/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. Copyright (C) 2012 Robert Beckebans This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #pragma hdrstop #include "../precompiled.h" //=============================================================== // // idMatX // //=============================================================== float idMatX::temp[MATX_MAX_TEMP + 4]; // RB: changed int to intptr_t float* idMatX::tempPtr = ( float* )( ( ( intptr_t ) idMatX::temp + 15 ) & ~15 ); // RB end int idMatX::tempIndex = 0; /* ============ idMatX::ChangeSize ============ */ void idMatX::ChangeSize( int rows, int columns, bool makeZero ) { int alloc = ( rows * columns + 3 ) & ~3; if( alloc > alloced && alloced != -1 ) { float* oldMat = mat; mat = ( float* ) Mem_Alloc16( alloc * sizeof( float ), TAG_MATH ); if( makeZero ) { memset( mat, 0, alloc * sizeof( float ) ); } alloced = alloc; if( oldMat ) { int minRow = Min( numRows, rows ); int minColumn = Min( numColumns, columns ); for( int i = 0; i < minRow; i++ ) { for( int j = 0; j < minColumn; j++ ) { mat[ i * columns + j ] = oldMat[ i * numColumns + j ]; } } Mem_Free16( oldMat ); } } else { if( columns < numColumns ) { int minRow = Min( numRows, rows ); for( int i = 0; i < minRow; i++ ) { for( int j = 0; j < columns; j++ ) { mat[ i * columns + j ] = mat[ i * numColumns + j ]; } } } else if( columns > numColumns ) { for( int i = Min( numRows, rows ) - 1; i >= 0; i-- ) { if( makeZero ) { for( int j = columns - 1; j >= numColumns; j-- ) { mat[ i * columns + j ] = 0.0f; } } for( int j = numColumns - 1; j >= 0; j-- ) { mat[ i * columns + j ] = mat[ i * numColumns + j ]; } } } if( makeZero && rows > numRows ) { memset( mat + numRows * columns, 0, ( rows - numRows ) * columns * sizeof( float ) ); } } numRows = rows; numColumns = columns; MATX_CLEAREND(); } /* ============ idMatX::RemoveRow ============ */ idMatX& idMatX::RemoveRow( int r ) { int i; assert( r < numRows ); numRows--; for( i = r; i < numRows; i++ ) { memcpy( &mat[i * numColumns], &mat[( i + 1 ) * numColumns], numColumns * sizeof( float ) ); } return *this; } /* ============ idMatX::RemoveColumn ============ */ idMatX& idMatX::RemoveColumn( int r ) { int i; assert( r < numColumns ); numColumns--; for( i = 0; i < numRows - 1; i++ ) { memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], numColumns * sizeof( float ) ); } memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], ( numColumns - r ) * sizeof( float ) ); return *this; } /* ============ idMatX::RemoveRowColumn ============ */ idMatX& idMatX::RemoveRowColumn( int r ) { int i; assert( r < numRows && r < numColumns ); numRows--; numColumns--; if( r > 0 ) { for( i = 0; i < r - 1; i++ ) { memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], numColumns * sizeof( float ) ); } memmove( &mat[i * numColumns + r], &mat[i * ( numColumns + 1 ) + r + 1], ( numColumns - r ) * sizeof( float ) ); } memcpy( &mat[r * numColumns], &mat[( r + 1 ) * ( numColumns + 1 )], r * sizeof( float ) ); for( i = r; i < numRows - 1; i++ ) { memcpy( &mat[i * numColumns + r], &mat[( i + 1 ) * ( numColumns + 1 ) + r + 1], numColumns * sizeof( float ) ); } memcpy( &mat[i * numColumns + r], &mat[( i + 1 ) * ( numColumns + 1 ) + r + 1], ( numColumns - r ) * sizeof( float ) ); return *this; } /* ======================== idMatX::CopyLowerToUpperTriangle ======================== */ void idMatX::CopyLowerToUpperTriangle() { assert( ( GetNumColumns() & 3 ) == 0 ); assert( GetNumColumns() >= GetNumRows() ); const int n = GetNumColumns(); const int m = GetNumRows(); const int n0 = 0; const int n1 = n; const int n2 = ( n << 1 ); const int n3 = ( n << 1 ) + n; const int n4 = ( n << 2 ); const int b1 = ( ( m - 0 ) >> 1 ) & 1; // ( m & 3 ) > 1 const int b2 = ( ( m - 1 ) >> 1 ) & 1; // ( m & 3 ) > 2 (provided ( m & 3 ) > 0) const int n1_masked = ( n & -b1 ); const int n2_masked = ( n & -b1 ) + ( n & -b2 ); const __m128 mask0 = __m128c( _mm_set_epi32( 0, 0, 0, -1 ) ); const __m128 mask1 = __m128c( _mm_set_epi32( 0, 0, -1, -1 ) ); const __m128 mask2 = __m128c( _mm_set_epi32( 0, -1, -1, -1 ) ); const __m128 mask3 = __m128c( _mm_set_epi32( -1, -1, -1, -1 ) ); const __m128 bottomMask[2] = { __m128c( _mm_set1_epi32( 0 ) ), __m128c( _mm_set1_epi32( -1 ) ) }; float* __restrict basePtr = ToFloatPtr(); for( int i = 0; i < m - 3; i += 4 ) { // copy top left diagonal 4x4 block elements __m128 r0 = _mm_and_ps( _mm_load_ps( basePtr + n0 ), mask0 ); __m128 r1 = _mm_and_ps( _mm_load_ps( basePtr + n1 ), mask1 ); __m128 r2 = _mm_and_ps( _mm_load_ps( basePtr + n2 ), mask2 ); __m128 r3 = _mm_and_ps( _mm_load_ps( basePtr + n3 ), mask3 ); __m128 t0 = _mm_unpacklo_ps( r0, r2 ); // x0, z0, x1, z1 __m128 t1 = _mm_unpackhi_ps( r0, r2 ); // x2, z2, x3, z3 __m128 t2 = _mm_unpacklo_ps( r1, r3 ); // y0, w0, y1, w1 __m128 t3 = _mm_unpackhi_ps( r1, r3 ); // y2, w2, y3, w3 __m128 s0 = _mm_unpacklo_ps( t0, t2 ); // x0, y0, z0, w0 __m128 s1 = _mm_unpackhi_ps( t0, t2 ); // x1, y1, z1, w1 __m128 s2 = _mm_unpacklo_ps( t1, t3 ); // x2, y2, z2, w2 __m128 s3 = _mm_unpackhi_ps( t1, t3 ); // x3, y3, z3, w3 r0 = _mm_or_ps( r0, s0 ); r1 = _mm_or_ps( r1, s1 ); r2 = _mm_or_ps( r2, s2 ); r3 = _mm_or_ps( r3, s3 ); _mm_store_ps( basePtr + n0, r0 ); _mm_store_ps( basePtr + n1, r1 ); _mm_store_ps( basePtr + n2, r2 ); _mm_store_ps( basePtr + n3, r3 ); // copy one column of 4x4 blocks to one row of 4x4 blocks const float* __restrict srcPtr = basePtr; float* __restrict dstPtr = basePtr; for( int j = i + 4; j < m - 3; j += 4 ) { srcPtr += n4; dstPtr += 4; __m128 r0 = _mm_load_ps( srcPtr + n0 ); __m128 r1 = _mm_load_ps( srcPtr + n1 ); __m128 r2 = _mm_load_ps( srcPtr + n2 ); __m128 r3 = _mm_load_ps( srcPtr + n3 ); __m128 t0 = _mm_unpacklo_ps( r0, r2 ); // x0, z0, x1, z1 __m128 t1 = _mm_unpackhi_ps( r0, r2 ); // x2, z2, x3, z3 __m128 t2 = _mm_unpacklo_ps( r1, r3 ); // y0, w0, y1, w1 __m128 t3 = _mm_unpackhi_ps( r1, r3 ); // y2, w2, y3, w3 r0 = _mm_unpacklo_ps( t0, t2 ); // x0, y0, z0, w0 r1 = _mm_unpackhi_ps( t0, t2 ); // x1, y1, z1, w1 r2 = _mm_unpacklo_ps( t1, t3 ); // x2, y2, z2, w2 r3 = _mm_unpackhi_ps( t1, t3 ); // x3, y3, z3, w3 _mm_store_ps( dstPtr + n0, r0 ); _mm_store_ps( dstPtr + n1, r1 ); _mm_store_ps( dstPtr + n2, r2 ); _mm_store_ps( dstPtr + n3, r3 ); } // copy the last partial 4x4 block elements if( m & 3 ) { srcPtr += n4; dstPtr += 4; __m128 r0 = _mm_load_ps( srcPtr + n0 ); __m128 r1 = _mm_and_ps( _mm_load_ps( srcPtr + n1_masked ), bottomMask[b1] ); __m128 r2 = _mm_and_ps( _mm_load_ps( srcPtr + n2_masked ), bottomMask[b2] ); __m128 r3 = _mm_setzero_ps(); __m128 t0 = _mm_unpacklo_ps( r0, r2 ); // x0, z0, x1, z1 __m128 t1 = _mm_unpackhi_ps( r0, r2 ); // x2, z2, x3, z3 __m128 t2 = _mm_unpacklo_ps( r1, r3 ); // y0, w0, y1, w1 __m128 t3 = _mm_unpackhi_ps( r1, r3 ); // y2, w2, y3, w3 r0 = _mm_unpacklo_ps( t0, t2 ); // x0, y0, z0, w0 r1 = _mm_unpackhi_ps( t0, t2 ); // x1, y1, z1, w1 r2 = _mm_unpacklo_ps( t1, t3 ); // x2, y2, z2, w2 r3 = _mm_unpackhi_ps( t1, t3 ); // x3, y3, z3, w3 _mm_store_ps( dstPtr + n0, r0 ); _mm_store_ps( dstPtr + n1, r1 ); _mm_store_ps( dstPtr + n2, r2 ); _mm_store_ps( dstPtr + n3, r3 ); } basePtr += n4 + 4; } // copy the lower right partial diagonal 4x4 block elements if( m & 3 ) { __m128 r0 = _mm_and_ps( _mm_load_ps( basePtr + n0 ), mask0 ); __m128 r1 = _mm_and_ps( _mm_load_ps( basePtr + n1_masked ), _mm_and_ps( mask1, bottomMask[b1] ) ); __m128 r2 = _mm_and_ps( _mm_load_ps( basePtr + n2_masked ), _mm_and_ps( mask2, bottomMask[b2] ) ); __m128 r3 = _mm_setzero_ps(); __m128 t0 = _mm_unpacklo_ps( r0, r2 ); // x0, z0, x1, z1 __m128 t1 = _mm_unpackhi_ps( r0, r2 ); // x2, z2, x3, z3 __m128 t2 = _mm_unpacklo_ps( r1, r3 ); // y0, w0, y1, w1 __m128 t3 = _mm_unpackhi_ps( r1, r3 ); // y2, w2, y3, w3 __m128 s0 = _mm_unpacklo_ps( t0, t2 ); // x0, y0, z0, w0 __m128 s1 = _mm_unpackhi_ps( t0, t2 ); // x1, y1, z1, w1 __m128 s2 = _mm_unpacklo_ps( t1, t3 ); // x2, y2, z2, w2 r0 = _mm_or_ps( r0, s0 ); r1 = _mm_or_ps( r1, s1 ); r2 = _mm_or_ps( r2, s2 ); _mm_store_ps( basePtr + n2_masked, r2 ); _mm_store_ps( basePtr + n1_masked, r1 ); _mm_store_ps( basePtr + n0, r0 ); } #ifdef _DEBUG for( int i = 0; i < numRows; i++ ) { for( int j = 0; j < numRows; j++ ) { assert( mat[ i * numColumns + j ] == mat[ j * numColumns + i ] ); } } #endif } /* ============ idMatX::IsOrthogonal returns true if (*this) * this->Transpose() == Identity ============ */ bool idMatX::IsOrthogonal( const float epsilon ) const { float* ptr1, *ptr2, sum; if( !IsSquare() ) { return false; } ptr1 = mat; for( int i = 0; i < numRows; i++ ) { for( int j = 0; j < numColumns; j++ ) { ptr2 = mat + j; sum = ptr1[0] * ptr2[0] - ( float )( i == j ); for( int n = 1; n < numColumns; n++ ) { ptr2 += numColumns; sum += ptr1[n] * ptr2[0]; } if( idMath::Fabs( sum ) > epsilon ) { return false; } } ptr1 += numColumns; } return true; } /* ============ idMatX::IsOrthonormal returns true if (*this) * this->Transpose() == Identity and the length of each column vector is 1 ============ */ bool idMatX::IsOrthonormal( const float epsilon ) const { float* ptr1, *ptr2, sum; if( !IsSquare() ) { return false; } ptr1 = mat; for( int i = 0; i < numRows; i++ ) { for( int j = 0; j < numColumns; j++ ) { ptr2 = mat + j; sum = ptr1[0] * ptr2[0] - ( float )( i == j ); for( int n = 1; n < numColumns; n++ ) { ptr2 += numColumns; sum += ptr1[n] * ptr2[0]; } if( idMath::Fabs( sum ) > epsilon ) { return false; } } ptr1 += numColumns; ptr2 = mat + i; sum = ptr2[0] * ptr2[0] - 1.0f; for( int j = 1; j < numRows; j++ ) { ptr2 += numColumns; sum += ptr2[j] * ptr2[j]; } if( idMath::Fabs( sum ) > epsilon ) { return false; } } return true; } /* ============ idMatX::IsPMatrix returns true if the matrix is a P-matrix A square matrix is a P-matrix if all its principal minors are positive. ============ */ bool idMatX::IsPMatrix( const float epsilon ) const { int i, j; float d; idMatX m; if( !IsSquare() ) { return false; } if( numRows <= 0 ) { return true; } if( ( *this )[0][0] <= epsilon ) { return false; } if( numRows <= 1 ) { return true; } m.SetData( numRows - 1, numColumns - 1, MATX_ALLOCA( ( numRows - 1 ) * ( numColumns - 1 ) ) ); for( i = 1; i < numRows; i++ ) { for( j = 1; j < numColumns; j++ ) { m[i - 1][j - 1] = ( *this )[i][j]; } } if( !m.IsPMatrix( epsilon ) ) { return false; } for( i = 1; i < numRows; i++ ) { d = ( *this )[i][0] / ( *this )[0][0]; for( j = 1; j < numColumns; j++ ) { m[i - 1][j - 1] = ( *this )[i][j] - d * ( *this )[0][j]; } } if( !m.IsPMatrix( epsilon ) ) { return false; } return true; } /* ============ idMatX::IsZMatrix returns true if the matrix is a Z-matrix A square matrix M is a Z-matrix if M[i][j] <= 0 for all i != j. ============ */ bool idMatX::IsZMatrix( const float epsilon ) const { int i, j; if( !IsSquare() ) { return false; } for( i = 0; i < numRows; i++ ) { for( j = 0; j < numColumns; j++ ) { if( ( *this )[i][j] > epsilon && i != j ) { return false; } } } return true; } /* ============ idMatX::IsPositiveDefinite returns true if the matrix is Positive Definite (PD) A square matrix M of order n is said to be PD if y'My > 0 for all vectors y of dimension n, y != 0. ============ */ bool idMatX::IsPositiveDefinite( const float epsilon ) const { int i, j, k; float d, s; idMatX m; // the matrix must be square if( !IsSquare() ) { return false; } // copy matrix m.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) ); m = *this; // add transpose for( i = 0; i < numRows; i++ ) { for( j = 0; j < numColumns; j++ ) { m[i][j] += ( *this )[j][i]; } } // test Positive Definiteness with Gaussian pivot steps for( i = 0; i < numRows; i++ ) { for( j = i; j < numColumns; j++ ) { if( m[j][j] <= epsilon ) { return false; } } d = 1.0f / m[i][i]; for( j = i + 1; j < numColumns; j++ ) { s = d * m[j][i]; m[j][i] = 0.0f; for( k = i + 1; k < numRows; k++ ) { m[j][k] -= s * m[i][k]; } } } return true; } /* ============ idMatX::IsSymmetricPositiveDefinite returns true if the matrix is Symmetric Positive Definite (PD) ============ */ bool idMatX::IsSymmetricPositiveDefinite( const float epsilon ) const { idMatX m; // the matrix must be symmetric if( !IsSymmetric( epsilon ) ) { return false; } // copy matrix m.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) ); m = *this; // being able to obtain Cholesky factors is both a necessary and sufficient condition for positive definiteness return m.Cholesky_Factor(); } /* ============ idMatX::IsPositiveSemiDefinite returns true if the matrix is Positive Semi Definite (PSD) A square matrix M of order n is said to be PSD if y'My >= 0 for all vectors y of dimension n, y != 0. ============ */ bool idMatX::IsPositiveSemiDefinite( const float epsilon ) const { int i, j, k; float d, s; idMatX m; // the matrix must be square if( !IsSquare() ) { return false; } // copy original matrix m.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) ); m = *this; // add transpose for( i = 0; i < numRows; i++ ) { for( j = 0; j < numColumns; j++ ) { m[i][j] += ( *this )[j][i]; } } // test Positive Semi Definiteness with Gaussian pivot steps for( i = 0; i < numRows; i++ ) { for( j = i; j < numColumns; j++ ) { if( m[j][j] < -epsilon ) { return false; } if( m[j][j] > epsilon ) { continue; } for( k = 0; k < numRows; k++ ) { if( idMath::Fabs( m[k][j] ) > epsilon ) { return false; } if( idMath::Fabs( m[j][k] ) > epsilon ) { return false; } } } if( m[i][i] <= epsilon ) { continue; } d = 1.0f / m[i][i]; for( j = i + 1; j < numColumns; j++ ) { s = d * m[j][i]; m[j][i] = 0.0f; for( k = i + 1; k < numRows; k++ ) { m[j][k] -= s * m[i][k]; } } } return true; } /* ============ idMatX::IsSymmetricPositiveSemiDefinite returns true if the matrix is Symmetric Positive Semi Definite (PSD) ============ */ bool idMatX::IsSymmetricPositiveSemiDefinite( const float epsilon ) const { // the matrix must be symmetric if( !IsSymmetric( epsilon ) ) { return false; } return IsPositiveSemiDefinite( epsilon ); } /* ============ idMatX::LowerTriangularInverse in-place inversion of the lower triangular matrix ============ */ bool idMatX::LowerTriangularInverse() { int i, j, k; double d, sum; for( i = 0; i < numRows; i++ ) { d = ( *this )[i][i]; if( d == 0.0f ) { return false; } ( *this )[i][i] = d = 1.0f / d; for( j = 0; j < i; j++ ) { sum = 0.0f; for( k = j; k < i; k++ ) { sum -= ( *this )[i][k] * ( *this )[k][j]; } ( *this )[i][j] = sum * d; } } return true; } /* ============ idMatX::UpperTriangularInverse in-place inversion of the upper triangular matrix ============ */ bool idMatX::UpperTriangularInverse() { int i, j, k; double d, sum; for( i = numRows - 1; i >= 0; i-- ) { d = ( *this )[i][i]; if( d == 0.0f ) { return false; } ( *this )[i][i] = d = 1.0f / d; for( j = numRows - 1; j > i; j-- ) { sum = 0.0f; for( k = j; k > i; k-- ) { sum -= ( *this )[i][k] * ( *this )[k][j]; } ( *this )[i][j] = sum * d; } } return true; } /* ============= idMatX::ToString ============= */ const char* idMatX::ToString( int precision ) const { return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision ); } /* ============ idMatX::Update_RankOne Updates the matrix to obtain the matrix: A + alpha * v * w' ============ */ void idMatX::Update_RankOne( const idVecX& v, const idVecX& w, float alpha ) { int i, j; float s; assert( v.GetSize() >= numRows ); assert( w.GetSize() >= numColumns ); for( i = 0; i < numRows; i++ ) { s = alpha * v[i]; for( j = 0; j < numColumns; j++ ) { ( *this )[i][j] += s * w[j]; } } } /* ============ idMatX::Update_RankOneSymmetric Updates the matrix to obtain the matrix: A + alpha * v * v' ============ */ void idMatX::Update_RankOneSymmetric( const idVecX& v, float alpha ) { int i, j; float s; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); for( i = 0; i < numRows; i++ ) { s = alpha * v[i]; for( j = 0; j < numColumns; j++ ) { ( *this )[i][j] += s * v[j]; } } } /* ============ idMatX::Update_RowColumn Updates the matrix to obtain the matrix: [ 0 a 0 ] A + [ d b e ] [ 0 c 0 ] where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1] ============ */ void idMatX::Update_RowColumn( const idVecX& v, const idVecX& w, int r ) { int i; assert( w[r] == 0.0f ); assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); for( i = 0; i < numRows; i++ ) { ( *this )[i][r] += v[i]; } for( i = 0; i < numColumns; i++ ) { ( *this )[r][i] += w[i]; } } /* ============ idMatX::Update_RowColumnSymmetric Updates the matrix to obtain the matrix: [ 0 a 0 ] A + [ a b c ] [ 0 c 0 ] where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1] ============ */ void idMatX::Update_RowColumnSymmetric( const idVecX& v, int r ) { int i; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); for( i = 0; i < r; i++ ) { ( *this )[i][r] += v[i]; ( *this )[r][i] += v[i]; } ( *this )[r][r] += v[r]; for( i = r + 1; i < numRows; i++ ) { ( *this )[i][r] += v[i]; ( *this )[r][i] += v[i]; } } /* ============ idMatX::Update_Increment Updates the matrix to obtain the matrix: [ A a ] [ c b ] where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1]], w[numColumns] = 0 ============ */ void idMatX::Update_Increment( const idVecX& v, const idVecX& w ) { int i; assert( numRows == numColumns ); assert( v.GetSize() >= numRows + 1 ); assert( w.GetSize() >= numColumns + 1 ); ChangeSize( numRows + 1, numColumns + 1, false ); for( i = 0; i < numRows; i++ ) { ( *this )[i][numColumns - 1] = v[i]; } for( i = 0; i < numColumns - 1; i++ ) { ( *this )[numRows - 1][i] = w[i]; } } /* ============ idMatX::Update_IncrementSymmetric Updates the matrix to obtain the matrix: [ A a ] [ a b ] where: a = v[0,numRows-1], b = v[numRows] ============ */ void idMatX::Update_IncrementSymmetric( const idVecX& v ) { int i; assert( numRows == numColumns ); assert( v.GetSize() >= numRows + 1 ); ChangeSize( numRows + 1, numColumns + 1, false ); for( i = 0; i < numRows - 1; i++ ) { ( *this )[i][numColumns - 1] = v[i]; } for( i = 0; i < numColumns; i++ ) { ( *this )[numRows - 1][i] = v[i]; } } /* ============ idMatX::Update_Decrement Updates the matrix to obtain a matrix with row r and column r removed. ============ */ void idMatX::Update_Decrement( int r ) { RemoveRowColumn( r ); } /* ============ idMatX::Inverse_GaussJordan in-place inversion using Gauss-Jordan elimination ============ */ bool idMatX::Inverse_GaussJordan() { int i, j, k, r, c; float d, max; assert( numRows == numColumns ); int* columnIndex = ( int* ) _alloca16( numRows * sizeof( int ) ); int* rowIndex = ( int* ) _alloca16( numRows * sizeof( int ) ); bool* pivot = ( bool* ) _alloca16( numRows * sizeof( bool ) ); memset( pivot, 0, numRows * sizeof( bool ) ); // elimination with full pivoting for( i = 0; i < numRows; i++ ) { // search the whole matrix except for pivoted rows for the maximum absolute value max = 0.0f; r = c = 0; for( j = 0; j < numRows; j++ ) { if( !pivot[j] ) { for( k = 0; k < numRows; k++ ) { if( !pivot[k] ) { d = idMath::Fabs( ( *this )[j][k] ); if( d > max ) { max = d; r = j; c = k; } } } } } if( max == 0.0f ) { // matrix is not invertible return false; } pivot[c] = true; // swap rows such that entry (c,c) has the pivot entry if( r != c ) { SwapRows( r, c ); } // keep track of the row permutation rowIndex[i] = r; columnIndex[i] = c; // scale the row to make the pivot entry equal to 1 d = 1.0f / ( *this )[c][c]; ( *this )[c][c] = 1.0f; for( k = 0; k < numRows; k++ ) { ( *this )[c][k] *= d; } // zero out the pivot column entries in the other rows for( j = 0; j < numRows; j++ ) { if( j != c ) { d = ( *this )[j][c]; ( *this )[j][c] = 0.0f; for( k = 0; k < numRows; k++ ) { ( *this )[j][k] -= ( *this )[c][k] * d; } } } } // reorder rows to store the inverse of the original matrix for( j = numRows - 1; j >= 0; j-- ) { if( rowIndex[j] != columnIndex[j] ) { for( k = 0; k < numRows; k++ ) { d = ( *this )[k][rowIndex[j]]; ( *this )[k][rowIndex[j]] = ( *this )[k][columnIndex[j]]; ( *this )[k][columnIndex[j]] = d; } } } return true; } /* ============ idMatX::Inverse_UpdateRankOne Updates the in-place inverse using the Sherman-Morrison formula to obtain the inverse for the matrix: A + alpha * v * w' ============ */ bool idMatX::Inverse_UpdateRankOne( const idVecX& v, const idVecX& w, float alpha ) { int i, j; float beta, s; idVecX y, z; assert( numRows == numColumns ); assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); y.SetData( numRows, VECX_ALLOCA( numRows ) ); z.SetData( numRows, VECX_ALLOCA( numRows ) ); Multiply( y, v ); TransposeMultiply( z, w ); beta = 1.0f + ( w * y ); if( beta == 0.0f ) { return false; } alpha /= beta; for( i = 0; i < numRows; i++ ) { s = y[i] * alpha; for( j = 0; j < numColumns; j++ ) { ( *this )[i][j] -= s * z[j]; } } return true; } /* ============ idMatX::Inverse_UpdateRowColumn Updates the in-place inverse to obtain the inverse for the matrix: [ 0 a 0 ] A + [ d b e ] [ 0 c 0 ] where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1] ============ */ bool idMatX::Inverse_UpdateRowColumn( const idVecX& v, const idVecX& w, int r ) { idVecX s; assert( numRows == numColumns ); assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); assert( r >= 0 && r < numRows && r < numColumns ); assert( w[r] == 0.0f ); s.SetData( Max( numRows, numColumns ), VECX_ALLOCA( Max( numRows, numColumns ) ) ); s.Zero(); s[r] = 1.0f; if( !Inverse_UpdateRankOne( v, s, 1.0f ) ) { return false; } if( !Inverse_UpdateRankOne( s, w, 1.0f ) ) { return false; } return true; } /* ============ idMatX::Inverse_UpdateIncrement Updates the in-place inverse to obtain the inverse for the matrix: [ A a ] [ c b ] where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1], w[numColumns] = 0 ============ */ bool idMatX::Inverse_UpdateIncrement( const idVecX& v, const idVecX& w ) { idVecX v2; assert( numRows == numColumns ); assert( v.GetSize() >= numRows + 1 ); assert( w.GetSize() >= numColumns + 1 ); ChangeSize( numRows + 1, numColumns + 1, true ); ( *this )[numRows - 1][numRows - 1] = 1.0f; v2.SetData( numRows, VECX_ALLOCA( numRows ) ); v2 = v; v2[numRows - 1] -= 1.0f; return Inverse_UpdateRowColumn( v2, w, numRows - 1 ); } /* ============ idMatX::Inverse_UpdateDecrement Updates the in-place inverse to obtain the inverse of the matrix with row r and column r removed. v and w should store the column and row of the original matrix respectively. ============ */ bool idMatX::Inverse_UpdateDecrement( const idVecX& v, const idVecX& w, int r ) { idVecX v1, w1; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( w.GetSize() >= numColumns ); assert( r >= 0 && r < numRows && r < numColumns ); v1.SetData( numRows, VECX_ALLOCA( numRows ) ); w1.SetData( numRows, VECX_ALLOCA( numRows ) ); // update the row and column to identity v1 = -v; w1 = -w; v1[r] += 1.0f; w1[r] = 0.0f; if( !Inverse_UpdateRowColumn( v1, w1, r ) ) { return false; } // physically remove the row and column Update_Decrement( r ); return true; } /* ============ idMatX::Inverse_Solve Solve Ax = b with A inverted ============ */ void idMatX::Inverse_Solve( idVecX& x, const idVecX& b ) const { Multiply( x, b ); } /* ============ idMatX::LU_Factor in-place factorization: LU L is a triangular matrix stored in the lower triangle. L has ones on the diagonal that are not stored. U is a triangular matrix stored in the upper triangle. If index != NULL partial pivoting is used for numerical stability. If index != NULL it must point to an array of numRow integers and is used to keep track of the row permutation. If det != NULL the determinant of the matrix is calculated and stored. ============ */ bool idMatX::LU_Factor( int* index, float* det ) { int i, j, k, newi, min; double s, t, d, w; // if partial pivoting should be used if( index ) { for( i = 0; i < numRows; i++ ) { index[i] = i; } } w = 1.0f; min = Min( numRows, numColumns ); for( i = 0; i < min; i++ ) { newi = i; s = idMath::Fabs( ( *this )[i][i] ); if( index ) { // find the largest absolute pivot for( j = i + 1; j < numRows; j++ ) { t = idMath::Fabs( ( *this )[j][i] ); if( t > s ) { newi = j; s = t; } } } if( s == 0.0f ) { return false; } if( newi != i && index ) { w = -w; // swap index elements k = index[i]; index[i] = index[newi]; index[newi] = k; // swap rows for( j = 0; j < numColumns; j++ ) { t = ( *this )[newi][j]; ( *this )[newi][j] = ( *this )[i][j]; ( *this )[i][j] = t; } } if( i < numRows ) { d = 1.0f / ( *this )[i][i]; for( j = i + 1; j < numRows; j++ ) { ( *this )[j][i] *= d; } } if( i < min - 1 ) { for( j = i + 1; j < numRows; j++ ) { d = ( *this )[j][i]; for( k = i + 1; k < numColumns; k++ ) { ( *this )[j][k] -= d * ( *this )[i][k]; } } } } if( det ) { for( i = 0; i < numRows; i++ ) { w *= ( *this )[i][i]; } *det = w; } return true; } /* ============ idMatX::LU_UpdateRankOne Updates the in-place LU factorization to obtain the factors for the matrix: LU + alpha * v * w' ============ */ bool idMatX::LU_UpdateRankOne( const idVecX& v, const idVecX& w, float alpha, int* index ) { int i, j, max; float* y, *z; double diag, beta, p0, p1, d; assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); y = ( float* ) _alloca16( v.GetSize() * sizeof( float ) ); z = ( float* ) _alloca16( w.GetSize() * sizeof( float ) ); if( index != NULL ) { for( i = 0; i < numRows; i++ ) { y[i] = alpha * v[index[i]]; } } else { for( i = 0; i < numRows; i++ ) { y[i] = alpha * v[i]; } } memcpy( z, w.ToFloatPtr(), w.GetSize() * sizeof( float ) ); max = Min( numRows, numColumns ); for( i = 0; i < max; i++ ) { diag = ( *this )[i][i]; p0 = y[i]; p1 = z[i]; diag += p0 * p1; if( diag == 0.0f ) { return false; } beta = p1 / diag; ( *this )[i][i] = diag; for( j = i + 1; j < numColumns; j++ ) { d = ( *this )[i][j]; d += p0 * z[j]; z[j] -= beta * d; ( *this )[i][j] = d; } for( j = i + 1; j < numRows; j++ ) { d = ( *this )[j][i]; y[j] -= p0 * d; d += beta * y[j]; ( *this )[j][i] = d; } } return true; } /* ============ idMatX::LU_UpdateRowColumn Updates the in-place LU factorization to obtain the factors for the matrix: [ 0 a 0 ] LU + [ d b e ] [ 0 c 0 ] where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1] ============ */ bool idMatX::LU_UpdateRowColumn( const idVecX& v, const idVecX& w, int r, int* index ) { #if 0 idVecX s; assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); assert( r >= 0 && r < numRows && r < numColumns ); assert( w[r] == 0.0f ); s.SetData( Max( numRows, numColumns ), VECX_ALLOCA( Max( numRows, numColumns ) ) ); s.Zero(); s[r] = 1.0f; if( !LU_UpdateRankOne( v, s, 1.0f, index ) ) { return false; } if( !LU_UpdateRankOne( s, w, 1.0f, index ) ) { return false; } return true; #else int i, j, min, max, rp; float* y0, *y1, *z0, *z1; double diag, beta0, beta1, p0, p1, q0, q1, d; assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); assert( r >= 0 && r < numColumns && r < numRows ); assert( w[r] == 0.0f ); y0 = ( float* ) _alloca16( v.GetSize() * sizeof( float ) ); z0 = ( float* ) _alloca16( w.GetSize() * sizeof( float ) ); y1 = ( float* ) _alloca16( v.GetSize() * sizeof( float ) ); z1 = ( float* ) _alloca16( w.GetSize() * sizeof( float ) ); if( index != NULL ) { for( i = 0; i < numRows; i++ ) { y0[i] = v[index[i]]; } rp = r; for( i = 0; i < numRows; i++ ) { if( index[i] == r ) { rp = i; break; } } } else { memcpy( y0, v.ToFloatPtr(), v.GetSize() * sizeof( float ) ); rp = r; } memset( y1, 0, v.GetSize() * sizeof( float ) ); y1[rp] = 1.0f; memset( z0, 0, w.GetSize() * sizeof( float ) ); z0[r] = 1.0f; memcpy( z1, w.ToFloatPtr(), w.GetSize() * sizeof( float ) ); // update the beginning of the to be updated row and column min = Min( r, rp ); for( i = 0; i < min; i++ ) { p0 = y0[i]; beta1 = z1[i] / ( *this )[i][i]; ( *this )[i][r] += p0; for( j = i + 1; j < numColumns; j++ ) { z1[j] -= beta1 * ( *this )[i][j]; } for( j = i + 1; j < numRows; j++ ) { y0[j] -= p0 * ( *this )[j][i]; } ( *this )[rp][i] += beta1; } // update the lower right corner starting at r,r max = Min( numRows, numColumns ); for( i = min; i < max; i++ ) { diag = ( *this )[i][i]; p0 = y0[i]; p1 = z0[i]; diag += p0 * p1; if( diag == 0.0f ) { return false; } beta0 = p1 / diag; q0 = y1[i]; q1 = z1[i]; diag += q0 * q1; if( diag == 0.0f ) { return false; } beta1 = q1 / diag; ( *this )[i][i] = diag; for( j = i + 1; j < numColumns; j++ ) { d = ( *this )[i][j]; d += p0 * z0[j]; z0[j] -= beta0 * d; d += q0 * z1[j]; z1[j] -= beta1 * d; ( *this )[i][j] = d; } for( j = i + 1; j < numRows; j++ ) { d = ( *this )[j][i]; y0[j] -= p0 * d; d += beta0 * y0[j]; y1[j] -= q0 * d; d += beta1 * y1[j]; ( *this )[j][i] = d; } } return true; #endif } /* ============ idMatX::LU_UpdateIncrement Updates the in-place LU factorization to obtain the factors for the matrix: [ A a ] [ c b ] where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1], w[numColumns] = 0 ============ */ bool idMatX::LU_UpdateIncrement( const idVecX& v, const idVecX& w, int* index ) { int i, j; float sum; assert( numRows == numColumns ); assert( v.GetSize() >= numRows + 1 ); assert( w.GetSize() >= numColumns + 1 ); ChangeSize( numRows + 1, numColumns + 1, true ); // add row to L for( i = 0; i < numRows - 1; i++ ) { sum = w[i]; for( j = 0; j < i; j++ ) { sum -= ( *this )[numRows - 1][j] * ( *this )[j][i]; } ( *this )[numRows - 1 ][i] = sum / ( *this )[i][i]; } // add row to the permutation index if( index != NULL ) { index[numRows - 1] = numRows - 1; } // add column to U for( i = 0; i < numRows; i++ ) { if( index != NULL ) { sum = v[index[i]]; } else { sum = v[i]; } for( j = 0; j < i; j++ ) { sum -= ( *this )[i][j] * ( *this )[j][numRows - 1]; } ( *this )[i][numRows - 1] = sum; } return true; } /* ============ idMatX::LU_UpdateDecrement Updates the in-place LU factorization to obtain the factors for the matrix with row r and column r removed. v and w should store the column and row of the original matrix respectively. If index != NULL then u should store row index[r] of the original matrix. If index == NULL then u = w. ============ */ bool idMatX::LU_UpdateDecrement( const idVecX& v, const idVecX& w, const idVecX& u, int r, int* index ) { int i, p; idVecX v1, w1; assert( numRows == numColumns ); assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); assert( r >= 0 && r < numRows && r < numColumns ); v1.SetData( numRows, VECX_ALLOCA( numRows ) ); w1.SetData( numRows, VECX_ALLOCA( numRows ) ); if( index != NULL ) { // find the pivot row for( p = i = 0; i < numRows; i++ ) { if( index[i] == r ) { p = i; break; } } // update the row and column to identity v1 = -v; w1 = -u; if( p != r ) { SwapValues( v1[index[r]], v1[index[p]] ); SwapValues( index[r], index[p] ); } v1[r] += 1.0f; w1[r] = 0.0f; if( !LU_UpdateRowColumn( v1, w1, r, index ) ) { return false; } if( p != r ) { if( idMath::Fabs( u[p] ) < 1e-4f ) { // NOTE: an additional row interchange is required for numerical stability } // move row index[r] of the original matrix to row index[p] of the original matrix v1.Zero(); v1[index[p]] = 1.0f; w1 = u - w; if( !LU_UpdateRankOne( v1, w1, 1.0f, index ) ) { return false; } } // remove the row from the permutation index for( i = r; i < numRows - 1; i++ ) { index[i] = index[i + 1]; } for( i = 0; i < numRows - 1; i++ ) { if( index[i] > r ) { index[i]--; } } } else { v1 = -v; w1 = -w; v1[r] += 1.0f; w1[r] = 0.0f; if( !LU_UpdateRowColumn( v1, w1, r, index ) ) { return false; } } // physically remove the row and column Update_Decrement( r ); return true; } /* ============ idMatX::LU_Solve Solve Ax = b with A factored in-place as: LU ============ */ void idMatX::LU_Solve( idVecX& x, const idVecX& b, const int* index ) const { int i, j; double sum; assert( x.GetSize() == numColumns && b.GetSize() == numRows ); // solve L for( i = 0; i < numRows; i++ ) { if( index != NULL ) { sum = b[index[i]]; } else { sum = b[i]; } for( j = 0; j < i; j++ ) { sum -= ( *this )[i][j] * x[j]; } x[i] = sum; } // solve U for( i = numRows - 1; i >= 0; i-- ) { sum = x[i]; for( j = i + 1; j < numRows; j++ ) { sum -= ( *this )[i][j] * x[j]; } x[i] = sum / ( *this )[i][i]; } } /* ============ idMatX::LU_Inverse Calculates the inverse of the matrix which is factored in-place as LU ============ */ void idMatX::LU_Inverse( idMatX& inv, const int* index ) const { int i, j; idVecX x, b; assert( numRows == numColumns ); x.SetData( numRows, VECX_ALLOCA( numRows ) ); b.SetData( numRows, VECX_ALLOCA( numRows ) ); b.Zero(); inv.SetSize( numRows, numColumns ); for( i = 0; i < numRows; i++ ) { b[i] = 1.0f; LU_Solve( x, b, index ); for( j = 0; j < numRows; j++ ) { inv[j][i] = x[j]; } b[i] = 0.0f; } } /* ============ idMatX::LU_UnpackFactors Unpacks the in-place LU factorization. ============ */ void idMatX::LU_UnpackFactors( idMatX& L, idMatX& U ) const { int i, j; L.Zero( numRows, numColumns ); U.Zero( numRows, numColumns ); for( i = 0; i < numRows; i++ ) { for( j = 0; j < i; j++ ) { L[i][j] = ( *this )[i][j]; } L[i][i] = 1.0f; for( j = i; j < numColumns; j++ ) { U[i][j] = ( *this )[i][j]; } } } /* ============ idMatX::LU_MultiplyFactors Multiplies the factors of the in-place LU factorization to form the original matrix. ============ */ void idMatX::LU_MultiplyFactors( idMatX& m, const int* index ) const { int r, rp, i, j; double sum; m.SetSize( numRows, numColumns ); for( r = 0; r < numRows; r++ ) { if( index != NULL ) { rp = index[r]; } else { rp = r; } // calculate row of matrix for( i = 0; i < numColumns; i++ ) { if( i >= r ) { sum = ( *this )[r][i]; } else { sum = 0.0f; } for( j = 0; j <= i && j < r; j++ ) { sum += ( *this )[r][j] * ( *this )[j][i]; } m[rp][i] = sum; } } } /* ============ idMatX::QR_Factor in-place factorization: QR Q is an orthogonal matrix represented as a product of Householder matrices stored in the lower triangle