doom3-bfg/neo/renderer/tr_frontend_addmodels.cpp
2024-08-27 11:41:39 +02:00

1226 lines
41 KiB
C++

/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
Copyright (C) 2014-2024 Robert Beckebans
Copyright (C) 2014-2016 Kot in Action Creative Artel
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "precompiled.h"
#pragma hdrstop
#if defined(USE_INTRINSICS_SSE)
#include "../libs/moc/MaskedOcclusionCulling.h"
#endif
#include "RenderCommon.h"
#include "Model_local.h"
idCVar r_skipStaticShadows( "r_skipStaticShadows", "0", CVAR_RENDERER | CVAR_BOOL, "skip static shadows" );
idCVar r_skipDynamicShadows( "r_skipDynamicShadows", "0", CVAR_RENDERER | CVAR_BOOL, "skip dynamic shadows" );
idCVar r_useParallelAddModels( "r_useParallelAddModels", "1", CVAR_RENDERER | CVAR_BOOL | CVAR_NOCHEAT, "add all models in parallel with jobs" );
idCVar r_useParallelAddShadows( "r_useParallelAddShadows", "1", CVAR_RENDERER | CVAR_INTEGER | CVAR_NOCHEAT, "0 = off, 1 = threaded", 0, 1 );
idCVar r_forceShadowCaps( "r_forceShadowCaps", "0", CVAR_RENDERER | CVAR_BOOL, "0 = skip rendering shadow caps if view is outside shadow volume, 1 = always render shadow caps" );
// RB begin
idCVar r_forceShadowMapsOnAlphaTestedSurfaces( "r_forceShadowMapsOnAlphaTestedSurfaces", "1", CVAR_RENDERER | CVAR_BOOL, "0 = same shadowing as with stencil shadows, 1 = ignore noshadows for alpha tested materials" );
// RB end
// foresthale 2014-11-24: cvar to control the material lod flags - this is the distance at which a mesh switches from lod1 to lod2, where lod3 will appear at this distance *2, lod4 at *4, and persistentLOD keyword will disable the max distance check (thus extending this LOD to all further distances, rather than disappearing)
idCVar r_lodMaterialDistance( "r_lodMaterialDistance", "500", CVAR_RENDERER | CVAR_FLOAT, "surfaces further than this distance will use lower quality versions (if their material uses the lod1-4 keywords, persistentLOD disables the max distance checks)" );
static const float CHECK_BOUNDS_EPSILON = 1.0f;
/*
==================
R_ClearEntityDefDynamicModel
If we know the reference bounds stays the same, we
only need to do this on entity update, not the full
R_FreeEntityDefDerivedData
==================
*/
void R_ClearEntityDefDynamicModel( idRenderEntityLocal* def )
{
// free all the interaction surfaces
for( idInteraction* inter = def->firstInteraction; inter != NULL && !inter->IsEmpty(); inter = inter->entityNext )
{
inter->FreeSurfaces();
}
// clear the dynamic model if present
if( def->dynamicModel )
{
// this is copied from cachedDynamicModel, so it doesn't need to be freed
def->dynamicModel = NULL;
}
def->dynamicModelFrameCount = 0;
}
/*
==================
R_IssueEntityDefCallback
==================
*/
bool R_IssueEntityDefCallback( idRenderEntityLocal* def )
{
idBounds oldBounds = def->localReferenceBounds;
bool update;
if( tr.viewDef != NULL )
{
update = def->parms.callback( &def->parms, &tr.viewDef->renderView );
}
else
{
update = def->parms.callback( &def->parms, NULL );
}
tr.pc.c_entityDefCallbacks++;
if( def->parms.hModel == NULL )
{
common->Error( "R_IssueEntityDefCallback: dynamic entity callback didn't set model" );
}
if( r_checkBounds.GetBool() )
{
if( oldBounds[0][0] > def->localReferenceBounds[0][0] + CHECK_BOUNDS_EPSILON ||
oldBounds[0][1] > def->localReferenceBounds[0][1] + CHECK_BOUNDS_EPSILON ||
oldBounds[0][2] > def->localReferenceBounds[0][2] + CHECK_BOUNDS_EPSILON ||
oldBounds[1][0] < def->localReferenceBounds[1][0] - CHECK_BOUNDS_EPSILON ||
oldBounds[1][1] < def->localReferenceBounds[1][1] - CHECK_BOUNDS_EPSILON ||
oldBounds[1][2] < def->localReferenceBounds[1][2] - CHECK_BOUNDS_EPSILON )
{
common->Printf( "entity %i callback extended reference bounds\n", def->index );
}
}
return update;
}
/*
===================
R_EntityDefDynamicModel
This is also called by the game code for idRenderWorldLocal::ModelTrace(), and idRenderWorldLocal::Trace() which is bad for performance...
Issues a deferred entity callback if necessary.
If the model isn't dynamic, it returns the original.
Returns the cached dynamic model if present, otherwise creates it.
