mirror of
https://github.com/id-Software/DOOM-3-BFG.git
synced 2025-03-18 00:21:56 +00:00
170 lines
6.4 KiB
HLSL
170 lines
6.4 KiB
HLSL
/*
|
||
===========================================================================
|
||
|
||
Doom 3 BFG Edition GPL Source Code
|
||
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
|
||
Copyright (C) 2013-2021 Robert Beckebans
|
||
|
||
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
|
||
|
||
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with Doom 3 BFG Edition Source Code. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
|
||
|
||
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
|
||
|
||
===========================================================================
|
||
*/
|
||
|
||
#include "global_inc.hlsl"
|
||
#include "BRDF.inc.hlsl"
|
||
|
||
|
||
// *INDENT-OFF*
|
||
Texture2D t_Normal : register( t0 VK_DESCRIPTOR_SET( 0 ) );
|
||
Texture2D t_Specular : register( t1 VK_DESCRIPTOR_SET( 0 ) );
|
||
Texture2D t_BaseColor : register( t2 VK_DESCRIPTOR_SET( 0 ) );
|
||
Texture2D t_LightFalloff : register( t3 VK_DESCRIPTOR_SET( 0 ) );
|
||
Texture2D t_LightProjection : register( t4 VK_DESCRIPTOR_SET( 0 ) );
|
||
|
||
SamplerState s_Material : register( s0 VK_DESCRIPTOR_SET( 1 ) ); // for the normal/specular/basecolor
|
||
SamplerState s_Lighting : register( s1 VK_DESCRIPTOR_SET( 1 ) ); // for sampling the jitter
|
||
|
||
struct PS_IN
|
||
{
|
||
float4 position : SV_Position;
|
||
float4 texcoord0 : TEXCOORD0_centroid;
|
||
float4 texcoord1 : TEXCOORD1_centroid;
|
||
float4 texcoord2 : TEXCOORD2_centroid;
|
||
float4 texcoord3 : TEXCOORD3_centroid;
|
||
float4 texcoord4 : TEXCOORD4_centroid;
|
||
float4 texcoord5 : TEXCOORD5_centroid;
|
||
float4 texcoord6 : TEXCOORD6_centroid;
|
||
float4 color : COLOR0;
|
||
};
|
||
|
||
struct PS_OUT
|
||
{
|
||
half4 color : SV_Target0;
|
||
};
|
||
// *INDENT-ON*
|
||
|
||
void main( PS_IN fragment, out PS_OUT result )
|
||
{
|
||
float4 bumpMap = t_Normal.Sample( s_Material, fragment.texcoord1.xy );
|
||
float4 lightFalloff = idtex2Dproj( s_Lighting, t_LightFalloff, fragment.texcoord2 );
|
||
float4 lightProj = idtex2Dproj( s_Lighting, t_LightProjection, fragment.texcoord3 );
|
||
float4 YCoCG = t_BaseColor.Sample( s_Material, fragment.texcoord4.xy );
|
||
float4 specMapSRGB = t_Specular.Sample( s_Material, fragment.texcoord5.xy );
|
||
float4 specMap = sRGBAToLinearRGBA( specMapSRGB );
|
||
|
||
float3 lightVector = normalize( fragment.texcoord0.xyz );
|
||
float3 viewVector = normalize( fragment.texcoord6.xyz );
|
||
float3 diffuseMap = sRGBToLinearRGB( ConvertYCoCgToRGB( YCoCG ) );
|
||
|
||
float3 localNormal;
|
||
// RB begin
|
||
#if defined(USE_NORMAL_FMT_RGB8)
|
||
localNormal.xy = bumpMap.rg - 0.5;
|
||
#else
|
||
localNormal.xy = bumpMap.wy - 0.5;
|
||
#endif
|
||
// RB end
|
||
localNormal.z = sqrt( abs( dot( localNormal.xy, localNormal.xy ) - 0.25 ) );
|
||
localNormal = normalize( localNormal );
|
||
|
||
// traditional very dark Lambert light model used in Doom 3
|
||
float ldotN = saturate( dot3( localNormal, lightVector ) );
|
||
|
||
