mirror of
https://github.com/id-Software/DOOM-3-BFG.git
synced 2025-04-25 02:52:12 +00:00
1290 lines
34 KiB
C++
1290 lines
34 KiB
C++
/*
|
|
===========================================================================
|
|
|
|
Doom 3 BFG Edition GPL Source Code
|
|
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
|
|
Copyright (C) 2020-2021 Robert Beckebans
|
|
Copyright (C) 2022 Stephen Pridham
|
|
|
|
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
|
|
|
|
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
|
|
|
|
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
|
|
|
|
===========================================================================
|
|
*/
|
|
|
|
#include "precompiled.h"
|
|
#pragma hdrstop
|
|
|
|
#include "../libs/mesa/format_r11g11b10f.h"
|
|
|
|
#include "RenderCommon.h"
|
|
#include "CmdlineProgressbar.h"
|
|
#include "../framework/Common_local.h" // commonLocal.WaitGameThread();
|
|
|
|
#include <sys/DeviceManager.h>
|
|
extern DeviceManager* deviceManager;
|
|
|
|
/*
|
|
=============
|
|
R_SetEnvprobeDefViewEnvprobe
|
|
|
|
If the envprobeDef is not already on the viewEnvprobe list, create
|
|
a viewEnvprobe and add it to the list with an empty scissor rect.
|
|
=============
|
|
*/
|
|
viewEnvprobe_t* R_SetEnvprobeDefViewEnvprobe( RenderEnvprobeLocal* probe )
|
|
{
|
|
if( probe->viewCount == tr.viewCount )
|
|
{
|
|
// already set up for this frame
|
|
return probe->viewEnvprobe;
|
|
}
|
|
probe->viewCount = tr.viewCount;
|
|
|
|
// add to the view light chain
|
|
viewEnvprobe_t* vProbe = ( viewEnvprobe_t* )R_ClearedFrameAlloc( sizeof( *vProbe ), FRAME_ALLOC_VIEW_LIGHT );
|
|
vProbe->envprobeDef = probe;
|
|
|
|
// the scissorRect will be expanded as the envprobe bounds is accepted into visible portal chains
|
|
// and the scissor will be reduced in R_AddSingleEnvprobe based on the screen space projection
|
|
vProbe->scissorRect.Clear();
|
|
|
|
// copy data used by backend
|
|
// RB: this would normaly go into R_AddSingleEnvprobe
|
|
vProbe->globalOrigin = probe->parms.origin;
|
|
vProbe->globalProbeBounds = probe->globalProbeBounds;
|
|
vProbe->inverseBaseProbeProject = probe->inverseBaseProbeProject;
|
|
|
|
//if( probe->irradianceImage->IsLoaded() )
|
|
{
|
|
vProbe->irradianceImage = probe->irradianceImage;
|
|
}
|
|
//else
|
|
//{
|
|
// vProbe->irradianceImage = globalImages->defaultUACIrradianceCube;
|
|
//}
|
|
|
|
//if( probe->radianceImage->IsLoaded() )
|
|
{
|
|
vProbe->radianceImage = probe->radianceImage;
|
|
}
|
|
//else
|
|
//{
|
|
// vProbe->radianceImage = globalImages->defaultUACRadianceCube;
|
|
//}
|
|
|
|
// link the view light
|
|
vProbe->next = tr.viewDef->viewEnvprobes;
|
|
tr.viewDef->viewEnvprobes = vProbe;
|
|
|
|
probe->viewEnvprobe = vProbe;
|
|
|
|
return vProbe;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
CullEnvprobeByPortals
|
|
|
|
Return true if the light frustum does not intersect the current portal chain.
|
|
================
|
|
*/
|
|
bool idRenderWorldLocal::CullEnvprobeByPortals( const RenderEnvprobeLocal* probe, const portalStack_t* ps )
|
|
{
|
|
if( r_useLightPortalCulling.GetInteger() == 1 )
|
|
{
|
|
ALIGNTYPE16 frustumCorners_t corners;
|
|
idRenderMatrix::GetFrustumCorners( corners, probe->inverseBaseProbeProject, bounds_zeroOneCube );
|
|
for( int i = 0; i < ps->numPortalPlanes; i++ )
|
|
{
|
|
if( idRenderMatrix::CullFrustumCornersToPlane( corners, ps->portalPlanes[i] ) == FRUSTUM_CULL_FRONT )
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
===================
|
|
AddAreaViewEnvprobes
|
|
|
|
This is the only point where lights get added to the viewLights list.
|
|
Any lights that are visible through the current portalStack will have their scissor rect updated.
|
|
===================
|
|
*/
|
|
void idRenderWorldLocal::AddAreaViewEnvprobes( int areaNum, const portalStack_t* ps )
|
|
{
|
|
portalArea_t* area = &portalAreas[ areaNum ];
|
|
|
|
for( areaReference_t* lref = area->envprobeRefs.areaNext; lref != &area->envprobeRefs; lref = lref->areaNext )
|
|
{
|
|
RenderEnvprobeLocal* probe = lref->envprobe;
|
|
|
|
// debug tool to allow viewing of only one light at a time
|
|
if( r_singleEnvprobe.GetInteger() >= 0 && r_singleEnvprobe.GetInteger() != probe->index )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