===================
*/
idRenderModel* R_EntityDefDynamicModel( idRenderEntityLocal* def )
{
if( def->dynamicModelFrameCount == tr.frameCount )
{
return def->dynamicModel;
}
// allow deferred entities to construct themselves
bool callbackUpdate;
if( def->parms.callback != NULL )
{
SCOPED_PROFILE_EVENT( "R_IssueEntityDefCallback" );
callbackUpdate = R_IssueEntityDefCallback( def );
}
else
{
callbackUpdate = false;
}
idRenderModel* model = def->parms.hModel;
if( model == NULL )
{
common->Error( "R_EntityDefDynamicModel: NULL model" );
return NULL;
}
if( model->IsDynamicModel() == DM_STATIC )
{
def->dynamicModel = NULL;
def->dynamicModelFrameCount = 0;
return model;
}
// continously animating models (particle systems, etc) will have their snapshot updated every single view
if( callbackUpdate || ( model->IsDynamicModel() == DM_CONTINUOUS && def->dynamicModelFrameCount != tr.frameCount ) )
{
R_ClearEntityDefDynamicModel( def );
}
// if we don't have a snapshot of the dynamic model, generate it now
if( def->dynamicModel == NULL )
{
SCOPED_PROFILE_EVENT( "InstantiateDynamicModel" );
// instantiate the snapshot of the dynamic model, possibly reusing memory from the cached snapshot
def->cachedDynamicModel = model->InstantiateDynamicModel( &def->parms, tr.viewDef, def->cachedDynamicModel );
if( def->cachedDynamicModel != NULL && r_checkBounds.GetBool() )
{
idBounds b = def->cachedDynamicModel->Bounds();
if( b[0][0] < def->localReferenceBounds[0][0] - CHECK_BOUNDS_EPSILON ||
b[0][1] < def->localReferenceBounds[0][1] - CHECK_BOUNDS_EPSILON ||
b[0][2] < def->localReferenceBounds[0][2] - CHECK_BOUNDS_EPSILON ||
b[1][0] > def->localReferenceBounds[1][0] + CHECK_BOUNDS_EPSILON ||
b[1][1] > def->localReferenceBounds[1][1] + CHECK_BOUNDS_EPSILON ||
b[1][2] > def->localReferenceBounds[1][2] + CHECK_BOUNDS_EPSILON )
{
common->Printf( "entity %i dynamic model exceeded reference bounds\n", def->index );
}
}
def->dynamicModel = def->cachedDynamicModel;
def->dynamicModelFrameCount = tr.frameCount;
}
// set model depth hack value
if( def->dynamicModel != NULL && model->DepthHack() != 0.0f && tr.viewDef != NULL )
{
idPlane eye, clip;
idVec3 ndc;
R_TransformModelToClip( def->parms.origin, tr.viewDef->worldSpace.modelViewMatrix, tr.viewDef->projectionMatrix, eye, clip );
R_TransformClipToDevice( clip, ndc );
def->parms.modelDepthHack = model->DepthHack() * ( 1.0f - ndc.z );
}
else
{
def->parms.modelDepthHack = 0.0f;
}
return def->dynamicModel;
}
/*
===================
R_SetupDrawSurfShader
===================
*/
void R_SetupDrawSurfShader( drawSurf_t* drawSurf, const idMaterial* shader, const renderEntity_t* renderEntity )
{
drawSurf->material = shader;
drawSurf->sort = shader->GetSort();
// process the shader expressions for conditionals / color / texcoords
const float* constRegs = shader->ConstantRegisters();
if( likely( constRegs != NULL ) )
{
// shader only uses constant values
drawSurf->shaderRegisters = constRegs;
}
else
{
// by default evaluate with the entityDef's shader parms
const float* shaderParms = renderEntity->shaderParms;
// a reference shader will take the calculated stage color value from another shader
// and use that for the parm0-parm3 of the current shader, which allows a stage of
// a light model and light flares to pick up different flashing tables from
// different light shaders
float generatedShaderParms[MAX_ENTITY_SHADER_PARMS];
if( unlikely( renderEntity->referenceShader != NULL ) )
{
// evaluate the reference shader to find our shader parms
float refRegs[MAX_EXPRESSION_REGISTERS];
renderEntity->referenceShader->EvaluateRegisters( refRegs, renderEntity->shaderParms,
tr.viewDef->renderView.shaderParms,
tr.viewDef->renderView.time[renderEntity->timeGroup] * 0.001f, renderEntity->referenceSound );
const shaderStage_t* pStage = renderEntity->referenceShader->GetStage( 0 );
memcpy( generatedShaderParms, renderEntity->shaderParms, sizeof( generatedShaderParms ) );
generatedShaderParms[0] = refRegs[ pStage->color.registers[0] ];
generatedShaderParms[1] = refRegs[ pStage->color.registers[1] ];
generatedShaderParms[2] = refRegs[ pStage->color.registers[2] ];
shaderParms = generatedShaderParms;
}
// allocate frame memory for the shader register values
float* regs = ( float* )R_FrameAlloc( shader->GetNumRegisters() * sizeof( float ), FRAME_ALLOC_SHADER_REGISTER );
drawSurf->shaderRegisters = regs;
// process the shader expressions for conditionals / color / texcoords
shader->EvaluateRegisters( regs, shaderParms, tr.viewDef->renderView.shaderParms,
tr.viewDef->renderView.time[renderEntity->timeGroup] * 0.001f, renderEntity->referenceSound );
}
}
/*
===================
R_SetupDrawSurfJoints
===================
*/
void R_SetupDrawSurfJoints( drawSurf_t* drawSurf, const srfTriangles_t* tri, const idMaterial* shader, nvrhi::ICommandList* commandList )
{
// RB: added check wether GPU skinning is available at all
if( tri->staticModelWithJoints == NULL || !r_useGPUSkinning.GetBool() )
{
drawSurf->jointCache = 0;
return;
}
// RB end
idRenderModelStatic* model = tri->staticModelWithJoints;
assert( model->jointsInverted != NULL );
if( !vertexCache.CacheIsCurrent( model->jointsInvertedBuffer ) )
{
model->jointsInvertedBuffer = vertexCache.AllocJoint( model->jointsInverted, model->numInvertedJoints, sizeof( idJointMat ), commandList );
}
drawSurf->jointCache = model->jointsInvertedBuffer;
}
/*
===================
R_AddSingleModel
May be run in parallel.