and c. R is a triangular matrix stored in the upper triangle except for the diagonal elements which are stored in d. The initial matrix has to be square. ============ */ bool idMatX::QR_Factor( idVecX& c, idVecX& d ) { int i, j, k; double scale, s, t, sum; bool singular = false; assert( numRows == numColumns ); assert( c.GetSize() >= numRows && d.GetSize() >= numRows ); for( k = 0; k < numRows - 1; k++ ) { scale = 0.0f; for( i = k; i < numRows; i++ ) { s = idMath::Fabs( ( *this )[i][k] ); if( s > scale ) { scale = s; } } if( scale == 0.0f ) { singular = true; c[k] = d[k] = 0.0f; } else { s = 1.0f / scale; for( i = k; i < numRows; i++ ) { ( *this )[i][k] *= s; } sum = 0.0f; for( i = k; i < numRows; i++ ) { s = ( *this )[i][k]; sum += s * s; } s = idMath::Sqrt( sum ); if( ( *this )[k][k] < 0.0f ) { s = -s; } ( *this )[k][k] += s; c[k] = s * ( *this )[k][k]; d[k] = -scale * s; for( j = k + 1; j < numRows; j++ ) { sum = 0.0f; for( i = k; i < numRows; i++ ) { sum += ( *this )[i][k] * ( *this )[i][j]; } t = sum / c[k]; for( i = k; i < numRows; i++ ) { ( *this )[i][j] -= t * ( *this )[i][k]; } } } } d[numRows - 1] = ( *this )[( numRows - 1 ) ][( numRows - 1 ) ]; if( d[numRows - 1] == 0.0f ) { singular = true; } return !singular; } /* ============ idMatX::QR_Rotate Performs a Jacobi rotation on the rows i and i+1 of the unpacked QR factors. ============ */ void idMatX::QR_Rotate( idMatX& R, int i, float a, float b ) { int j; float f, c, s, w, y; if( a == 0.0f ) { c = 0.0f; s = ( b >= 0.0f ) ? 1.0f : -1.0f; } else if( idMath::Fabs( a ) > idMath::Fabs( b ) ) { f = b / a; c = idMath::Fabs( 1.0f / idMath::Sqrt( 1.0f + f * f ) ); if( a < 0.0f ) { c = -c; } s = f * c; } else { f = a / b; s = idMath::Fabs( 1.0f / idMath::Sqrt( 1.0f + f * f ) ); if( b < 0.0f ) { s = -s; } c = f * s; } for( j = i; j < numRows; j++ ) { y = R[i][j]; w = R[i + 1][j]; R[i][j] = c * y - s * w; R[i + 1][j] = s * y + c * w; } for( j = 0; j < numRows; j++ ) { y = ( *this )[j][i]; w = ( *this )[j][i + 1]; ( *this )[j][i] = c * y - s * w; ( *this )[j][i + 1] = s * y + c * w; } } /* ============ idMatX::QR_UpdateRankOne Updates the unpacked QR factorization to obtain the factors for the matrix: QR + alpha * v * w' ============ */ bool idMatX::QR_UpdateRankOne( idMatX& R, const idVecX& v, const idVecX& w, float alpha ) { int i, k; float f; idVecX u; assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); u.SetData( v.GetSize(), VECX_ALLOCA( v.GetSize() ) ); TransposeMultiply( u, v ); u *= alpha; for( k = v.GetSize() - 1; k > 0; k-- ) { if( u[k] != 0.0f ) { break; } } for( i = k - 1; i >= 0; i-- ) { QR_Rotate( R, i, u[i], -u[i + 1] ); if( u[i] == 0.0f ) { u[i] = idMath::Fabs( u[i + 1] ); } else if( idMath::Fabs( u[i] ) > idMath::Fabs( u[i + 1] ) ) { f = u[i + 1] / u[i]; u[i] = idMath::Fabs( u[i] ) * idMath::Sqrt( 1.0f + f * f ); } else { f = u[i] / u[i + 1]; u[i] = idMath::Fabs( u[i + 1] ) * idMath::Sqrt( 1.0f + f * f ); } } for( i = 0; i < v.GetSize(); i++ ) { R[0][i] += u[0] * w[i]; } for( i = 0; i < k; i++ ) { QR_Rotate( R, i, -R[i][i], R[i + 1][i] ); } return true; } /* ============ idMatX::QR_UpdateRowColumn Updates the unpacked QR factorization to obtain the factors for the matrix: [ 0 a 0 ] QR + [ d b e ] [ 0 c 0 ] where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1], d = w[0,r-1], w[r] = 0.0f, e = w[r+1,numColumns-1] ============ */ bool idMatX::QR_UpdateRowColumn( idMatX& R, const idVecX& v, const idVecX& w, int r ) { idVecX s; assert( v.GetSize() >= numColumns ); assert( w.GetSize() >= numRows ); assert( r >= 0 && r < numRows && r < numColumns ); assert( w[r] == 0.0f ); s.SetData( Max( numRows, numColumns ), VECX_ALLOCA( Max( numRows, numColumns ) ) ); s.Zero(); s[r] = 1.0f; if( !QR_UpdateRankOne( R, v, s, 1.0f ) ) { return false; } if( !QR_UpdateRankOne( R, s, w, 1.0f ) ) { return false; } return true; } /* ============ idMatX::QR_UpdateIncrement Updates the unpacked QR factorization to obtain the factors for the matrix: [ A a ] [ c b ] where: a = v[0,numRows-1], b = v[numRows], c = w[0,numColumns-1], w[numColumns] = 0 ============ */ bool idMatX::QR_UpdateIncrement( idMatX& R, const idVecX& v, const idVecX& w ) { idVecX v2; assert( numRows == numColumns ); assert( v.GetSize() >= numRows + 1 ); assert( w.GetSize() >= numColumns + 1 ); ChangeSize( numRows + 1, numColumns + 1, true ); ( *this )[numRows - 1][numRows - 1] = 1.0f; R.ChangeSize( R.numRows + 1, R.numColumns + 1, true ); R[R.numRows - 1][R.numRows - 1] = 1.0f; v2.SetData( numRows, VECX_ALLOCA( numRows ) ); v2 = v; v2[numRows - 1] -= 1.0f; return QR_UpdateRowColumn( R, v2, w, numRows - 1 ); } /* ============ idMatX::QR_UpdateDecrement Updates the unpacked QR factorization to obtain the factors for the matrix with row r and column r removed. v and w should store the column and row of the original matrix respectively. ============ */ bool idMatX::QR_UpdateDecrement( idMatX& R, const idVecX& v, const idVecX& w, int r ) { idVecX v1, w1; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( w.GetSize() >= numColumns ); assert( r >= 0 && r < numRows && r < numColumns ); v1.SetData( numRows, VECX_ALLOCA( numRows ) ); w1.SetData( numRows, VECX_ALLOCA( numRows ) ); // update the row and column to identity v1 = -v; w1 = -w; v1[r] += 1.0f; w1[r] = 0.0f; if( !QR_UpdateRowColumn( R, v1, w1, r ) ) { return false; } // physically remove the row and column Update_Decrement( r ); R.Update_Decrement( r ); return true; } /* ============ idMatX::QR_Solve Solve Ax = b with A factored in-place as: QR ============ */ void idMatX::QR_Solve( idVecX& x, const idVecX& b, const idVecX& c, const idVecX& d ) const { int i, j; double sum, t; assert( numRows == numColumns ); assert( x.GetSize() >= numRows && b.GetSize() >= numRows ); assert( c.GetSize() >= numRows && d.GetSize() >= numRows ); for( i = 0; i < numRows; i++ ) { x[i] = b[i]; } // multiply b with transpose of Q for( i = 0; i < numRows - 1; i++ ) { sum = 0.0f; for( j = i; j < numRows; j++ ) { sum += ( *this )[j][i] * x[j]; } t = sum / c[i]; for( j = i; j < numRows; j++ ) { x[j] -= t * ( *this )[j][i]; } } // backsubstitution with R for( i = numRows - 1; i >= 0; i-- ) { sum = x[i]; for( j = i + 1; j < numRows; j++ ) { sum -= ( *this )[i][j] * x[j]; } x[i] = sum / d[i]; } } /* ============ idMatX::QR_Solve Solve Ax = b with A factored as: QR ============ */ void idMatX::QR_Solve( idVecX& x, const idVecX& b, const idMatX& R ) const { int i, j; double sum; assert( numRows == numColumns ); // multiply b with transpose of Q TransposeMultiply( x, b ); // backsubstitution with R for( i = numRows - 1; i >= 0; i-- ) { sum = x[i]; for( j = i + 1; j < numRows; j++ ) { sum -= R[i][j] * x[j]; } x[i] = sum / R[i][i]; } } /* ============ idMatX::QR_Inverse Calculates the inverse of the matrix which is factored in-place as: QR ============ */ void idMatX::QR_Inverse( idMatX& inv, const idVecX& c, const idVecX& d ) const { int i, j; idVecX x, b; assert( numRows == numColumns ); x.SetData( numRows, VECX_ALLOCA( numRows ) ); b.SetData( numRows, VECX_ALLOCA( numRows ) ); b.Zero(); inv.SetSize( numRows, numColumns ); for( i = 0; i < numRows; i++ ) { b[i] = 1.0f; QR_Solve( x, b, c, d ); for( j = 0; j < numRows; j++ ) { inv[j][i] = x[j]; } b[i] = 0.0f; } } /* ============ idMatX::QR_UnpackFactors Unpacks the in-place QR factorization. ============ */ void idMatX::QR_UnpackFactors( idMatX& Q, idMatX& R, const idVecX& c, const idVecX& d ) const { int i, j, k; double sum; Q.Identity( numRows, numColumns ); for( i = 0; i < numColumns - 1; i++ ) { if( c[i] == 0.0f ) { continue; } for( j = 0; j < numRows; j++ ) { sum = 0.0f; for( k = i; k < numColumns; k++ ) { sum += ( *this )[k][i] * Q[j][k]; } sum /= c[i]; for( k = i; k < numColumns; k++ ) { Q[j][k] -= sum * ( *this )[k][i]; } } } R.Zero( numRows, numColumns ); for( i = 0; i < numRows; i++ ) { R[i][i] = d[i]; for( j = i + 1; j < numColumns; j++ ) { R[i][j] = ( *this )[i][j]; } } } /* ============ idMatX::QR_MultiplyFactors Multiplies the factors of the in-place QR factorization to form the original matrix. ============ */ void idMatX::QR_MultiplyFactors( idMatX& m, const idVecX& c, const idVecX& d ) const { int i, j, k; double sum; idMatX Q; Q.Identity( numRows, numColumns ); for( i = 0; i < numColumns - 1; i++ ) { if( c[i] == 0.0f ) { continue; } for( j = 0; j < numRows; j++ ) { sum = 0.0f; for( k = i; k < numColumns; k++ ) { sum += ( *this )[k][i] * Q[j][k]; } sum /= c[i]; for( k = i; k < numColumns; k++ ) { Q[j][k] -= sum * ( *this )[k][i]; } } } for( i = 0; i < numRows; i++ ) { for( j = 0; j < numColumns; j++ ) { sum = Q[i][j] * d[i]; for( k = 0; k < i; k++ ) { sum += Q[i][k] * ( *this )[j][k]; } m[i][j] = sum; } } } /* ============ idMatX::Pythag Computes (a^2 + b^2)^1/2 without underflow or overflow. ============ */ float idMatX::Pythag( float a, float b ) const { double at, bt, ct; at = idMath::Fabs( a ); bt = idMath::Fabs( b ); if( at > bt ) { ct = bt / at; return at * idMath::Sqrt( 1.0f + ct * ct ); } else { if( bt ) { ct = at / bt; return bt * idMath::Sqrt( 1.0f + ct * ct ); } else { return 0.0f; } } } /* ============ idMatX::SVD_BiDiag ============ */ void idMatX::SVD_BiDiag( idVecX& w, idVecX& rv1, float& anorm ) { int i, j, k, l; double f, h, r, g, s, scale; anorm = 0.0f; g = s = scale = 0.0f; for( i = 0; i < numColumns; i++ ) { l = i + 1; rv1[i] = scale * g; g = s = scale = 0.0f; if( i < numRows ) { for( k = i; k < numRows; k++ ) { scale += idMath::Fabs( ( *this )[k][i] ); } if( scale ) { for( k = i; k < numRows; k++ ) { ( *this )[k][i] /= scale; s += ( *this )[k][i] * ( *this )[k][i]; } f = ( *this )[i][i]; g = idMath::Sqrt( s ); if( f >= 0.0f ) { g = -g; } h = f * g - s; ( *this )[i][i] = f - g; if( i != ( numColumns - 1 ) ) { for( j = l; j < numColumns; j++ ) { for( s = 0.0f, k = i; k < numRows; k++ ) { s += ( *this )[k][i] * ( *this )[k][j]; } f = s / h; for( k = i; k < numRows; k++ ) { ( *this )[k][j] += f * ( *this )[k][i]; } } } for( k = i; k < numRows; k++ ) { ( *this )[k][i] *= scale; } } } w[i] = scale * g; g = s = scale = 0.0f; if( i < numRows && i != ( numColumns - 1 ) ) { for( k = l; k < numColumns; k++ ) { scale += idMath::Fabs( ( *this )[i][k] ); } if( scale ) { for( k = l; k < numColumns; k++ ) { ( *this )[i][k] /= scale; s += ( *this )[i][k] * ( *this )[i][k]; } f = ( *this )[i][l]; g = idMath::Sqrt( s ); if( f >= 0.0f ) { g = -g; } h = 1.0f / ( f * g - s ); ( *this )[i][l] = f - g; for( k = l; k < numColumns; k++ ) { rv1[k] = ( *this )[i][k] * h; } if( i != ( numRows - 1 ) ) { for( j = l; j < numRows; j++ ) { for( s = 0.0f, k = l; k < numColumns; k++ ) { s += ( *this )[j][k] * ( *this )[i][k]; } for( k = l; k < numColumns; k++ ) { ( *this )[j][k] += s * rv1[k]; } } } for( k = l; k < numColumns; k++ ) { ( *this )[i][k] *= scale; } } } r = idMath::Fabs( w[i] ) + idMath::Fabs( rv1[i] ); if( r > anorm ) { anorm = r; } } } /* ============ idMatX::SVD_InitialWV ============ */ void idMatX::SVD_InitialWV( idVecX& w, idMatX& V, idVecX& rv1 ) { int i, j, k, l; double f, g, s; g = 0.0f; for( i = ( numColumns - 1 ); i >= 0; i-- ) { l = i + 1; if( i < ( numColumns - 1 ) ) { if( g ) { for( j = l; j < numColumns; j++ ) { V[j][i] = ( ( *this )[i][j] / ( *this )[i][l] ) / g; } // double division to reduce underflow for( j = l; j < numColumns; j++ ) { for( s = 0.0f, k = l; k < numColumns; k++ ) { s += ( *this )[i][k] * V[k][j]; } for( k = l; k < numColumns; k++ ) { V[k][j] += s * V[k][i]; } } } for( j = l; j < numColumns; j++ ) { V[i][j] = V[j][i] = 0.0f; } } V[i][i] = 1.0f; g = rv1[i]; } for( i = numColumns - 1 ; i >= 0; i-- ) { l = i + 1; g = w[i]; if( i < ( numColumns - 1 ) ) { for( j = l; j < numColumns; j++ ) { ( *this )[i][j] = 0.0f; } } if( g ) { g = 1.0f / g; if( i != ( numColumns - 1 ) ) { for( j = l; j < numColumns; j++ ) { for( s = 0.0f, k = l; k < numRows; k++ ) { s += ( *this )[k][i] * ( *this )[k][j]; } f = ( s / ( *this )[i][i] ) * g; for( k = i; k < numRows; k++ ) { ( *this )[k][j] += f * ( *this )[k][i]; } } } for( j = i; j < numRows; j++ ) { ( *this )[j][i] *= g; } } else { for( j = i; j < numRows; j++ ) { ( *this )[j][i] = 0.0f; } } ( *this )[i][i] += 1.0f; } } /* ============ idMatX::SVD_Factor in-place factorization: U * Diag(w) * V.Transpose() known as the Singular Value Decomposition. U is a column-orthogonal matrix which overwrites the original matrix. w is a diagonal matrix with all elements >= 0 which are the singular values. V is the transpose of an orthogonal matrix. ============ */ bool idMatX::SVD_Factor( idVecX& w, idMatX& V ) { int flag, i, its, j, jj, k, l, nm; double c, f, h, s, x, y, z, r, g = 0.0f; float anorm = 0.0f; idVecX rv1; if( numRows < numColumns ) { return false; } rv1.SetData( numColumns, VECX_ALLOCA( numColumns ) ); rv1.Zero(); w.Zero( numColumns ); V.Zero( numColumns, numColumns ); SVD_BiDiag( w, rv1, anorm ); SVD_InitialWV( w, V, rv1 ); for( k = numColumns - 1; k >= 0; k-- ) { for( its = 1; its <= 30; its++ ) { flag = 1; nm = 0; for( l = k; l >= 0; l-- ) { nm = l - 1; if( ( idMath::Fabs( rv1[l] ) + anorm ) == anorm /* idMath::Fabs( rv1[l] ) < idMath::FLT_EPSILON */ ) { flag = 0; break; } if( ( idMath::Fabs( w[nm] ) + anorm ) == anorm /* idMath::Fabs( w[nm] ) < idMath::FLT_EPSILON */ ) { break; } } if( flag ) { c = 0.0f; s = 1.0f; for( i = l; i <= k; i++ ) { f = s * rv1[i]; if( ( idMath::Fabs( f ) + anorm ) != anorm /* idMath::Fabs( f ) > idMath::FLT_EPSILON */ ) { g = w[i]; h = Pythag( f, g ); w[i] = h; h = 1.0f / h; c = g * h; s = -f * h; for( j = 0; j < numRows; j++ ) { y = ( *this )[j][nm]; z = ( *this )[j][i]; ( *this )[j][nm] = y * c + z * s; ( *this )[j][i] = z * c - y * s; } } } } z = w[k]; if( l == k ) { if( z < 0.0f ) { w[k] = -z; for( j = 0; j < numColumns; j++ ) { V[j][k] = -V[j][k]; } } break; } if( its == 30 ) { return false; // no convergence } x = w[l]; nm = k - 1; y = w[nm]; g = rv1[nm]; h = rv1[k]; f = ( ( y - z ) * ( y + z ) + ( g - h ) * ( g + h ) ) / ( 2.0f * h * y ); g = Pythag( f, 1.0f ); r = ( f >= 0.0f ? g : - g ); f = ( ( x - z ) * ( x + z ) + h * ( ( y / ( f + r ) ) - h ) ) / x; c = s = 1.0f; for( j = l; j <= nm; j++ ) { i = j + 1; g = rv1[i]; y = w[i]; h = s * g; g = c * g; z = Pythag( f, h ); rv1[j] = z; c = f / z; s = h / z; f = x * c + g * s; g = g * c - x * s; h = y * s; y = y * c; for( jj = 0; jj < numColumns; jj++ ) { x = V[jj][j]; z = V[jj][i]; V[jj][j] = x * c + z * s; V[jj][i] = z * c - x * s; } z = Pythag( f, h ); w[j] = z; if( z ) { z = 1.0f / z; c = f * z; s = h * z; } f = ( c * g ) + ( s * y ); x = ( c * y ) - ( s * g ); for( jj = 0; jj < numRows; jj++ ) { y = ( *this )[jj][j]; z = ( *this )[jj][i]; ( *this )[jj][j] = y * c + z * s; ( *this )[jj][i] = z * c - y * s; } } rv1[l] = 0.0f; rv1[k] = f; w[k] = x; } } return true; } /* ============ idMatX::SVD_Solve Solve Ax = b with A factored as: U * Diag(w) * V.Transpose() ============ */ void idMatX::SVD_Solve( idVecX& x, const idVecX& b, const idVecX& w, const idMatX& V ) const { int i, j; double sum; idVecX tmp; assert( x.GetSize() >= numColumns ); assert( b.GetSize() >= numColumns ); assert( w.GetSize() == numColumns ); assert( V.GetNumRows() == numColumns && V.GetNumColumns() == numColumns ); tmp.SetData( numColumns, VECX_ALLOCA( numColumns ) ); for( i = 0; i < numColumns; i++ ) { sum = 0.0f; if( w[i] >= idMath::FLT_EPSILON ) { for( j = 0; j < numRows; j++ ) { sum += ( *this )[j][i] * b[j]; } sum /= w[i]; } tmp[i] = sum; } for( i = 0; i < numColumns; i++ ) { sum = 0.0f; for( j = 0; j < numColumns; j++ ) { sum += V[i][j] * tmp[j]; } x[i] = sum; } } /* ============ idMatX::SVD_Inverse Calculates the inverse of the matrix which is factored in-place as: U * Diag(w) * V.Transpose() ============ */ void idMatX::SVD_Inverse( idMatX& inv, const idVecX& w, const idMatX& V ) const { int i, j, k; double wi, sum; idMatX V2; assert( numRows == numColumns ); V2 = V; // V * [diag(1/w[i])] for( i = 0; i < numRows; i++ ) { wi = w[i]; wi = ( wi < idMath::FLT_EPSILON ) ? 