#if 0
|
|
// check for being closed off behind a door
|
|
// a light that doesn't cast shadows will still light even if it is behind a door
|
|
if( r_useLightAreaCulling.GetBool() //&& !envprobe->LightCastsShadows()
|
|
&& probe->areaNum != -1 && !tr.viewDef->connectedAreas[ probe->areaNum ] )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
// cull frustum
|
|
if( CullEnvprobeByPortals( probe, ps ) )
|
|
{
|
|
// we are culled out through this portal chain, but it might
|
|
// still be visible through others
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
viewEnvprobe_t* vProbe = R_SetEnvprobeDefViewEnvprobe( probe );
|
|
|
|
// expand the scissor rect
|
|
vProbe->scissorRect.Union( ps->rect );
|
|
}
|
|
}
|
|
|
|
/*
|
|
==================
|
|
R_SampleCubeMapHDR
|
|
==================
|
|
*/
|
|
void R_SampleCubeMapHDR( const idVec3& dir, int size, byte* buffers[6], float result[3], float& u, float& v )
|
|
{
|
|
float adir[3];
|
|
int axis, x, y;
|
|
|
|
adir[0] = fabs( dir[0] );
|
|
adir[1] = fabs( dir[1] );
|
|
adir[2] = fabs( dir[2] );
|
|
|
|
if( dir[0] >= adir[1] && dir[0] >= adir[2] )
|
|
{
|
|
axis = 0;
|
|
}
|
|
else if( -dir[0] >= adir[1] && -dir[0] >= adir[2] )
|
|
{
|
|
axis = 1;
|
|
}
|
|
else if( dir[1] >= adir[0] && dir[1] >= adir[2] )
|
|
{
|
|
axis = 2;
|
|
}
|
|
else if( -dir[1] >= adir[0] && -dir[1] >= adir[2] )
|
|
{
|
|
axis = 3;
|
|
}
|
|
else if( dir[2] >= adir[1] && dir[2] >= adir[2] )
|
|
{
|
|
axis = 4;
|
|
}
|
|
else
|
|
{
|
|
axis = 5;
|
|
}
|
|
|
|
float fx = ( dir * tr.cubeAxis[axis][1] ) / ( dir * tr.cubeAxis[axis][0] );
|
|
float fy = ( dir * tr.cubeAxis[axis][2] ) / ( dir * tr.cubeAxis[axis][0] );
|
|
|
|
fx = -fx;
|
|
fy = -fy;
|
|
x = size * 0.5 * ( fx + 1 );
|
|
y = size * 0.5 * ( fy + 1 );
|
|
if( x < 0 )
|
|
{
|
|
x = 0;
|
|
}
|
|
else if( x >= size )
|
|
{
|
|
x = size - 1;
|
|
}
|
|
if( y < 0 )
|
|
{
|
|
y = 0;
|
|
}
|
|
else if( y >= size )
|
|
{
|
|
y = size - 1;
|
|
}
|
|
|
|
u = x;
|
|
v = y;
|
|
|
|
// unpack RGBA8 to 3 floats
|
|
union
|
|
{
|
|
uint32 i;
|
|
byte b[4];
|
|
} tmp;
|
|
|
|
tmp.b[0] = buffers[axis][( y * size + x ) * 4 + 0];
|
|
tmp.b[1] = buffers[axis][( y * size + x ) * 4 + 1];
|
|
tmp.b[2] = buffers[axis][( y * size + x ) * 4 + 2];
|
|
tmp.b[3] = buffers[axis][( y * size + x ) * 4 + 3];
|
|
|
|
//uint32_t value = ( *( const uint32_t* )buffers[axis][( y * size + x ) * 4 + 0] );
|
|
|
|
r11g11b10f_to_float3( tmp.i, result );
|
|
}
|
|
|
|
void R_SampleCubeMapHDR16F( const idVec3& dir, int size, halfFloat_t* buffers[6], float result[3], float& u, float& v )
|
|
{
|
|
float adir[3];
|
|
int axis, x, y;
|
|
|
|
adir[0] = fabs( dir[0] );
|
|
adir[1] = fabs( dir[1] );
|
|
adir[2] = fabs( dir[2] );
|
|
|
|
if( dir[0] >= adir[1] && dir[0] >= adir[2] )
|
|
{
|
|
axis = 0;
|
|
}
|
|
else if( -dir[0] >= adir[1] && -dir[0] >= adir[2] )
|
|
{
|
|
axis = 1;
|
|
}
|
|
else if( dir[1] >= adir[0] && dir[1] >= adir[2] )
|
|
{
|
|
axis = 2;
|
|
}
|
|
else if( -dir[1] >= adir[0] && -dir[1] >= adir[2] )
|
|
{
|
|
axis = 3;
|
|
}
|
|
else if( dir[2] >= adir[1] && dir[2] >= adir[2] )
|
|
{
|
|
axis = 4;
|
|
}
|
|
else
|
|
{
|
|
axis = 5;
|
|
}
|
|
|
|
float fx = ( dir * tr.cubeAxis[axis][1] ) / ( dir * tr.cubeAxis[axis][0] );
|
|
float fy = ( dir * tr.cubeAxis[axis][2] ) / ( dir * tr.cubeAxis[axis][0] );
|
|
|
|
fx = -fx;
|
|
fy = -fy;
|
|
x = size * 0.5 * ( fx + 1 );
|
|
y = size * 0.5 * ( fy + 1 );
|
|
if( x < 0 )
|
|
{
|
|
x = 0;
|
|
}
|
|
else if( x >= size )
|
|
{
|
|
x = size - 1;
|
|
}
|
|
if( y < 0 )
|
|
{
|
|
y = 0;
|
|
}
|
|
else if( y >= size )
|
|
{
|
|
y = size - 1;
|
|
}
|
|
|
|
u = x;
|
|
v = y;
|
|
|
|
// unpack RGB16F to 3 floats
|
|
result[0] = F16toF32( buffers[axis][( y * size + x ) * 3 + 0] );
|
|
result[1] = F16toF32( buffers[axis][( y * size + x ) * 3 + 1] );
|
|
result[2] = F16toF32( buffers[axis][( y * size + x ) * 3 + 2] );
|
|
}
|
|
|
|
|
|
|
|
|
|
// http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html
|
|
|
|
// To implement the Hammersley point set we only need an efficent way to implement the Van der Corput radical inverse phi2(i).
|
|
// Since it is in base 2 we can use some basic bit operations to achieve this.