Here is where dynamic models actually get instantiated, and necessary
interaction surfaces get created. This is all done on a sort-by-model
basis to keep source data in cache (most likely L2) as any interactions
and shadows are generated, since dynamic models will typically be lit by
two or more lights.
===================
*/
void R_AddSingleModel( viewEntity_t* vEntity )
{
// we will add all interaction surfs here, to be chained to the lights in later serial code
vEntity->drawSurfs = NULL;
// RB
vEntity->useLightGrid = false;
// globals we really should pass in...
const viewDef_t* viewDef = tr.viewDef;
idRenderEntityLocal* entityDef = vEntity->entityDef;
const renderEntity_t* renderEntity = &entityDef->parms;
const idRenderWorldLocal* world = entityDef->world;
if( viewDef->isXraySubview && entityDef->parms.xrayIndex == 1 )
{
return;
}
else if( !viewDef->isXraySubview && entityDef->parms.xrayIndex == 2 )
{
return;
}
SCOPED_PROFILE_EVENT( renderEntity->hModel == NULL ? "Unknown Model" : renderEntity->hModel->Name() );
// calculate the znear for testing whether or not the view is inside a shadow projection
const float znear = ( viewDef->renderView.cramZNear ) ? ( r_znear.GetFloat() * 0.25f ) : r_znear.GetFloat();
// if the entity wasn't seen through a portal chain, it was added just for light shadows
const bool modelIsVisible = !vEntity->scissorRect.IsEmpty();
const bool addInteractions = modelIsVisible && ( !viewDef->isXraySubview || entityDef->parms.xrayIndex == 2 );
const int entityIndex = entityDef->index;
//---------------------------
// Find which of the visible lights contact this entity
//
// If the entity doesn't accept light or cast shadows from any surface,
// this can be skipped.
//
// OPTIMIZE: world areas can assume all referenced lights are used
//---------------------------
int numContactedLights = 0;
static const int MAX_CONTACTED_LIGHTS = 128;
viewLight_t* contactedLights[MAX_CONTACTED_LIGHTS];
idInteraction* staticInteractions[MAX_CONTACTED_LIGHTS];
if( renderEntity->hModel == NULL ||
renderEntity->hModel->ModelHasInteractingSurfaces() ||
renderEntity->hModel->ModelHasShadowCastingSurfaces() )
{
SCOPED_PROFILE_EVENT( "Find lights" );
for( viewLight_t* vLight = viewDef->viewLights; vLight != NULL; vLight = vLight->next )
{
if( vLight->scissorRect.IsEmpty() )
{
continue;
}
if( vLight->entityInteractionState != NULL )
{
// new code path, everything was done in AddLight
if( vLight->entityInteractionState[entityIndex] == viewLight_t::INTERACTION_YES )
{
contactedLights[numContactedLights] = vLight;
staticInteractions[numContactedLights] = world->interactionTable[vLight->lightDef->index * world->interactionTableWidth + entityIndex];
if( ++numContactedLights == MAX_CONTACTED_LIGHTS )
{
break;
}
}
continue;
}
const idRenderLightLocal* lightDef = vLight->lightDef;
if( !lightDef->globalLightBounds.IntersectsBounds( entityDef->globalReferenceBounds ) )
{
continue;
}
if( R_CullModelBoundsToLight( lightDef, entityDef->localReferenceBounds, entityDef->modelRenderMatrix ) )
{
continue;
}
if( !modelIsVisible )
{
// some lights have their center of projection outside the world
if( lightDef->areaNum != -1 )
{
// if no part of the model is in an area that is connected to
// the light center (it is behind a solid, closed door), we can ignore it
bool areasConnected = false;
for( areaReference_t* ref = entityDef->entityRefs; ref != NULL; ref = ref->ownerNext )
{
if( world->AreasAreConnected( lightDef->areaNum, ref->area->areaNum, PS_BLOCK_VIEW ) )
{
areasConnected = true;
break;
}
}
if( areasConnected == false )
{
// can't possibly be seen or shadowed
continue;
}
}
// check more precisely for shadow visibility
idBounds shadowBounds;
R_ShadowBounds( entityDef->globalReferenceBounds, lightDef->globalLightBounds, lightDef->globalLightOrigin, shadowBounds );
// this doesn't say that the shadow can't effect anything, only that it can't
// effect anything in the view
if( idRenderMatrix::CullBoundsToMVP( viewDef->worldSpace.mvp, shadowBounds ) )
{
continue;
}
}
contactedLights[numContactedLights] = vLight;
staticInteractions[numContactedLights] = world->interactionTable[vLight->lightDef->index * world->interactionTableWidth + entityIndex];
if( ++numContactedLights == MAX_CONTACTED_LIGHTS )
{
break;
}
}
}
// if we aren't visible and none of the shadows stretch into the view,
// we don't need to do anything else
if( !modelIsVisible && numContactedLights == 0 )
{
return;
}
//---------------------------
// create a dynamic model if the geometry isn't static
//---------------------------
idRenderModel* model = R_EntityDefDynamicModel( entityDef );
if( model == NULL || model->NumSurfaces() <= 0 )
{
return;
}