#if defined(USE_HALF_LAMBERT)
|
||
// RB: http://developer.valvesoftware.com/wiki/Half_Lambert
|
||
float halfLdotN = dot3( localNormal, lightVector ) * 0.5 + 0.5;
|
||
halfLdotN *= halfLdotN;
|
||
|
||
// tweak to not loose so many details
|
||
float lambert = lerp( ldotN, halfLdotN, 0.5 );
|
||
#else
|
||
float lambert = ldotN;
|
||
#endif
|
||
|
||
|
||
float3 halfAngleVector = normalize( lightVector + viewVector );
|
||
float hdotN = clamp( dot3( halfAngleVector, localNormal ), 0.0, 1.0 );
|
||
|
||
#if USE_PBR
|
||
const float metallic = specMapSRGB.g;
|
||
const float roughness = specMapSRGB.r;
|
||
const float glossiness = 1.0 - roughness;
|
||
|
||
// the vast majority of real-world materials (anything not metal or gems) have F(0<>)
|
||
// values in a very narrow range (~0.02 - 0.08)
|
||
|
||
// approximate non-metals with linear RGB 0.04 which is 0.08 * 0.5 (default in UE4)
|
||
const float3 dielectricColor = _float3( 0.04 );
|
||
|
||
// derive diffuse and specular from albedo(m) base color
|
||
const float3 baseColor = diffuseMap;
|
||
|
||
float3 diffuseColor = baseColor * ( 1.0 - metallic );
|
||
float3 specularColor = lerp( dielectricColor, baseColor, metallic );
|
||
#else
|
||
const float roughness = EstimateLegacyRoughness( specMapSRGB.rgb );
|
||
|
||
float3 diffuseColor = diffuseMap;
|
||
float3 specularColor = specMapSRGB.rgb; // RB: should be linear but it looks too flat
|
||
#endif
|
||
|
||
|
||
// RB: compensate r_lightScale 3 and the division of Pi
|
||
//lambert *= 1.3;
|
||
|
||
// rpDiffuseModifier contains light color multiplier
|
||
float3 lightColor = sRGBToLinearRGB( lightProj.xyz * lightFalloff.xyz );
|
||
|
||
float vdotN = clamp( dot3( viewVector, localNormal ), 0.0, 1.0 );
|
||
float vdotH = clamp( dot3( viewVector, halfAngleVector ), 0.0, 1.0 );
|
||
float ldotH = clamp( dot3( lightVector, halfAngleVector ), 0.0, 1.0 );
|
||
|
||
// compensate r_lightScale 3 * 2
|
||
float3 reflectColor = specularColor * rpSpecularModifier.rgb * 1.0;// * 0.5;
|
||
|
||
// cheap approximation by ARM with only one division
|
||
// http://community.arm.com/servlet/JiveServlet/download/96891546-19496/siggraph2015-mmg-renaldas-slides.pdf
|
||
// page 26
|
||
|
||
float rr = roughness * roughness;
|
||
float rrrr = rr * rr;
|
||
|
||
// disney GGX
|
||
float D = ( hdotN * hdotN ) * ( rrrr - 1.0 ) + 1.0;
|
||
float VFapprox = ( ldotH * ldotH ) * ( roughness + 0.5 );
|
||
float3 specularLight = ( rrrr / ( 4.0 * PI * D * D * VFapprox ) ) * ldotN * reflectColor;
|
||
//specularLight = float3( 0.0 );
|
||
|
||
#if 0
|
||
result.color = float4( _float3( VFapprox ), 1.0 );
|
||
return;
|
||
#endif
|
||
|
||
// see http://seblagarde.wordpress.com/2012/01/08/pi-or-not-to-pi-in-game-lighting-equation/
|
||
//lambert /= PI;
|
||
|
||
//float3 diffuseColor = mix( diffuseMap, F0, metal ) * rpDiffuseModifier.xyz;
|
||
float3 diffuseLight = diffuseColor * lambert * ( rpDiffuseModifier.xyz );
|
||
|
||
float3 color = ( diffuseLight + specularLight ) * lightColor * fragment.color.rgb;
|
||
|
||
result.color.rgb = color;
|
||
result.color.a = 1.0;
|
||
}
|