|
|
// The brilliant book Hacker's Delight [warren01] provides us a a simple way to reverse the bits in a given 32bit integer. Using this, the following code then implements phi2(i)
|
|
|
|
|
|
// RB: radical inverse implementation from the Mitsuba PBR system
|
|
|
|
// Van der Corput radical inverse in base 2 with single precision
|
|
inline float RadicalInverse_VdC( uint32_t n, uint32_t scramble = 0U )
|
|
{
|
|
/* Efficiently reverse the bits in 'n' using binary operations */
|
|
#if (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2))) || defined(__clang__)
|
|
n = __builtin_bswap32( n );
|
|
#else
|
|
n = ( n << 16 ) | ( n >> 16 );
|
|
n = ( ( n & 0x00ff00ff ) << 8 ) | ( ( n & 0xff00ff00 ) >> 8 );
|
|
#endif
|
|
n = ( ( n & 0x0f0f0f0f ) << 4 ) | ( ( n & 0xf0f0f0f0 ) >> 4 );
|
|
n = ( ( n & 0x33333333 ) << 2 ) | ( ( n & 0xcccccccc ) >> 2 );
|
|
n = ( ( n & 0x55555555 ) << 1 ) | ( ( n & 0xaaaaaaaa ) >> 1 );
|
|
|
|
// Account for the available precision and scramble
|
|
n = ( n >> ( 32 - 24 ) ) ^ ( scramble & ~ -( 1 << 24 ) );
|
|
|
|
return ( float ) n / ( float )( 1U << 24 );
|
|
}
|
|
|
|
// The ith point xi is then computed by
|
|
inline idVec2 Hammersley2D( uint i, uint N )
|
|
{
|
|
return idVec2( float( i ) / float( N ), RadicalInverse_VdC( i ) );
|
|
}
|
|
|
|
idVec3 ImportanceSampleGGX( const idVec2& Xi, const idVec3& N, float roughness )
|
|
{
|
|
float a = roughness * roughness;
|
|
|
|
// cosinus distributed direction (Z-up or tangent space) from the hammersley point xi
|
|
float Phi = 2 * idMath::PI * Xi.x;
|
|
float cosTheta = idMath::Sqrt( ( 1 - Xi.y ) / ( 1 + ( a * a - 1 ) * Xi.y ) );
|
|
float sinTheta = idMath::Sqrt( 1 - cosTheta * cosTheta );
|
|
|
|
idVec3 H;
|
|
H.x = sinTheta * idMath::Cos( Phi );
|
|
H.y = sinTheta * idMath::Sin( Phi );
|
|
H.z = cosTheta;
|
|
|
|
// rotate from tangent space to world space along N
|
|
idVec3 upVector = abs( N.z ) < 0.999f ? idVec3( 0, 0, 1 ) : idVec3( 1, 0, 0 );
|
|
idVec3 tangentX = upVector.Cross( N );
|
|
tangentX.Normalize();
|
|
idVec3 tangentY = N.Cross( tangentX );
|
|
|
|
idVec3 sampleVec = tangentX * H.x + tangentY * H.y + N * H.z;
|
|
sampleVec.Normalize();
|
|
|
|
return sampleVec;
|
|
}
|
|
|
|
float Geometry_SchlickGGX( float NdotV, float roughness )
|
|
{
|
|
// note that we use a different k for IBL
|
|
float a = roughness;
|
|
float k = ( a * a ) / 2.0;
|
|
|
|
float nom = NdotV;
|
|
float denom = NdotV * ( 1.0 - k ) + k;
|
|
|
|
return nom / denom;
|
|
}
|
|
|
|
float Geometry_Smith( idVec3 N, idVec3 V, idVec3 L, float roughness )
|
|
{
|
|
float NdotV = Max( ( N * V ), 0.0f );
|
|
float NdotL = Max( ( N * L ), 0.0f );
|
|
|
|
float ggx2 = Geometry_SchlickGGX( NdotV, roughness );
|
|
float ggx1 = Geometry_SchlickGGX( NdotL, roughness );
|
|
|
|
return ggx1 * ggx2;
|
|
}
|
|
|
|
idVec2 IntegrateBRDF( float NdotV, float roughness, int sampleCount )
|
|
{
|
|
idVec3 V;
|
|
V.x = sqrt( 1.0 - NdotV * NdotV );
|
|
V.y = 0.0;
|
|
V.z = NdotV;
|
|
|
|
float A = 0.0;
|
|
float B = 0.0;
|
|
|
|
idVec3 N( 0.0f, 0.0f, 1.0f );
|
|
for( int i = 0; i < sampleCount; ++i )
|
|
{
|
|
// generates a sample vector that's biased towards the
|
|
// preferred alignment direction (importance sampling).
|
|
idVec2 Xi = Hammersley2D( i, sampleCount );
|
|
|
|
idVec3 H = ImportanceSampleGGX( Xi, N, roughness );
|
|
idVec3 L = ( 2.0 * ( V * H ) * H - V );
|
|
L.Normalize();
|
|
|
|
float NdotL = Max( L.z, 0.0f );
|
|
float NdotH = Max( H.z, 0.0f );
|
|
float VdotH = Max( ( V * H ), 0.0f );
|
|
|
|
if( NdotL > 0.0 )
|
|
{
|
|
float G = Geometry_Smith( N, V, L, roughness );
|
|
float G_Vis = ( G * VdotH ) / ( NdotH * NdotV );
|
|
float Fc = idMath::Pow( 1.0 - VdotH, 5.0 );
|
|
|
|
A += ( 1.0 - Fc ) * G_Vis;
|
|
B += Fc * G_Vis;
|
|
}
|
|
}
|
|
|
|
A /= float( sampleCount );
|
|
B /= float( sampleCount );
|
|
|
|
return idVec2( A, B );
|
|
}
|
|
|
|
|
|
// Compute normalized oct coord, mapping top left of top left pixel to (-1,-1)
|
|
idVec2 NormalizedOctCoord( int x, int y, const int probeWithBorderSide )
|
|
{
|
|
#if 0
|
|
// 1 pixel border
|
|
const int margin = 1;
|
|
|
|
int probeSideLength = Max( 2, probeWithBorderSide - ( margin * 2 ) );
|
|
|
|
idVec2 octFragCoord;
|
|
octFragCoord.x = idMath::ClampInt( 0, probeSideLength - 1, x - margin );
|
|
octFragCoord.y = idMath::ClampInt( 0, probeSideLength - 1, y - margin );
|
|
|
|
return ( idVec2( octFragCoord ) ) * ( 2.0f / float( probeSideLength ) ) - idVec2( 1.0f, 1.0f );
|
|
#else
|
|
|
|
const int margin = 2;
|
|
|
|
// RB: FIXME - margin * 2 is wrong but looks better
|
|
// figure out why
|
|
int probeSideLength = Max( 2, probeWithBorderSide - ( margin * 2 ) );
|
|
|
|
idVec2 octFragCoord = idVec2( ( x - margin ) % probeWithBorderSide, ( y - margin ) % probeWithBorderSide );
|
|
|
|
// Add back the half pixel to get pixel center normalized coordinates
|
|
return ( idVec2( octFragCoord ) + idVec2( 0.5f, 0.5f ) ) * ( 2.0f / float( probeSideLength ) ) - idVec2( 1.0f, 1.0f );
|
|
|
|
#endif
|
|
}
|
|
|
|
static inline idVec2 NormalizedOctCoordNoBorder( int x, int y, const int probeWithBorderSide )
|
|
{
|
|
int probeSideLength = probeWithBorderSide;
|
|
|
|
idVec2 octFragCoord = idVec2( x % probeWithBorderSide, y % probeWithBorderSide );
|
|
|
|
// Add back the half pixel to get pixel center normalized coordinates
|
|
return ( idVec2( octFragCoord ) + idVec2( 0.5f, 0.5f ) ) * ( 2.0f / float( probeSideLength ) ) - idVec2( 1.0f, 1.0f );
|
|
}
|
|
|
|
/*
|
|
static inline float LatLongTexelArea( const idVec2i& pos, const idVec2i& imageSize )
|
|
{
|
|
idVec2 uv0;
|
|
uv0.x = pos.x / imageSize.x;
|
|
uv0.y = pos.y / imageSize.y;
|
|
|
|
idVec2 uv1;
|
|
uv1.x = ( pos.x + 1 ) / imageSize.x;
|
|
uv1.y = ( pos.y + 1 ) / imageSize.y;
|
|
|
|
float theta0 = idMath::PI * ( uv0.x * 2.0f - 1.0f );
|
|
float theta1 = idMath::PI * ( uv1.x * 2.0f - 1.0f );
|
|
|
|
float phi0 = idMath::PI * ( uv0.y - 0.5f );
|
|
float phi1 = idMath::PI * ( uv1.y - 0.5f );
|
|
|
|
return abs( theta1 - theta0 ) * abs( sin( phi1 ) - sin( phi0 ) );
|
|
}
|
|
|
|
|
|
static inline idVec2 CartesianToLatLongTexcoord( const idVec3& p )
|
|
{
|
|
// http://gl.ict.usc.edu/Data/HighResProbes
|
|
|
|
float u = ( 1.0f + idMath::ATan( p.x, -p.z ) / idMath::PI );
|
|
float v = idMath::ACos( p.y ) / idMath::PI;
|
|
|
|
return idVec2( u * 0.5f, v );
|
|
}
|
|
*/
|
|
|
|
|
|
/// http://www.mpia-hd.mpg.de/~mathar/public/mathar20051002.pdf
|
|
/// http://www.rorydriscoll.com/2012/01/15/cubemap-texel-solid-angle/
|
|
static inline float AreaElement( float _x, float _y )
|
|
{
|
|
return atan2f( _x * _y, sqrtf( _x * _x + _y * _y + 1.0f ) );
|
|
}
|
|
|
|
/// u and v should be center adressing and in [-1.0 + invSize.. 1.0 - invSize] range.
