS )
{
level = NUMCOLORMAPS - 1;
}
::g->scalelight[i][j] = ::g->colormaps + level * 256;
}
}
}
//
// R_Init
//
void R_Init( void )
{
R_InitData();
I_Printf( "\nR_InitData" );
R_InitPointToAngle();
I_Printf( "\nR_InitPointToAngle" );
R_InitTables();
// ::g->viewwidth / ::g->viewheight / ::g->detailLevel are set by the defaults
I_Printf( "\nR_InitTables" );
R_SetViewSize( ::g->screenblocks, ::g->detailLevel );
R_InitPlanes();
I_Printf( "\nR_InitPlanes" );
R_InitLightTables();
I_Printf( "\nR_InitLightTables" );
R_InitSkyMap();
I_Printf( "\nR_InitSkyMap" );
R_InitTranslationTables();
I_Printf( "\nR_InitTranslationsTables" );
::g->framecount = 0;
}
//
// R_PointInSubsector
//
subsector_t*
R_PointInSubsector
( fixed_t x,
fixed_t y )
{
node_t* node;
int side;
int nodenum;
// single subsector is a special case
if( !::g->numnodes )
{
return ::g->subsectors;
}
nodenum = ::g->numnodes - 1;
while( !( nodenum & NF_SUBSECTOR ) )
{
node = &::g->nodes[nodenum];
side = R_PointOnSide( x, y, node );
nodenum = node->children[side];
}
return &::g->subsectors[nodenum & ~NF_SUBSECTOR];
}
//
// R_SetupFrame
//
void R_SetupFrame( player_t* player )
{
int i;
::g->viewplayer = player;
extern void SetViewX( fixed_t );
extern void SetViewY( fixed_t );
extern void SetViewAngle( angle_t );
SetViewX( player->mo->x );
SetViewY( player->mo->y );
SetViewAngle( player->mo->angle + ::g->viewangleoffset );
::g->extralight = player->extralight;
::g->viewz = player->viewz;
extern angle_t GetViewAngle();
::g->viewsin = finesine[GetViewAngle() >> ANGLETOFINESHIFT];
::g->viewcos = finecosine[GetViewAngle() >> ANGLETOFINESHIFT];
::g->sscount = 0;
if( player->fixedcolormap )
{
::g->fixedcolormap =
::g->colormaps
+ player->fixedcolormap * 256 * sizeof( lighttable_t );
::g->walllights = ::g->scalelightfixed;
for( i = 0 ; i < MAXLIGHTSCALE ; i++ )
{
::g->scalelightfixed[i] = ::g->fixedcolormap;
}
}
else
{
::g->fixedcolormap = 0;
}
::g->framecount++;
::g->validcount++;
}
//
// R_RenderView
//
void R_RenderPlayerView( player_t* player )
{
if( player->mo == NULL )
{
return;
}
R_SetupFrame( player );
// Clear buffers.
R_ClearClipSegs();
R_ClearDrawSegs();
R_ClearPlanes();
R_ClearSprites();
// check for new console commands.
NetUpdate( NULL );
// The head node is the last node output.
R_RenderBSPNode( ::g->numnodes - 1 );
// Check for new console commands.
NetUpdate( NULL );
R_DrawPlanes();
// Check for new console commands.
NetUpdate( NULL );
R_DrawMasked();
// Check for new console commands.
NetUpdate( NULL );
}