// add the lightweight blood decal surfaces if the model is directly visible
if( modelIsVisible )
{
assert( !vEntity->scissorRect.IsEmpty() );
if( entityDef->decals != NULL && !r_skipDecals.GetBool() )
{
entityDef->decals->CreateDeferredDecals( model );
unsigned int numDrawSurfs = entityDef->decals->GetNumDecalDrawSurfs();
for( unsigned int i = 0; i < numDrawSurfs; i++ )
{
drawSurf_t* decalDrawSurf = entityDef->decals->CreateDecalDrawSurf( vEntity, i );
if( decalDrawSurf != NULL )
{
decalDrawSurf->linkChain = NULL;
decalDrawSurf->nextOnLight = vEntity->drawSurfs;
vEntity->drawSurfs = decalDrawSurf;
}
}
}
if( entityDef->overlays != NULL && !r_skipOverlays.GetBool() )
{
entityDef->overlays->CreateDeferredOverlays( model );
unsigned int numDrawSurfs = entityDef->overlays->GetNumOverlayDrawSurfs();
for( unsigned int i = 0; i < numDrawSurfs; i++ )
{
drawSurf_t* overlayDrawSurf = entityDef->overlays->CreateOverlayDrawSurf( vEntity, model, i );
if( overlayDrawSurf != NULL )
{
overlayDrawSurf->linkChain = NULL;
overlayDrawSurf->nextOnLight = vEntity->drawSurfs;
vEntity->drawSurfs = overlayDrawSurf;
}
}
}
}
// RB: use first valid lightgrid
for( areaReference_t* ref = entityDef->entityRefs; ref != NULL; ref = ref->ownerNext )
{
idImage* lightGridImage = ref->area->lightGrid.GetIrradianceImage();
if( ref->area->lightGrid.lightGridPoints.Num() && lightGridImage && !lightGridImage->IsDefaulted() )
{
vEntity->useLightGrid = true;
vEntity->lightGridAtlasImage = lightGridImage;
vEntity->lightGridAtlasSingleProbeSize = ref->area->lightGrid.imageSingleProbeSize;
vEntity->lightGridAtlasBorderSize = ref->area->lightGrid.imageBorderSize;
for( int i = 0; i < 3; i++ )
{
vEntity->lightGridOrigin[i] = ref->area->lightGrid.lightGridOrigin[i];
vEntity->lightGridSize[i] = ref->area->lightGrid.lightGridSize[i];
vEntity->lightGridBounds[i] = ref->area->lightGrid.lightGridBounds[i];
}
break;
}
}
// RB end
//---------------------------
// copy matrix related stuff for back-end use
// and setup a render matrix for faster culling
//---------------------------
vEntity->modelDepthHack = renderEntity->modelDepthHack;
vEntity->weaponDepthHack = renderEntity->weaponDepthHack;
vEntity->skipMotionBlur = renderEntity->skipMotionBlur;
memcpy( vEntity->modelMatrix, entityDef->modelMatrix, sizeof( vEntity->modelMatrix ) );
R_MatrixMultiply( entityDef->modelMatrix, viewDef->worldSpace.modelViewMatrix, vEntity->modelViewMatrix );
idRenderMatrix viewMat;
idRenderMatrix::Transpose( *( idRenderMatrix* )vEntity->modelViewMatrix, viewMat );
idRenderMatrix::Multiply( viewDef->projectionRenderMatrix, viewMat, vEntity->mvp );
idRenderMatrix::Multiply( viewDef->unjitteredProjectionRenderMatrix, viewMat, vEntity->unjitteredMVP );
if( renderEntity->weaponDepthHack )
{
idRenderMatrix::ApplyDepthHack( vEntity->mvp );
}
if( renderEntity->modelDepthHack != 0.0f )
{
idRenderMatrix::ApplyModelDepthHack( vEntity->mvp, renderEntity->modelDepthHack );
}
// local light and view origins are used to determine if the view is definitely outside
// an extruded shadow volume, which means we can skip drawing the end caps
idVec3 localViewOrigin;
R_GlobalPointToLocal( vEntity->modelMatrix, viewDef->renderView.vieworg, localViewOrigin );
//---------------------------
// add all the model surfaces
//---------------------------
for( int surfaceNum = 0; surfaceNum < model->NumSurfaces(); surfaceNum++ )
{
const modelSurface_t* surf = model->Surface( surfaceNum );
// for debugging, only show a single surface at a time
if( r_singleSurface.GetInteger() >= 0 && surfaceNum != r_singleSurface.GetInteger() )
{
continue;
}
srfTriangles_t* tri = surf->geometry;
if( tri == NULL )
{
continue;
}
if( tri->numIndexes == 0 )
{
continue; // happens for particles
}
const idMaterial* shader = surf->shader;
if( shader == NULL )
{
continue;
}
// motorsep 11-24-2014; checking for LOD surface for LOD1 iteration
if( shader->IsLOD() )
{
// foresthale 2014-11-24: calculate the bounds and get the distance from camera to bounds
idBounds& localBounds = tri->bounds;
if( tri->staticModelWithJoints )
{
// skeletal models have difficult to compute bounds for surfaces, so use the whole entity
localBounds = vEntity->entityDef->localReferenceBounds;
}
const float* bounds = localBounds.ToFloatPtr();
idVec3 nearestPointOnBounds = localViewOrigin;
nearestPointOnBounds.x = Max( nearestPointOnBounds.x, bounds[0] );
nearestPointOnBounds.x = Min( nearestPointOnBounds.x, bounds[3] );
nearestPointOnBounds.y = Max( nearestPointOnBounds.y, bounds[1] );
nearestPointOnBounds.y = Min( nearestPointOnBounds.y, bounds[4] );
nearestPointOnBounds.z = Max( nearestPointOnBounds.z, bounds[2] );
nearestPointOnBounds.z = Min( nearestPointOnBounds.z, bounds[5] );