|
|
static inline float CubemapTexelSolidAngle( float u, float v, float _invFaceSize )
|
|
{
|
|
// Specify texel area.
|
|
const float x0 = u - _invFaceSize;
|
|
const float x1 = u + _invFaceSize;
|
|
const float y0 = v - _invFaceSize;
|
|
const float y1 = v + _invFaceSize;
|
|
|
|
// Compute solid angle of texel area.
|
|
const float solidAngle = AreaElement( x1, y1 )
|
|
- AreaElement( x0, y1 )
|
|
- AreaElement( x1, y0 )
|
|
+ AreaElement( x0, y0 )
|
|
;
|
|
|
|
return solidAngle;
|
|
}
|
|
|
|
static inline idVec3 MapXYSToDirection( uint64 x, uint64 y, uint64 s, uint64 width, uint64 height )
|
|
{
|
|
float u = ( ( x + 0.5f ) / float( width ) ) * 2.0f - 1.0f;
|
|
float v = ( ( y + 0.5f ) / float( height ) ) * 2.0f - 1.0f;
|
|
v *= -1.0f;
|
|
|
|
idVec3 dir( 0, 0, 0 );
|
|
|
|
// +x, -x, +y, -y, +z, -z
|
|
switch( s )
|
|
{
|
|
case 0:
|
|
dir = idVec3( 1.0f, v, -u );
|
|
break;
|
|
case 1:
|
|
dir = idVec3( -1.0f, v, u );
|
|
break;
|
|
case 2:
|
|
dir = idVec3( u, 1.0f, -v );
|
|
break;
|
|
case 3:
|
|
dir = idVec3( u, -1.0f, v );
|
|
break;
|
|
case 4:
|
|
dir = idVec3( u, v, 1.0f );
|
|
break;
|
|
case 5:
|
|
dir = idVec3( -u, v, -1.0f );
|
|
break;
|
|
}
|
|
|
|
dir.Normalize();
|
|
|
|
return dir;
|
|
}
|
|
|
|
void CalculateIrradianceJob( calcEnvprobeParms_t* parms )
|
|
{
|
|
halfFloat_t* buffers[6];
|
|
|
|
int start = Sys_Milliseconds();
|
|
|
|
for( int i = 0; i < 6; i++ )
|
|
{
|
|
buffers[ i ] = ( halfFloat_t* ) parms->radiance[ i ];
|
|
}
|
|
|
|
const float invDstSize = 1.0f / float( ENVPROBE_CAPTURE_SIZE );
|
|
const idVec2i sourceImageSize( ENVPROBE_CAPTURE_SIZE, ENVPROBE_CAPTURE_SIZE );
|
|
|
|
CommandlineProgressBar progressBar( R_CalculateUsedAtlasPixels( parms->outHeight ), parms->printWidth, parms->printHeight );
|
|
if( parms->printProgress )
|
|
{
|
|
progressBar.Start();
|
|
}
|
|
|
|
// build L4 Spherical Harmonics from source image
|
|
SphericalHarmonicsT<idVec3, 4> shRadiance;
|
|
|
|
for( int i = 0; i < shSize( 4 ); i++ )
|
|
{
|
|
shRadiance[i].Zero();
|
|
}
|
|
|
|
// build SH by iterating over all cubemap pixels
|
|
|
|
idVec4 dstRect = R_CalculateMipRect( parms->outHeight, 0 );
|
|
|
|
for( int side = 0; side < 6; side++ )
|
|
{
|
|
for( int x = 0; x < sourceImageSize.x; x++ )
|
|
{
|
|
for( int y = 0; y < sourceImageSize.y; y++ )
|
|
{
|
|
// convert UV coord to 3D direction
|
|
idVec3 dir = MapXYSToDirection( x, y, side, sourceImageSize.x, sourceImageSize.y );
|
|
|
|
float u, v;
|
|
idVec3 radiance;
|
|
R_SampleCubeMapHDR16F( dir, ENVPROBE_CAPTURE_SIZE, buffers, &radiance[0], u, v );
|
|
|
|
//radiance = dir * 0.5 + idVec3( 0.5f, 0.5f, 0.5f );
|
|
|
|
// convert from [0 .. size-1] to [-1.0 + invSize .. 1.0 - invSize]
|
|
const float uu = 2.0f * ( u * invDstSize ) - 1.0f;
|
|
const float vv = 2.0f * ( v * invDstSize ) - 1.0f;
|
|
|
|
float texelArea = CubemapTexelSolidAngle( uu, vv, invDstSize );
|
|
|
|
const SphericalHarmonicsT<float, 4>& sh = shEvaluate<4>( dir );
|
|
|
|
bool shValid = true;
|
|
for( int i = 0; i < shSize( 4 ); i++ )
|
|
{
|
|
if( IsNAN( sh[i] ) )
|
|
{
|
|
shValid = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( shValid )
|
|
{
|
|
shAddWeighted( shRadiance, sh, radiance * texelArea );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// reset image to black
|
|
for( int x = 0; x < parms->outWidth; x++ )
|
|
{
|
|
for( int y = 0; y < parms->outHeight; y++ )
|
|
{
|
|
parms->outBuffer[( y * parms->outWidth + x ) * 3 + 0] = F32toF16( 0 );
|
|
parms->outBuffer[( y * parms->outWidth + x ) * 3 + 1] = F32toF16( 0 );
|
|
parms->outBuffer[( y * parms->outWidth + x ) * 3 + 2] = F32toF16( 0 );
|
|
}
|
|
}
|
|
|
|
const int numMips = idMath::BitsForInteger( parms->outHeight );
|
|
|
|
for( int mip = 0; mip < numMips; mip++ )
|
|
{
|
|
idVec4 dstRect = R_CalculateMipRect( parms->outHeight, mip );
|
|
|
|
for( int x = dstRect.x; x < ( dstRect.x + dstRect.z ); x++ )
|
|
{
|
|
for( int y = dstRect.y; y < ( dstRect.y + dstRect.w ); y++ )
|
|
{
|
|
idVec2 octCoord;
|
|
if( mip > 0 )
|
|
{
|
|
// move back to [0, 1] coords
|
|
octCoord = NormalizedOctCoordNoBorder( x - dstRect.x, y - dstRect.y, dstRect.z );
|
|
}
|
|
else
|
|
{
|
|
octCoord = NormalizedOctCoordNoBorder( x, y, dstRect.z );
|
|
}
|
|
|
|
// convert UV coord to 3D direction
|
|
idVec3 dir;
|
|
|
|
dir.FromOctahedral( octCoord );
|
|
|
|
idVec3 outColor( 0, 0, 0 );
|
|
|
|
#if 1
|
|
// generate ambient colors by evaluating the L4 Spherical Harmonics
|
|
SphericalHarmonicsT<float, 4> shDirection = shEvaluate<4>( dir );
|
|
|
|
idVec3 sampleIrradianceSh = shEvaluateDiffuse<idVec3, 4>( shRadiance, dir ) / idMath::PI;
|
|
|
|
outColor[0] = Max( 0.0f, sampleIrradianceSh.x );
|
|
outColor[1] = Max( 0.0f, sampleIrradianceSh.y );
|
|
outColor[2] = Max( 0.0f, sampleIrradianceSh.z );
|
|
#else
|
|
// generate ambient colors using Monte Carlo method
|
|
for( int s = 0; s < parms->samples; s++ )
|
|
{
|
|
idVec2 Xi = Hammersley2D( s, parms->samples );
|
|
idVec3 H = ImportanceSampleGGX( Xi, dir, 0.95f );
|
|
|
|
float u, v;
|
|
idVec3 radiance;
|
|
R_SampleCubeMapHDR( H, parms->outHeight, buffers, &radiance[0], u, v );
|
|
|
|
outColor[0] += radiance[0];
|
|
outColor[1] += radiance[1];
|
|
outColor[2] += radiance[2];
|
|
}
|
|
|
|
outColor[0] /= parms->samples;
|
|
outColor[1] /= parms->samples;
|
|
outColor[2] /= parms->samples;
|
|
#endif
|
|
|
|
//outColor = dir * 0.5 + idVec3( 0.5f, 0.5f, 0.5f );
|
|
|
|
parms->outBuffer[( y * parms->outWidth + x ) * 3 + 0] = F32toF16( outColor[0] );
|
|
parms->outBuffer[( y * parms->outWidth + x ) * 3 + 1] = F32toF16( outColor[1] );
|
|
parms->outBuffer[( y * parms->outWidth + x ) * 3 + 2] = F32toF16( outColor[2] );
|
|
|
|
if( parms->printProgress )
|
|
{
|
|
progressBar.Increment( true );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int end = Sys_Milliseconds();
|
|
|
|
parms->time = end - start;
|
|
}
|
|
|
|
void CalculateRadianceJob( calcEnvprobeParms_t* parms )
|
|
{
|
|
halfFloat_t* buffers[6];
|
|
|
|
int start = Sys_Milliseconds();
|
|
|
|
for( int i = 0; i < 6; i++ )
|
|
{
|
|
buffers[ i ] = ( halfFloat_t* ) parms->radiance[ i ];
|
|
}
|
|
|
|
const float invDstSize = 1.0f / float( parms->outHeight );
|
|
|
|
const int numMips = idMath::BitsForInteger( parms->outHeight );
|
|
const int numOctahedronMips = numMips - 3; // the last 3 mips are too low quality for filtering
|
|
|
|
CommandlineProgressBar progressBar( R_CalculateUsedAtlasPixels( parms->outHeight ), parms->printWidth, parms->printHeight );
|
|
if( parms->printProgress )
|
|
{
|
|
progressBar.Start();
|
|
}
|
|
|
|
// reset output image to black
|
|
for( int x = 0; x < parms->outWidth; x++ )
|
|
{
|
|
for( int y = 0; y < parms->outHeight; y++ )
|
|
{
|
|
parms->outBuffer[( y * parms->outWidth + x ) * 3 + 0] = F32toF16( 0 );
|
|
parms->outBuffer[( y * parms->outWidth + x ) * 3 + 1] = F32toF16( 0 );
|
|
parms->outBuffer[( y * parms->outWidth + x ) * 3 + 2] = F32toF16( 0 );
|
|
}
|
|
}
|
|
|
|
for( int mip = 0; mip < numOctahedronMips; mip++ )
|
|
{
|
|
float roughness = ( float )mip / ( float )( numOctahedronMips - 1 );
|
|
|
|
idVec4 dstRect = R_CalculateMipRect( parms->outHeight, mip );
|
|
|
|
for( int x = dstRect.x; x < ( dstRect.x + dstRect.z ); x++ )
|
|
{
|
|
for( int y = dstRect.y; y < ( dstRect.y + dstRect.w ); y++ )
|
|
{
|
|
idVec2 octCoord;
|
|
if( mip > 0 )
|
|
{
|
|
// move back to [0, 1] coords
|
|
octCoord = NormalizedOctCoordNoBorder( x - dstRect.x, y - dstRect.y, dstRect.z );
|
|
}
|
|
else
|
|
{
|
|
octCoord = NormalizedOctCoordNoBorder( x, y, dstRect.z );
|
|
}
|
|
|
|
// convert UV coord to 3D direction
|
|
idVec3 N;
|
|
|
|
N.FromOctahedral( octCoord );
|
|
|
|
idVec3 outColor( 0, 0, 0 );
|
|
|
|
// RB: Split Sum approximation explanation
|
|
|
|
// Epic Games makes a further approximation by assuming the view direction
|
|
// (and thus the specular reflection direction) to be equal to the output sample direction ωo.