idVec3 delta = nearestPointOnBounds - localViewOrigin;
float distance = delta.LengthFast();
if( !shader->IsLODVisibleForDistance( distance, r_lodMaterialDistance.GetFloat() ) )
{
continue;
}
}
// foresthale 2014-09-01: don't skip surfaces that use the "forceShadows" flag
if( !shader->IsDrawn() && !shader->SurfaceCastsShadow() )
{
continue; // collision hulls, etc
}
// RemapShaderBySkin
if( entityDef->parms.customShader != NULL )
{
// this is sort of a hack, but causes deformed surfaces to map to empty surfaces,
// so the item highlight overlay doesn't highlight the autosprite surface
if( shader->Deform() )
{
continue;
}
shader = entityDef->parms.customShader;
}
else if( entityDef->parms.customSkin )
{
shader = entityDef->parms.customSkin->RemapShaderBySkin( shader );
if( shader == NULL )
{
continue;
}
// foresthale 2014-09-01: don't skip surfaces that use the "forceShadows" flag
if( !shader->IsDrawn() && !shader->SurfaceCastsShadow() )
{
continue;
}
}
// optionally override with the renderView->globalMaterial
if( tr.primaryRenderView.globalMaterial != NULL )
{
shader = tr.primaryRenderView.globalMaterial;
}
SCOPED_PROFILE_EVENT( shader->GetName() );
// debugging tool to make sure we have the correct pre-calculated bounds
if( r_checkBounds.GetBool() )
{
for( int j = 0; j < tri->numVerts; j++ )
{
int k;
for( k = 0; k < 3; k++ )
{
if( tri->verts[j].xyz[k] > tri->bounds[1][k] + CHECK_BOUNDS_EPSILON
|| tri->verts[j].xyz[k] < tri->bounds[0][k] - CHECK_BOUNDS_EPSILON )
{
common->Printf( "bad tri->bounds on %s:%s\n", entityDef->parms.hModel->Name(), shader->GetName() );
break;
}
if( tri->verts[j].xyz[k] > entityDef->localReferenceBounds[1][k] + CHECK_BOUNDS_EPSILON
|| tri->verts[j].xyz[k] < entityDef->localReferenceBounds[0][k] - CHECK_BOUNDS_EPSILON )
{
common->Printf( "bad referenceBounds on %s:%s\n", entityDef->parms.hModel->Name(), shader->GetName() );
break;
}
}
if( k != 3 )
{
break;
}
}
}
// view frustum culling for the precise surface bounds, which is tighter
// than the entire entity reference bounds
// If the entire model wasn't visible, there is no need to check the
// individual surfaces.
bool surfaceDirectlyVisible = modelIsVisible && !idRenderMatrix::CullBoundsToMVP( vEntity->mvp, tri->bounds );
// RB: added check wether GPU skinning is available at all
const bool gpuSkinned = ( tri->staticModelWithJoints != NULL && r_useGPUSkinning.GetBool() );
#if defined(USE_INTRINSICS_SSE)
idRenderMatrix cullSurfaceProject;
idRenderMatrix::InverseOffsetScaleForBounds( renderMatrix_identity, tri->bounds, cullSurfaceProject );
const bool viewInsideSurface = !idRenderMatrix::CullPointToMVP( cullSurfaceProject, localViewOrigin, false );
// RB: test surface visibility by drawing the triangles of the bounds
if( r_useMaskedOcclusionCulling.GetBool() && !viewInsideSurface && !viewDef->isMirror && !viewDef->isSubview )
{
#if 1
if( !model->IsStaticWorldModel() && !renderEntity->weaponDepthHack && renderEntity->modelDepthHack == 0.0f )
{
idVec4 triVerts[8];
unsigned int triIndices[] = { 0, 1, 2 };
tr.pc.c_mocIndexes += 36;
tr.pc.c_mocVerts += 8;
const float size = 16.0f;
idBounds debugBounds( idVec3( -size ), idVec3( size ) );
//debugBounds = vEntity->entityDef->localReferenceBounds;
#if 0
if( gpuSkinned )
{
//debugBounds = vEntity->entityDef->localReferenceBounds;
debugBounds = model->Bounds();
}
else
#endif
{
debugBounds = tri->bounds;
}
idRenderMatrix modelRenderMatrix;
idRenderMatrix::CreateFromOriginAxis( renderEntity->origin, renderEntity->axis, modelRenderMatrix );
idRenderMatrix inverseBaseModelProject;
idRenderMatrix::OffsetScaleForBounds( modelRenderMatrix, debugBounds, inverseBaseModelProject );
idRenderMatrix invProjectMVPMatrix;
idRenderMatrix::Multiply( viewDef->worldSpace.unjitteredMVP, inverseBaseModelProject, invProjectMVPMatrix );
tr.pc.c_mocTests += 1;
bool maskVisible = false;
// NOTE: unit cube instead of zeroToOne cube
idVec4* verts = tr.maskedUnitCubeVerts;
for( int i = 0; i < 8; i++ )
{
// transform to clip space
invProjectMVPMatrix.TransformPoint( verts[i], triVerts[i] );
}
unsigned int* indexes = tr.maskedZeroOneCubeIndexes;
for( int i = 0; i < 36; i += 3 )
{
triIndices[0] = indexes[i + 0];
triIndices[1] = indexes[i + 1];
triIndices[2] = indexes[i + 2];
// backface none so objects are still visible where we run into
MaskedOcclusionCulling::CullingResult result = tr.maskedOcclusionCulling->TestTriangles( ( float* )triVerts, triIndices, 1, NULL, MaskedOcclusionCulling::BACKFACE_NONE );
if( result == MaskedOcclusionCulling::VISIBLE )
{
maskVisible = true;
}
}
if( !maskVisible )
{
tr.pc.c_mocCulledSurfaces += 1;
surfaceDirectlyVisible = false;
}
}
#else
{
idVec4 triVerts[3];
unsigned int triIndices[] = { 0, 1, 2 };
tr.pc.c_mocIndexes += tri->numIndexes;