|
|
// This translates itself to the following code:
|
|
const idVec3 R = N;
|
|
const idVec3 V = R;
|
|
|
|
float totalWeight = 0.0f;
|
|
|
|
for( int s = 0; s < parms->samples; s++ )
|
|
{
|
|
idVec2 Xi = Hammersley2D( s, parms->samples );
|
|
idVec3 H = ImportanceSampleGGX( Xi, N, roughness );
|
|
idVec3 L = ( 2.0 * ( H * ( V * H ) ) - V );
|
|
|
|
float NdotL = Max( ( N * L ), 0.0f );
|
|
if( NdotL > 0.0 )
|
|
{
|
|
float sample[3];
|
|
float u, v;
|
|
|
|
R_SampleCubeMapHDR16F( H, ENVPROBE_CAPTURE_SIZE, buffers, sample, u, v );
|
|
|
|
outColor[0] += sample[0] * NdotL;
|
|
outColor[1] += sample[1] * NdotL;
|
|
outColor[2] += sample[2] * NdotL;
|
|
|
|
totalWeight += NdotL;
|
|
}
|
|
}
|
|
|
|
outColor[0] /= totalWeight;
|
|
outColor[1] /= totalWeight;
|
|
outColor[2] /= totalWeight;
|
|
|
|
parms->outBuffer[( y * parms->outWidth + x ) * 3 + 0] = F32toF16( outColor[0] );
|
|
parms->outBuffer[( y * parms->outWidth + x ) * 3 + 1] = F32toF16( outColor[1] );
|
|
parms->outBuffer[( y * parms->outWidth + x ) * 3 + 2] = F32toF16( outColor[2] );
|
|
|
|
if( parms->printProgress )
|
|
{
|
|
progressBar.Increment( true );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int end = Sys_Milliseconds();
|
|
|
|
parms->time = end - start;
|
|
}
|
|
|
|
REGISTER_PARALLEL_JOB( CalculateIrradianceJob, "CalculateIrradianceJob" );
|
|
REGISTER_PARALLEL_JOB( CalculateRadianceJob, "CalculateRadianceJob" );
|
|
|
|
|
|
void R_MakeAmbientMap( const char* baseName, byte* buffers[6], const char* suffix, int outSize, bool specular, bool useThreads )
|
|
{
|
|
idStr fullname;
|
|
renderView_t ref;
|
|
viewDef_t primary;
|
|
//byte* buffers[6];
|
|
//int width = 0, height = 0;
|
|
|
|
// set up the job
|
|
calcEnvprobeParms_t* jobParms = new calcEnvprobeParms_t;
|
|
|
|
for( int i = 0; i < 6; i++ )
|
|
{
|
|
jobParms->radiance[ i ] = buffers[ i ];
|
|
}
|
|
|
|
jobParms->freeRadiance = specular ? 1 : 0;
|
|
|
|
jobParms->samples = 1000;
|
|
jobParms->filename.Format( "env/%s%s.exr", baseName, suffix );
|
|
|
|
jobParms->printProgress = !useThreads;
|
|
jobParms->printWidth = renderSystem->GetWidth();
|
|
jobParms->printHeight = renderSystem->GetHeight();
|
|
|
|
jobParms->outWidth = int( outSize * 1.5f );
|
|
jobParms->outHeight = outSize;
|
|
jobParms->outBuffer = ( halfFloat_t* )R_StaticAlloc( idMath::Ceil( outSize * outSize * 3 * sizeof( halfFloat_t ) * 1.5f ), TAG_IMAGE );
|
|
|
|
tr.envprobeJobs.Append( jobParms );
|
|
|
|
if( useThreads )
|
|
{
|
|
if( specular )
|
|
{
|
|
tr.envprobeJobList->AddJob( ( jobRun_t )CalculateRadianceJob, jobParms );
|
|
}
|
|
else
|
|
{
|
|
tr.envprobeJobList->AddJob( ( jobRun_t )CalculateIrradianceJob, jobParms );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( specular )
|
|
{
|
|
CalculateRadianceJob( jobParms );
|
|
}
|
|
else
|
|
{
|
|
CalculateIrradianceJob( jobParms );
|
|
}
|
|
}
|
|
}
|
|
|
|
CONSOLE_COMMAND_SHIP( bakeEnvironmentProbes, "Bake environment probes", NULL )
|
|
{
|
|
idStr fullname;
|
|
idStr baseName;
|
|
renderView_t ref;
|
|
int captureSize;
|
|
|
|
if( !tr.primaryWorld )
|
|
{
|
|
common->Printf( "No primary world loaded.\n" );
|
|
return;
|
|
}
|
|
|
|
int sysWidth = renderSystem->GetWidth();
|
|
int sysHeight = renderSystem->GetHeight();
|
|
|
|
bool useThreads = true;
|
|
|
|
baseName = tr.primaryWorld->mapName;
|
|
baseName.StripFileExtension();
|
|
|
|
captureSize = ENVPROBE_CAPTURE_SIZE;
|
|
|
|
if( !tr.primaryView )
|
|
{
|
|
common->Printf( "No primary view.\n" );
|
|
return;
|
|
}
|
|
|
|
const viewDef_t primary = *tr.primaryView;
|
|
|
|
//--------------------------------------------
|
|
// CONVOLVE CUBEMAPS
|
|
//--------------------------------------------
|
|
|
|
// make sure the game / draw thread has completed
|
|
commonLocal.WaitGameThread();
|
|
|
|
// turn vsync off for faster capturing of the probes
|
|
int oldVsync = r_swapInterval.GetInteger();
|
|
r_swapInterval.SetInteger( 0 );
|
|
|
|
// turn off clear in between views so we keep the progress bar visible
|
|
int oldClear = r_clear.GetInteger();
|
|
r_clear.SetInteger( 0 );
|
|
|
|
// disable scissor, so we don't need to adjust all those rects
|
|
r_useScissor.SetBool( false );
|
|
|
|
// RB: this really sucks but prevents a crash I couldn't track down
|
|
extern idCVar r_useParallelAddModels;
|
|
extern idCVar r_useParallelAddShadows;
|
|
extern idCVar r_useParallelAddLights;
|
|
|
|
r_useParallelAddModels.SetBool( false );
|
|
r_useParallelAddShadows.SetBool( false );
|
|
r_useParallelAddLights.SetBool( false );
|
|
|
|
// discard anything currently on the list (this triggers SwapBuffers)
|
|
tr.SwapCommandBuffers( NULL, NULL, NULL, NULL, NULL, NULL );