tr.pc.c_mocVerts += tri->numIndexes;
for( int i = 0, face = 0; i < tri->numIndexes; i += 3, face++ )
{
const idDrawVert& v0 = tri->verts[tri->indexes[i + 0]];
const idDrawVert& v1 = tri->verts[tri->indexes[i + 1]];
const idDrawVert& v2 = tri->verts[tri->indexes[i + 2]];
// transform to clip space
vEntity->unjitteredMVP.TransformPoint( idVec4( v0.xyz.x, v0.xyz.y, v0.xyz.z, 1 ), triVerts[0] );
vEntity->unjitteredMVP.TransformPoint( idVec4( v1.xyz.x, v1.xyz.y, v1.xyz.z, 1 ), triVerts[1] );
vEntity->unjitteredMVP.TransformPoint( idVec4( v2.xyz.x, v2.xyz.y, v2.xyz.z, 1 ), triVerts[2] );
tr.maskedOcclusionCulling->RenderTriangles( ( float* )triVerts, triIndices, 1, NULL, MaskedOcclusionCulling::BACKFACE_CCW );
}
}
#endif
}
#endif // #if defined(USE_INTRINSICS_SSE)
//--------------------------
// base drawing surface
//--------------------------
const float* shaderRegisters = NULL;
drawSurf_t* baseDrawSurf = NULL;
if( surfaceDirectlyVisible && shader->IsDrawn() )
{
// make sure we have an ambient cache and all necessary normals / tangents
if( !vertexCache.CacheIsCurrent( tri->indexCache ) )
{
tri->indexCache = vertexCache.AllocIndex( tri->indexes, tri->numIndexes );
}
if( !vertexCache.CacheIsCurrent( tri->ambientCache ) )
{
// we are going to use it for drawing, so make sure we have the tangents and normals
if( shader->ReceivesLighting() && !tri->tangentsCalculated )
{
assert( tri->staticModelWithJoints == NULL );
R_DeriveTangents( tri );
// RB: this was hit by parametric particle models ..
//assert( false ); // this should no longer be hit
// RB end
}
tri->ambientCache = vertexCache.AllocVertex( tri->verts, tri->numVerts );
}
// add the surface for drawing
// we can re-use some of the values for light interaction surfaces
baseDrawSurf = ( drawSurf_t* )R_FrameAlloc( sizeof( *baseDrawSurf ), FRAME_ALLOC_DRAW_SURFACE );
baseDrawSurf->frontEndGeo = tri;
baseDrawSurf->space = vEntity;
baseDrawSurf->scissorRect = vEntity->scissorRect;
baseDrawSurf->extraGLState = 0;
R_SetupDrawSurfShader( baseDrawSurf, shader, renderEntity );
shaderRegisters = baseDrawSurf->shaderRegisters;
// Check for deformations (eyeballs, flares, etc)
const deform_t shaderDeform = shader->Deform();
if( shaderDeform != DFRM_NONE )
{
drawSurf_t* deformDrawSurf = R_DeformDrawSurf( baseDrawSurf );
if( deformDrawSurf != NULL )
{
// any deforms may have created multiple draw surfaces
for( drawSurf_t* surf = deformDrawSurf, * next = NULL; surf != NULL; surf = next )
{
next = surf->nextOnLight;
surf->linkChain = NULL;
surf->nextOnLight = vEntity->drawSurfs;
vEntity->drawSurfs = surf;
}
}
}
// Most deform source surfaces do not need to be rendered.
// However, particles are rendered in conjunction with the source surface.
if( shaderDeform == DFRM_NONE || shaderDeform == DFRM_PARTICLE || shaderDeform == DFRM_PARTICLE2 )
{
// copy verts and indexes to this frame's hardware memory if they aren't already there
if( !vertexCache.CacheIsCurrent( tri->ambientCache ) )
{
tri->ambientCache = vertexCache.AllocVertex( tri->verts, tri->numVerts );
}
if( !vertexCache.CacheIsCurrent( tri->indexCache ) )
{
tri->indexCache = vertexCache.AllocIndex( tri->indexes, tri->numIndexes );
}
R_SetupDrawSurfJoints( baseDrawSurf, tri, shader );
baseDrawSurf->numIndexes = tri->numIndexes;
baseDrawSurf->ambientCache = tri->ambientCache;
baseDrawSurf->indexCache = tri->indexCache;
baseDrawSurf->linkChain = NULL; // link to the view
baseDrawSurf->nextOnLight = vEntity->drawSurfs;
vEntity->drawSurfs = baseDrawSurf;
}
}
//----------------------------------------
// add all light interactions
//----------------------------------------
for( int contactedLight = 0; contactedLight < numContactedLights; contactedLight++ )
{
viewLight_t* vLight = contactedLights[contactedLight];
const idRenderLightLocal* lightDef = vLight->lightDef;
const idInteraction* interaction = staticInteractions[contactedLight];
// check for a static interaction
surfaceInteraction_t* surfInter = NULL;
if( interaction > INTERACTION_EMPTY && interaction->staticInteraction )
{
// we have a static interaction that was calculated accurately
assert( model->NumSurfaces() == interaction->numSurfaces );
surfInter = &interaction->surfaces[surfaceNum];
}
else
{
// try to do a more precise cull of this model surface to the light
if( R_CullModelBoundsToLight( lightDef, tri->bounds, entityDef->modelRenderMatrix ) )
{
continue;
}
}
// "invisible ink" lights and shaders (imp spawn drawing on walls, etc)
if( shader->Spectrum() != lightDef->lightShader->Spectrum() )
{
continue;
}
// Calculate the local light origin to determine if the view is inside the shadow
// projection and to calculate the triangle facing for dynamic shadow volumes.