|
|
|
|
tr.takingEnvprobe = true;
|
|
|
|
int totalProcessedProbes = 0;
|
|
int totalStart = Sys_Milliseconds();
|
|
|
|
for( int i = 0; i < tr.primaryWorld->envprobeDefs.Num(); i++ )
|
|
{
|
|
RenderEnvprobeLocal* def = tr.primaryWorld->envprobeDefs[i];
|
|
if( def == NULL )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
totalProcessedProbes++;
|
|
}
|
|
|
|
idLib::Printf( "Deleting old probes...\n" );
|
|
|
|
fullname.Format( "env/%s", baseName.c_str() );
|
|
|
|
idFileList* files = fileSystem->ListFilesTree( fullname, "envprobe*.exr", true );
|
|
for( int i = 0; i < files->GetNumFiles(); i++ )
|
|
{
|
|
idLib::Printf( "deleting old envprobe data '%s'\n", files->GetFile( i ) );
|
|
fileSystem->RemoveFile( files->GetFile( i ) );
|
|
}
|
|
fileSystem->FreeFileList( files );
|
|
|
|
idLib::Printf( "Shooting %i environment probes...\n", totalProcessedProbes );
|
|
|
|
CommandlineProgressBar progressBar( totalProcessedProbes, sysWidth, sysHeight );
|
|
progressBar.Start();
|
|
|
|
int start = Sys_Milliseconds();
|
|
|
|
for( int i = 0; i < tr.primaryWorld->envprobeDefs.Num(); i++ )
|
|
{
|
|
RenderEnvprobeLocal* def = tr.primaryWorld->envprobeDefs[i];
|
|
if( def == NULL )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
byte* buffers[6];
|
|
|
|
int areaNum = tr.primaryWorld->PointInArea( def->parms.origin );
|
|
idVec3 point = def->parms.origin;
|
|
point.SnapInt();
|
|
|
|
for( int j = 0; j < 6; j++ )
|
|
{
|
|
ref = primary.renderView;
|
|
|
|
ref.rdflags = RDF_NOAMBIENT | RDF_IRRADIANCE;
|
|
ref.fov_x = ref.fov_y = 90;
|
|
|
|
ref.vieworg = def->parms.origin;
|
|
ref.viewaxis = tr.cubeAxis[j];
|
|
|
|
// discard anything currently on the list
|
|
//tr.SwapCommandBuffers( NULL, NULL, NULL, NULL, NULL, NULL );
|
|
|
|
// build commands to render the scene
|
|
tr.primaryWorld->RenderScene( &ref );
|
|
|
|
// finish off these commands
|
|
const emptyCommand_t* cmd = tr.SwapCommandBuffers( NULL, NULL, NULL, NULL, NULL, NULL );
|
|
|
|
// issue the commands to the GPU
|
|
tr.RenderCommandBuffers( cmd );
|
|
|
|
// discard anything currently on the list (this triggers SwapBuffers)
|
|
tr.SwapCommandBuffers( NULL, NULL, NULL, NULL, NULL, NULL );
|
|
|
|
byte* floatRGB16F = NULL;
|
|
|
|
//if( point.x == 0 && point.y == 64 && point.z == 56 && j == 1 )
|
|
//{
|
|
// floatRGB16F = NULL;
|
|
//}
|
|
|
|
//bool validCapture =
|
|
R_ReadPixelsRGB16F( deviceManager->GetDevice(), &tr.backend.GetCommonPasses(), globalImages->envprobeHDRImage->GetTextureHandle(), nvrhi::ResourceStates::RenderTarget, &floatRGB16F, captureSize, captureSize );
|
|
|
|
#if 0
|
|
idStr testName;
|
|
testName.Format( "env/test/%s/area%i_envprobe_%i_%i_%i_side_%i.exr", baseName.c_str(), areaNum, int( point.x ), int( point.y ), int( point.z ), j );
|
|
R_WriteEXR( testName, floatRGB16F, 3, captureSize, captureSize, "fs_basepath" );
|
|
|
|
if( !validCapture )
|
|
{
|
|
common->Printf( "failed to capture side %s\n", testName.c_str() );
|
|
}
|
|
#endif
|
|
buffers[ j ] = floatRGB16F;
|
|
}
|
|
|
|
tr.takingEnvprobe = false;
|
|
progressBar.Increment( true );
|
|
tr.takingEnvprobe = true;
|
|
|
|
fullname.Format( "%s/area%i_envprobe_%i_%i_%i", baseName.c_str(), areaNum, int( point.x ), int( point.y ), int( point.z ) );
|
|
fullname.ReplaceChar( '-', '_' );
|
|
|
|
// create 2 jobs
|
|
R_MakeAmbientMap( fullname.c_str(), buffers, "_amb", IRRADIANCE_OCTAHEDRON_SIZE, false, useThreads );
|
|
R_MakeAmbientMap( fullname.c_str(), buffers, "_spec", RADIANCE_OCTAHEDRON_SIZE, true, useThreads );
|
|
}
|
|
|
|
int end = Sys_Milliseconds();
|
|
|
|
tr.takingEnvprobe = false;
|
|
|
|
r_useScissor.SetBool( true );
|
|
r_useParallelAddModels.SetBool( true );
|
|
r_useParallelAddShadows.SetBool( true );
|
|
r_useParallelAddLights.SetBool( true );
|
|
|
|
common->Printf( "captured environment probes %5.1f seconds\n\n", ( end - start ) * 0.001f );
|
|
|
|
if( useThreads )
|
|
{
|
|
idLib::Printf( "Processing probes on all available cores... Please wait.\n" );
|
|
common->UpdateScreen( false );
|
|
common->UpdateScreen( false );
|
|
|
|
//tr.envprobeJobList->Submit();
|
|
tr.envprobeJobList->Submit( NULL, JOBLIST_PARALLELISM_MAX_CORES );
|
|
tr.envprobeJobList->Wait();
|
|
}
|
|
|
|
for( int j = 0; j < tr.envprobeJobs.Num(); j++ )
|
|
{
|
|
calcEnvprobeParms_t* job = tr.envprobeJobs[ j ];
|
|
|
|
R_WriteEXR( job->filename, ( byte* )job->outBuffer, 3, job->outWidth, job->outHeight, "fs_basepath" );
|
|
|
|
common->Printf( "%s convolved in %5.1f seconds\n\n", job->filename.c_str(), job->time * 0.001f );
|
|
|
|
if( job->freeRadiance > 0 )
|
|
{
|
|
for( int i = 0; i < 6; i++ )
|
|
{
|
|