idVec3 localLightOrigin;
R_GlobalPointToLocal( vEntity->modelMatrix, lightDef->globalLightOrigin, localLightOrigin );
//--------------------------
// surface light interactions
//--------------------------
if( addInteractions && surfaceDirectlyVisible && shader->ReceivesLighting() )
{
// static interactions can commonly find that no triangles from a surface
// contact the light, even when the total model does
if( surfInter == NULL || surfInter->lightTrisIndexCache > 0 )
{
// make sure we have a valid shader register even if we didn't generate a drawn mesh above
if( shaderRegisters == NULL )
{
drawSurf_t scratchSurf;
R_SetupDrawSurfShader( &scratchSurf, shader, renderEntity );
shaderRegisters = scratchSurf.shaderRegisters;
}
if( shaderRegisters != NULL )
{
// create a drawSurf for this interaction
drawSurf_t* lightDrawSurf = ( drawSurf_t* )R_FrameAlloc( sizeof( *lightDrawSurf ), FRAME_ALLOC_DRAW_SURFACE );
if( surfInter != NULL )
{
// optimized static interaction
lightDrawSurf->numIndexes = surfInter->numLightTrisIndexes;
lightDrawSurf->indexCache = surfInter->lightTrisIndexCache;
}
else
{
// throw the entire source surface at it without any per-triangle culling
lightDrawSurf->numIndexes = tri->numIndexes;
lightDrawSurf->indexCache = tri->indexCache;
}
lightDrawSurf->ambientCache = tri->ambientCache;
lightDrawSurf->frontEndGeo = tri;
lightDrawSurf->space = vEntity;
lightDrawSurf->material = shader;
lightDrawSurf->extraGLState = 0;
lightDrawSurf->scissorRect = vLight->scissorRect; // interactionScissor;
lightDrawSurf->sort = 0.0f;
lightDrawSurf->shaderRegisters = shaderRegisters;
R_SetupDrawSurfJoints( lightDrawSurf, tri, shader );
// Determine which linked list to add the light surface to.
// There will only be localSurfaces if the light casts shadows and
// there are surfaces with NOSELFSHADOW.
if( shader->Coverage() == MC_TRANSLUCENT )
{
lightDrawSurf->linkChain = &vLight->translucentInteractions;
}
else if( !lightDef->parms.noShadows && shader->TestMaterialFlag( MF_NOSELFSHADOW ) )
{
lightDrawSurf->linkChain = &vLight->localInteractions;
}
else
{
lightDrawSurf->linkChain = &vLight->globalInteractions;
}
lightDrawSurf->nextOnLight = vEntity->drawSurfs;
vEntity->drawSurfs = lightDrawSurf;
}
}
}
//--------------------------
// surface shadows
//--------------------------
#if 1
if( !shader->SurfaceCastsShadow() && !( r_forceShadowMapsOnAlphaTestedSurfaces.GetBool() && shader->Coverage() == MC_PERFORATED ) )
{
continue;
}
#else
// Steel Storm 2 behaviour - this destroys many alpha tested shadows in vanilla BFG
// motorsep 11-08-2014; if r_forceShadowMapsOnAlphaTestedSurfaces is 0 when shadow mapping is on,
// don't render shadows from all alphaTest surfaces.
// Useful as global performance booster for old GPUs to disable shadows from grass/foliage/etc.
if( r_useShadowMapping.GetBool() )
{
if( shader->Coverage() == MC_PERFORATED )
{
if( !r_forceShadowMapsOnAlphaTestedSurfaces.GetBool() )
{
continue;
}
}
}
// if material has "noShadows" global key
if( !shader->SurfaceCastsShadow() )
{
// motorsep 11-08-2014; if r_forceShadowMapsOnAlphaTestedSurfaces is 1 when shadow mapping is on,
// check if a surface IS NOT alphaTested and has "noShadows" global key;
// or if a surface IS alphaTested and has "noShadows" global key;
// if either is true, don't make surfaces cast shadow maps.
if( r_useShadowMapping.GetBool() )
{
if( shader->Coverage() != MC_PERFORATED && shader->TestMaterialFlag( MF_NOSHADOWS ) )
{
continue;
}
else if( shader->Coverage() == MC_PERFORATED && shader->TestMaterialFlag( MF_NOSHADOWS ) )
{
continue;
}
}
else
{
continue;
}
}
#endif
if( !lightDef->LightCastsShadows() )
{
continue;
}
// some entities, like view weapons, don't cast any shadows
if( entityDef->parms.noShadow )
{
continue;
}
// No shadow if it's suppressed for this light.
if( entityDef->parms.suppressShadowInLightID && entityDef->parms.suppressShadowInLightID == lightDef->parms.lightId )
{
continue;
}
// RB: draw shadow occluder using shadow mapping
// OPTIMIZE: check if projected occluder box intersects the view
//
//if( addInteractions && surfaceDirectlyVisible && shader->ReceivesLighting() )
{
// static interactions can commonly find that no triangles from a surface
// contact the light, even when the total model does
if( surfInter == NULL || surfInter->lightTrisIndexCache > 0 )
{
// create a drawSurf for this interaction
drawSurf_t* shadowDrawSurf = ( drawSurf_t* )R_FrameAlloc( sizeof( *shadowDrawSurf ), FRAME_ALLOC_DRAW_SURFACE );
if( surfInter != NULL )
{
// optimized static interaction
shadowDrawSurf->numIndexes = surfInter->numLightTrisIndexes;
shadowDrawSurf->indexCache = surfInter->lightTrisIndexCache;
}
else
{
// make sure we have an ambient cache and all necessary normals / tangents
if( !vertexCache.CacheIsCurrent( tri->indexCache ) )
{
tri->indexCache = vertexCache.AllocIndex( tri->indexes, tri->numIndexes );
}
// throw the entire source surface at it without any per-triangle culling
shadowDrawSurf->numIndexes = tri->numIndexes;
shadowDrawSurf->indexCache = tri->indexCache;
}
if( !vertexCache.CacheIsCurrent( tri->ambientCache ) )
{
// we are going to use it for drawing, so make sure we have the tangents and normals
if( shader->ReceivesLighting() && !tri->tangentsCalculated )
{
assert( tri->staticModelWithJoints == NULL );
R_DeriveTangents( tri );
// RB: this was hit by parametric particle models ..