if( job->radiance[i] )
|
|
{
|
|
Mem_Free( job->radiance[i] );
|
|
}
|
|
}
|
|
}
|
|
|
|
// generate .bimage file
|
|
globalImages->ImageFromFile( job->filename, TF_LINEAR, TR_CLAMP, TD_R11G11B10F, CF_2D_PACKED_MIPCHAIN );
|
|
|
|
Mem_Free( job->outBuffer );
|
|
|
|
delete job;
|
|
}
|
|
|
|
tr.envprobeJobs.Clear();
|
|
|
|
int totalEnd = Sys_Milliseconds();
|
|
|
|
nvrhi::CommandListHandle commandList = deviceManager->GetDevice()->createCommandList();
|
|
commandList->open();
|
|
|
|
//--------------------------------------------
|
|
// LOAD CONVOLVED OCTAHEDRONS INTO THE GPU
|
|
//--------------------------------------------
|
|
for( int i = 0; i < tr.primaryWorld->envprobeDefs.Num(); i++ )
|
|
{
|
|
RenderEnvprobeLocal* def = tr.primaryWorld->envprobeDefs[i];
|
|
if( def == NULL )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
def->irradianceImage->Reload( true, commandList );
|
|
def->radianceImage->Reload( true, commandList );
|
|
}
|
|
|
|
commandList->close();
|
|
deviceManager->GetDevice()->executeCommandList( commandList );
|
|
|
|
idLib::Printf( "----------------------------------\n" );
|
|
idLib::Printf( "Processed %i light probes\n", totalProcessedProbes );
|
|
common->Printf( "Baked SH irradiance and GGX mip maps in %5.1f minutes\n\n", ( totalEnd - totalStart ) / ( 1000.0f * 60 ) );
|
|
|
|
// restore vsync setting
|
|
r_swapInterval.SetInteger( oldVsync );
|
|
r_clear.SetInteger( oldClear );
|
|
}
|
|
|
|
CONSOLE_COMMAND( makeBrdfLUT, "make a GGX BRDF lookup table", NULL )
|
|
{
|
|
int outSize = 256;
|
|
int width = 0, height = 0;
|
|
|
|
//if( args.Argc() != 2 )
|
|
//{
|
|
// common->Printf( "USAGE: makeBrdfLut [size]\n" );
|
|
// return;
|
|
//}
|
|
|
|
//if( args.Argc() == 2 )
|
|
//{
|
|
// outSize = atoi( args.Argv( 1 ) );
|
|
//}
|
|
|
|
// resample with hemispherical blending
|
|
int samples = 1024;
|
|
|
|
int ldrBufferSize = outSize * outSize * 4;
|
|
byte* ldrBuffer = ( byte* )Mem_Alloc( ldrBufferSize, TAG_TEMP );
|
|
|
|
int hdrBufferSize = outSize * outSize * 2 * sizeof( halfFloat_t );
|
|
halfFloat_t* hdrBuffer = ( halfFloat_t* )Mem_Alloc( hdrBufferSize, TAG_TEMP );
|
|
|
|
int sysWidth = renderSystem->GetWidth();
|
|
int sysHeight = renderSystem->GetHeight();
|
|
|
|
CommandlineProgressBar progressBar( outSize * outSize, sysWidth, sysHeight );
|
|
|
|
int start = Sys_Milliseconds();
|
|
|
|
for( int x = 0 ; x < outSize ; x++ )
|
|
{
|
|
float NdotV = ( x + 0.5f ) / outSize;
|
|
|
|
for( int y = 0 ; y < outSize ; y++ )
|
|
{
|
|
float roughness = ( y + 0.5f ) / outSize;
|
|
|
|
idVec2 output = IntegrateBRDF( NdotV, roughness, samples );
|
|
|
|
ldrBuffer[( y * outSize + x ) * 4 + 0] = byte( output.x * 255 );
|
|
ldrBuffer[( y * outSize + x ) * 4 + 1] = byte( output.y * 255 );
|
|
ldrBuffer[( y * outSize + x ) * 4 + 2] = 0;
|
|
ldrBuffer[( y * outSize + x ) * 4 + 3] = 255;
|
|
|
|
halfFloat_t half1 = F32toF16( output.x );
|
|
halfFloat_t half2 = F32toF16( output.y );
|
|
|
|
hdrBuffer[( y * outSize + x ) * 2 + 0] = half1;
|
|
hdrBuffer[( y * outSize + x ) * 2 + 1] = half2;
|
|
//hdrBuffer[( y * outSize + x ) * 4 + 2] = 0;
|
|
//hdrBuffer[( y * outSize + x ) * 4 + 3] = 1;
|
|
|
|
progressBar.Increment( true );
|
|
}
|
|
}
|
|
|
|
idStr fullname = "env/_brdfLut.png";
|
|
idLib::Printf( "writing %s\n", fullname.c_str() );
|
|
|
|
R_WritePNG( fullname, ldrBuffer, 4, outSize, outSize, "fs_basepath" );
|
|
//R_WriteEXR( "env/_brdfLut.exr", hdrBuffer, 4, outSize, outSize, "fs_basepath" );
|
|
|
|
|
|
idFileLocal headerFile( fileSystem->OpenFileWrite( "env/Image_brdfLut.h", "fs_basepath" ) );
|
|
|
|
static const char* intro = R"(
|
|
#ifndef BRDFLUT_TEX_H
|
|
#define BRDFLUT_TEX_H
|
|
|
|
#define BRDFLUT_TEX_WIDTH 256
|
|
#define BRDFLUT_TEX_HEIGHT 256
|
|
#define BRDFLUT_TEX_PITCH (BRDFLUT_TEX_WIDTH * 2)
|
|
#define BRDFLUT_TEX_SIZE (BRDFLUT_TEX_WIDTH * BRDFLUT_TEX_PITCH)
|
|
|
|
// Stored in R16G16F format
|
|
static const unsigned char brfLutTexBytes[] =
|
|
{
|
|
)";
|
|
|
|
headerFile->Printf( "%s\n", intro );
|
|
|
|
const byte* hdrBytes = (const byte* ) hdrBuffer;
|
|
for( int i = 0; i < hdrBufferSize; i++ )
|
|
{
|
|
byte b = hdrBytes[i];
|
|
|
|
if( i < ( hdrBufferSize - 1 ) )
|
|
{
|
|
headerFile->Printf( "0x%02hhx, ", b );
|
|
}
|
|
else
|
|
{
|
|
headerFile->Printf( "0x%02hhx", b );
|
|
}
|
|
|
|
if( i % 12 == 0 )
|
|
{
|
|
headerFile->Printf( "\n" );
|
|
}
|
|
}
|
|
headerFile->Printf( "\n};\n#endif\n" );
|
|
|
|
int end = Sys_Milliseconds();
|
|
|
|
common->Printf( "%s integrated in %5.1f seconds\n\n", fullname.c_str(), ( end - start ) * 0.001f );
|
|
|
|
Mem_Free( ldrBuffer );
|
|
Mem_Free( hdrBuffer );
|
|
}
|
|
|
|
|