//assert( false ); // this should no longer be hit
// RB end
}
tri->ambientCache = vertexCache.AllocVertex( tri->verts, tri->numVerts );
}
shadowDrawSurf->ambientCache = tri->ambientCache;
shadowDrawSurf->frontEndGeo = tri;
shadowDrawSurf->space = vEntity;
shadowDrawSurf->material = shader;
shadowDrawSurf->extraGLState = 0;
shadowDrawSurf->scissorRect = vLight->scissorRect; // interactionScissor;
shadowDrawSurf->sort = 0.0f;
//shadowDrawSurf->shaderRegisters = baseDrawSurf->shaderRegisters; // TODO FIXME
if( shader->Coverage() == MC_PERFORATED )
{
R_SetupDrawSurfShader( shadowDrawSurf, shader, renderEntity );
}
R_SetupDrawSurfJoints( shadowDrawSurf, tri, shader );
// determine which linked list to add the shadow surface to
//shadowDrawSurf->linkChain = shader->TestMaterialFlag( MF_NOSELFSHADOW ) ? &vLight->localShadows : &vLight->globalShadows;
shadowDrawSurf->linkChain = &vLight->globalShadows;
shadowDrawSurf->nextOnLight = vEntity->drawSurfs;
vEntity->drawSurfs = shadowDrawSurf;
}
}
// RB end
}
}
}
REGISTER_PARALLEL_JOB( R_AddSingleModel, "R_AddSingleModel" );
/*
=================
R_LinkDrawSurfToView
Als called directly by GuiModel
=================
*/
void R_LinkDrawSurfToView( drawSurf_t* drawSurf, viewDef_t* viewDef )
{
// if it doesn't fit, resize the list
if( viewDef->numDrawSurfs == viewDef->maxDrawSurfs )
{
drawSurf_t** old = viewDef->drawSurfs;
int count;
if( viewDef->maxDrawSurfs == 0 )
{
viewDef->maxDrawSurfs = INITIAL_DRAWSURFS;
count = 0;
}
else
{
count = viewDef->maxDrawSurfs * sizeof( viewDef->drawSurfs[0] );
viewDef->maxDrawSurfs *= 2;
}
viewDef->drawSurfs = ( drawSurf_t** )R_FrameAlloc( viewDef->maxDrawSurfs * sizeof( viewDef->drawSurfs[0] ), FRAME_ALLOC_DRAW_SURFACE_POINTER );
memcpy( viewDef->drawSurfs, old, count );
}
viewDef->drawSurfs[viewDef->numDrawSurfs] = drawSurf;
viewDef->numDrawSurfs++;
}
/*
===================
R_AddModels
The end result of running this is the addition of drawSurf_t to the
tr.viewDef->drawSurfs[] array and light link chains, along with
frameData and vertexCache allocations to support the drawSurfs.
===================
*/
void R_AddModels()
{
SCOPED_PROFILE_EVENT( "R_AddModels" );
// RB: already done in R_FillMaskedOcclusionBufferWithModels
// tr.viewDef->viewEntitys = R_SortViewEntities( tr.viewDef->viewEntitys );
//-------------------------------------------------
// Go through each view entity that is either visible to the view, or to
// any light that intersects the view (for shadows).
//-------------------------------------------------
if( r_useParallelAddModels.GetBool() )
{
for( viewEntity_t* vEntity = tr.viewDef->viewEntitys; vEntity != NULL; vEntity = vEntity->next )
{
tr.frontEndJobList->AddJob( ( jobRun_t )R_AddSingleModel, vEntity );
}
tr.frontEndJobList->Submit();
tr.frontEndJobList->Wait();
}
else
{
for( viewEntity_t* vEntity = tr.viewDef->viewEntitys; vEntity != NULL; vEntity = vEntity->next )
{
R_AddSingleModel( vEntity );
}
}
//-------------------------------------------------
// Move the draw surfs to the view.
//-------------------------------------------------
tr.viewDef->numDrawSurfs = 0; // clear the ambient surface list
tr.viewDef->maxDrawSurfs = 0; // will be set to INITIAL_DRAWSURFS on R_LinkDrawSurfToView
for( viewEntity_t* vEntity = tr.viewDef->viewEntitys; vEntity != NULL; vEntity = vEntity->next )
{
// RB
if( vEntity->drawSurfs != NULL )
{
tr.pc.c_visibleViewEntities++;
}
for( drawSurf_t* ds = vEntity->drawSurfs; ds != NULL; )
{
drawSurf_t* next = ds->nextOnLight;
if( ds->linkChain == NULL )
{
R_LinkDrawSurfToView( ds, tr.viewDef );
}
else
{
ds->nextOnLight = *ds->linkChain;
*ds->linkChain = ds;
}
ds = next;
}
vEntity->drawSurfs = NULL;
}
}