0.0f : 1.0f / wi; for( j = 0; j < numColumns; j++ ) { V2[j][i] *= wi; } } // V * [diag(1/w[i])] * Ut for( i = 0; i < numRows; i++ ) { for( j = 0; j < numColumns; j++ ) { sum = V2[i][0] * ( *this )[j][0]; for( k = 1; k < numColumns; k++ ) { sum += V2[i][k] * ( *this )[j][k]; } inv[i][j] = sum; } } } /* ============ idMatX::SVD_MultiplyFactors Multiplies the factors of the in-place SVD factorization to form the original matrix. ============ */ void idMatX::SVD_MultiplyFactors( idMatX& m, const idVecX& w, const idMatX& V ) const { int r, i, j; double sum; m.SetSize( numRows, V.GetNumRows() ); for( r = 0; r < numRows; r++ ) { // calculate row of matrix if( w[r] >= idMath::FLT_EPSILON ) { for( i = 0; i < V.GetNumRows(); i++ ) { sum = 0.0f; for( j = 0; j < numColumns; j++ ) { sum += ( *this )[r][j] * V[i][j]; } m[r][i] = sum * w[r]; } } else { for( i = 0; i < V.GetNumRows(); i++ ) { m[r][i] = 0.0f; } } } } /* ============ idMatX::Cholesky_Factor in-place Cholesky factorization: LL' L is a triangular matrix stored in the lower triangle. The upper triangle is not cleared. The initial matrix has to be symmetric positive definite. ============ */ bool idMatX::Cholesky_Factor() { int i, j, k; float* invSqrt; double sum; assert( numRows == numColumns ); invSqrt = ( float* ) _alloca16( numRows * sizeof( float ) ); for( i = 0; i < numRows; i++ ) { for( j = 0; j < i; j++ ) { sum = ( *this )[i][j]; for( k = 0; k < j; k++ ) { sum -= ( *this )[i][k] * ( *this )[j][k]; } ( *this )[i][j] = sum * invSqrt[j]; } sum = ( *this )[i][i]; for( k = 0; k < i; k++ ) { sum -= ( *this )[i][k] * ( *this )[i][k]; } if( sum <= 0.0f ) { return false; } invSqrt[i] = idMath::InvSqrt( sum ); ( *this )[i][i] = invSqrt[i] * sum; } return true; } /* ============ idMatX::Cholesky_UpdateRankOne Updates the in-place Cholesky factorization to obtain the factors for the matrix: LL' + alpha * v * v' If offset > 0 only the lower right corner starting at (offset, offset) is updated. ============ */ bool idMatX::Cholesky_UpdateRankOne( const idVecX& v, float alpha, int offset ) { int i, j; float* y; double diag, invDiag, diagSqr, newDiag, newDiagSqr, beta, p, d; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( offset >= 0 && offset < numRows ); y = ( float* ) _alloca16( v.GetSize() * sizeof( float ) ); memcpy( y, v.ToFloatPtr(), v.GetSize() * sizeof( float ) ); for( i = offset; i < numColumns; i++ ) { p = y[i]; diag = ( *this )[i][i]; invDiag = 1.0f / diag; diagSqr = diag * diag; newDiagSqr = diagSqr + alpha * p * p; if( newDiagSqr <= 0.0f ) { return false; } ( *this )[i][i] = newDiag = idMath::Sqrt( newDiagSqr ); alpha /= newDiagSqr; beta = p * alpha; alpha *= diagSqr; for( j = i + 1; j < numRows; j++ ) { d = ( *this )[j][i] * invDiag; y[j] -= p * d; d += beta * y[j]; ( *this )[j][i] = d * newDiag; } } return true; } /* ============ idMatX::Cholesky_UpdateRowColumn Updates the in-place Cholesky factorization to obtain the factors for the matrix: [ 0 a 0 ] LL' + [ a b c ] [ 0 c 0 ] where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1] ============ */ bool idMatX::Cholesky_UpdateRowColumn( const idVecX& v, int r ) { int i, j; double sum; float* original, *y; idVecX addSub; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( r >= 0 && r < numRows ); addSub.SetData( numColumns, ( float* ) _alloca16( numColumns * sizeof( float ) ) ); if( r == 0 ) { if( numColumns == 1 ) { double v0 = v[0]; sum = ( *this )[0][0]; sum = sum * sum; sum = sum + v0; if( sum <= 0.0f ) { return false; } ( *this )[0][0] = idMath::Sqrt( sum ); return true; } for( i = 0; i < numColumns; i++ ) { addSub[i] = v[i]; } } else { original = ( float* ) _alloca16( numColumns * sizeof( float ) ); y = ( float* ) _alloca16( numColumns * sizeof( float ) ); // calculate original row/column of matrix for( i = 0; i < numRows; i++ ) { sum = 0.0f; for( j = 0; j <= i; j++ ) { sum += ( *this )[r][j] * ( *this )[i][j]; } original[i] = sum; } // solve for y in L * y = original + v for( i = 0; i < r; i++ ) { sum = original[i] + v[i]; for( j = 0; j < i; j++ ) { sum -= ( *this )[r][j] * ( *this )[i][j]; } ( *this )[r][i] = sum / ( *this )[i][i]; } // if the last row/column of the matrix is updated if( r == numColumns - 1 ) { // only calculate new diagonal sum = original[r] + v[r]; for( j = 0; j < r; j++ ) { sum -= ( *this )[r][j] * ( *this )[r][j]; } if( sum <= 0.0f ) { return false; } ( *this )[r][r] = idMath::Sqrt( sum ); return true; } // calculate the row/column to be added to the lower right sub matrix starting at (r, r) for( i = r; i < numColumns; i++ ) { sum = 0.0f; for( j = 0; j <= r; j++ ) { sum += ( *this )[r][j] * ( *this )[i][j]; } addSub[i] = v[i] - ( sum - original[i] ); } } // add row/column to the lower right sub matrix starting at (r, r) #if 0 idVecX v1, v2; double d; v1.SetData( numColumns, ( float* ) _alloca16( numColumns * sizeof( float ) ) ); v2.SetData( numColumns, ( float* ) _alloca16( numColumns * sizeof( float ) ) ); d = idMath::SQRT_1OVER2; v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d; v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d; for( i = r + 1; i < numColumns; i++ ) { v1[i] = v2[i] = addSub[i] * d; } // update if( !Cholesky_UpdateRankOne( v1, 1.0f, r ) ) { return false; } // downdate if( !Cholesky_UpdateRankOne( v2, -1.0f, r ) ) { return false; } #else float* v1, *v2; double diag, invDiag, diagSqr, newDiag, newDiagSqr; double alpha1, alpha2, beta1, beta2, p1, p2, d; v1 = ( float* ) _alloca16( numColumns * sizeof( float ) ); v2 = ( float* ) _alloca16( numColumns * sizeof( float ) ); d = idMath::SQRT_1OVER2; v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d; v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d; for( i = r + 1; i < numColumns; i++ ) { v1[i] = v2[i] = addSub[i] * d; } alpha1 = 1.0f; alpha2 = -1.0f; // simultaneous update/downdate of the sub matrix starting at (r, r) for( i = r; i < numColumns; i++ ) { p1 = v1[i]; diag = ( *this )[i][i]; invDiag = 1.0f / diag; diagSqr = diag * diag; newDiagSqr = diagSqr + alpha1 * p1 * p1; if( newDiagSqr <= 0.0f ) { return false; } alpha1 /= newDiagSqr; beta1 = p1 * alpha1; alpha1 *= diagSqr; p2 = v2[i]; diagSqr = newDiagSqr; newDiagSqr = diagSqr + alpha2 * p2 * p2; if( newDiagSqr <= 0.0f ) { return false; } ( *this )[i][i] = newDiag = idMath::Sqrt( newDiagSqr ); alpha2 /= newDiagSqr; beta2 = p2 * alpha2; alpha2 *= diagSqr; for( j = i + 1; j < numRows; j++ ) { d = ( *this )[j][i] * invDiag; v1[j] -= p1 * d; d += beta1 * v1[j]; v2[j] -= p2 * d; d += beta2 * v2[j]; ( *this )[j][i] = d * newDiag; } } #endif return true; } /* ============ idMatX::Cholesky_UpdateIncrement Updates the in-place Cholesky factorization to obtain the factors for the matrix: [ A a ] [ a b ] where: a = v[0,numRows-1], b = v[numRows] ============ */ bool idMatX::Cholesky_UpdateIncrement( const idVecX& v ) { int i, j; float* x; double sum; assert( numRows == numColumns ); assert( v.GetSize() >= numRows + 1 ); ChangeSize( numRows + 1, numColumns + 1, false ); x = ( float* ) _alloca16( numRows * sizeof( float ) ); // solve for x in L * x = v for( i = 0; i < numRows - 1; i++ ) { sum = v[i]; for( j = 0; j < i; j++ ) { sum -= ( *this )[i][j] * x[j]; } x[i] = sum / ( *this )[i][i]; } // calculate new row of L and calculate the square of the diagonal entry sum = v[numRows - 1]; for( i = 0; i < numRows - 1; i++ ) { ( *this )[numRows - 1][i] = x[i]; sum -= x[i] * x[i]; } if( sum <= 0.0f ) { return false; } // store the diagonal entry ( *this )[numRows - 1][numRows - 1] = idMath::Sqrt( sum ); return true; } /* ============ idMatX::Cholesky_UpdateDecrement Updates the in-place Cholesky factorization to obtain the factors for the matrix with row r and column r removed. v should store the row of the original matrix. ============ */ bool idMatX::Cholesky_UpdateDecrement( const idVecX& v, int r ) { idVecX v1; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( r >= 0 && r < numRows ); v1.SetData( numRows, VECX_ALLOCA( numRows ) ); // update the row and column to identity v1 = -v; v1[r] += 1.0f; // NOTE: msvc compiler bug: the this pointer stored in edi is expected to stay // untouched when calling Cholesky_UpdateRowColumn in the if statement #if 0 if( !Cholesky_UpdateRowColumn( v1, r ) ) { #else bool ret = Cholesky_UpdateRowColumn( v1, r ); if( !ret ) { #endif return false; } // physically remove the row and column Update_Decrement( r ); return true; } /* ============ idMatX::Cholesky_Solve Solve Ax = b with A factored in-place as: LL' ============ */ void idMatX::Cholesky_Solve( idVecX& x, const idVecX& b ) const { int i, j; double sum; assert( numRows == numColumns ); assert( x.GetSize() >= numRows && b.GetSize() >= numRows ); // solve L for( i = 0; i < numRows; i++ ) { sum = b[i]; for( j = 0; j < i; j++ ) { sum -= ( *this )[i][j] * x[j]; } x[i] = sum / ( *this )[i][i]; } // solve Lt for( i = numRows - 1; i >= 0; i-- ) { sum = x[i]; for( j = i + 1; j < numRows; j++ ) { sum -= ( *this )[j][i] * x[j]; } x[i] = sum / ( *this )[i][i]; } } /* ============ idMatX::Cholesky_Inverse Calculates the inverse of the matrix which is factored in-place as: LL' ============ */ void idMatX::Cholesky_Inverse( idMatX& inv ) const { int i, j; idVecX x, b; assert( numRows == numColumns ); x.SetData( numRows, VECX_ALLOCA( numRows ) ); b.SetData( numRows, VECX_ALLOCA( numRows ) ); b.Zero(); inv.SetSize( numRows, numColumns ); for( i = 0; i < numRows; i++ ) { b[i] = 1.0f; Cholesky_Solve( x, b ); for( j = 0; j < numRows; j++ ) { inv[j][i] = x[j]; } b[i] = 0.0f; } } /* ============ idMatX::Cholesky_MultiplyFactors Multiplies the factors of the in-place Cholesky factorization to form the original matrix. ============ */ void idMatX::Cholesky_MultiplyFactors( idMatX& m ) const { int r, i, j; double sum; m.SetSize( numRows, numColumns ); for( r = 0; r < numRows; r++ ) { // calculate row of matrix for( i = 0; i < numRows; i++ ) { sum = 0.0f; for( j = 0; j <= i && j <= r; j++ ) { sum += ( *this )[r][j] * ( *this )[i][j]; } m[r][i] = sum; } } } /* ============ idMatX::LDLT_Factor in-place factorization: LDL' L is a triangular matrix stored in the lower triangle. L has ones on the diagonal that are not stored. D is a diagonal matrix stored on the diagonal. The upper triangle is not cleared. The initial matrix has to be symmetric. ============ */ bool idMatX::LDLT_Factor() { int i, j, k; float* v; double d, sum; assert( numRows == numColumns ); v = ( float* ) _alloca16( numRows * sizeof( float ) ); for( i = 0; i < numRows; i++ ) { sum = ( *this )[i][i]; for( j = 0; j < i; j++ ) { d = ( *this )[i][j]; v[j] = ( *this )[j][j] * d; sum -= v[j] * d; } if( sum == 0.0f ) { return false; } ( *this )[i][i] = sum; d = 1.0f / sum; for( j = i + 1; j < numRows; j++ ) { sum = ( *this )[j][i]; for( k = 0; k < i; k++ ) { sum -= ( *this )[j][k] * v[k]; } ( *this )[j][i] = sum * d; } } return true; } /* ============ idMatX::LDLT_UpdateRankOne Updates the in-place LDL' factorization to obtain the factors for the matrix: LDL' + alpha * v * v' If offset > 0 only the lower right corner starting at (offset, offset) is updated. ============ */ bool idMatX::LDLT_UpdateRankOne( const idVecX& v, float alpha, int offset ) { int i, j; float* y; double diag, newDiag, beta, p, d; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( offset >= 0 && offset < numRows ); y = ( float* ) _alloca16( v.GetSize() * sizeof( float ) ); memcpy( y, v.ToFloatPtr(), v.GetSize() * sizeof( float ) ); for( i = offset; i < numColumns; i++ ) { p = y[i]; diag = ( *this )[i][i]; ( *this )[i][i] = newDiag = diag + alpha * p * p; if( newDiag == 0.0f ) { return false; } alpha /= newDiag; beta = p * alpha; alpha *= diag; for( j = i + 1; j < numRows; j++ ) { d = ( *this )[j][i]; y[j] -= p * d; d += beta * y[j]; ( *this )[j][i] = d; } } return true; } /* ============ idMatX::LDLT_UpdateRowColumn Updates the in-place LDL' factorization to obtain the factors for the matrix: [ 0 a 0 ] LDL' + [ a b c ] [ 0 c 0 ] where: a = v[0,r-1], b = v[r], c = v[r+1,numRows-1] ============ */ bool idMatX::LDLT_UpdateRowColumn( const idVecX& v, int r ) { int i, j; double sum; float* original, *y; idVecX addSub; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( r >= 0 && r < numRows ); addSub.SetData( numColumns, ( float* ) _alloca16( numColumns * sizeof( float ) ) ); if( r == 0 ) { if( numColumns == 1 ) { ( *this )[0][0] += v[0]; return true; } for( i = 0; i < numColumns; i++ ) { addSub[i] = v[i]; } } else { original = ( float* ) _alloca16( numColumns * sizeof( float ) ); y = ( float* ) _alloca16( numColumns * sizeof( float ) ); // calculate original row/column of matrix for( i = 0; i < r; i++ ) { y[i] = ( *this )[r][i] * ( *this )[i][i]; } for( i = 0; i < numColumns; i++ ) { if( i < r ) { sum = ( *this )[i][i] * ( *this )[r][i]; } else if( i == r ) { sum = ( *this )[r][r]; } else { sum = ( *this )[r][r] * ( *this )[i][r]; } for( j = 0; j < i && j < r; j++ ) { sum += ( *this )[i][j] * y[j]; } original[i] = sum; } // solve for y in L * y = original + v for( i = 0; i < r; i++ ) { sum = original[i] + v[i]; for( j = 0; j < i; j++ ) { sum -= ( *this )[i][j] * y[j]; } y[i] = sum; } // calculate new row of L for( i = 0; i < r; i++ ) { ( *this )[r][i] = y[i] / ( *this )[i][i]; } // if the last row/column of the matrix is updated if( r == numColumns - 1 ) { // only calculate new diagonal sum = original[r] + v[r]; for( j = 0; j < r; j++ ) { sum -= ( *this )[r][j] * y[j]; } if( sum == 0.0f ) { return false; } ( *this )[r][r] = sum; return true; } // calculate the row/column to be added to the lower right sub matrix starting at (r, r) for( i = 0; i < r; i++ ) { y[i] = ( *this )[r][i] * ( *this )[i][i]; } for( i = r; i < numColumns; i++ ) { if( i == r ) { sum = ( *this )[r][r]; } else { sum = ( *this )[r][r] * ( *this )[i][r]; } for( j = 0; j < r; j++ ) { sum += ( *this )[i][j] * y[j]; } addSub[i] = v[i] - ( sum - original[i] ); } } // add row/column to the lower right sub matrix starting at (r, r) #if 0 idVecX v1, v2; double d; v1.SetData( numColumns, ( float* ) _alloca16( numColumns * sizeof( float ) ) ); v2.SetData( numColumns, ( float* ) _alloca16( numColumns * sizeof( float ) ) ); d = idMath::SQRT_1OVER2; v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d; v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d; for( i = r + 1; i < numColumns; i++ ) { v1[i] = v2[i] = addSub[i] * d; } // update if( !LDLT_UpdateRankOne( v1, 1.0f, r ) ) { return false; } // downdate if( !LDLT_UpdateRankOne( v2, -1.0f, r ) ) { return false; } #else float* v1, *v2; double d, diag, newDiag, p1, p2, alpha1, alpha2, beta1, beta2; v1 = ( float* ) _alloca16( numColumns * sizeof( float ) ); v2 = ( float* ) _alloca16( numColumns * sizeof( float ) ); d = idMath::SQRT_1OVER2; v1[r] = ( 0.5f * addSub[r] + 1.0f ) * d; v2[r] = ( 0.5f * addSub[r] - 1.0f ) * d; for( i = r + 1; i < numColumns; i++ ) { v1[i] = v2[i] = addSub[i] * d; } alpha1 = 1.0f; alpha2 = -1.0f; // simultaneous update/downdate of the sub matrix starting at (r, r) for( i = r; i < numColumns; i++ ) { diag = ( *this )[i][i]; p1 = v1[i]; newDiag = diag + alpha1 * p1 * p1; if( newDiag == 0.0f ) { return false; } alpha1 /= newDiag; beta1 = p1 * alpha1; alpha1 *= diag; diag = newDiag; p2 = v2[i]; newDiag = diag + alpha2 * p2 * p2; if( newDiag == 0.0f ) { return false; } alpha2 /= newDiag; beta2 = p2 * alpha2; alpha2 *= diag; ( *this )[i][i] = newDiag; for( j = i + 1; j < numRows; j++ ) { d = ( *this )[j][i]; v1[j] -= p1 * d; d += beta1 * v1[j]; v2[j] -= p2 * d; d += beta2 * v2[j]; ( *this )[j][i] = d; } } #endif return true; } /* ============ idMatX::LDLT_UpdateIncrement Updates the in-place LDL' factorization to obtain the factors for the matrix: [ A a ] [ a b ] where: a = v[0,numRows-1], b = v[numRows] ============ */ bool idMatX::LDLT_UpdateIncrement( const idVecX& v ) { int i, j; float* x; double sum, d; assert( numRows == numColumns ); assert( v.GetSize() >= numRows + 1 ); ChangeSize( numRows + 1, numColumns + 1, false ); x = ( float* ) _alloca16( numRows * sizeof( float ) ); // solve for x in L * x = v for( i = 0; i < numRows - 1; i++ ) { sum = v[i]; for( j = 0; j < i; j++ ) { sum -= ( *this )[i][j] * x[j]; } x[i] = sum; } // calculate new row of L and calculate the diagonal entry sum = v[numRows - 1]; for( i = 0; i < numRows - 1; i++ ) { ( *this )[numRows - 1][i] = d = x[i] / ( *this )[i][i]; sum -= d * x[i]; } if( sum == 0.0f ) { return false; } // store the diagonal entry ( *this )[numRows - 1][numRows - 1] = sum; return true; } /* ============ idMatX::LDLT_UpdateDecrement Updates the in-place LDL' factorization to obtain the factors for the matrix with row r and column r removed. v should store the row of the original matrix. ============ */ bool idMatX::LDLT_UpdateDecrement( const idVecX& v, int r ) { idVecX v1; assert( numRows == numColumns ); assert( v.GetSize() >= numRows ); assert( r >= 0 && r < numRows ); v1.SetData( numRows, VECX_ALLOCA( numRows ) ); // update the row and column to identity v1 = -v; v1[r] += 1.0f; // NOTE: msvc compiler bug: the this pointer stored in edi is expected to stay // untouched when calling LDLT_UpdateRowColumn in the if statement #if 0 if( !LDLT_UpdateRowColumn( v1, r ) ) { #else bool ret = LDLT_UpdateRowColumn( v1, r ); if( !ret ) { #endif return false; } // physically remove the row and column Update_Decrement( r ); return true; } /* ============ idMatX::LDLT_Solve Solve Ax = b with A factored in-place as: LDL' ============ */ void idMatX::LDLT_Solve( idVecX& x, const idVecX& b ) const { int i, j; double sum; assert( numRows == numColumns ); assert( x.GetSize() >= numRows && b.GetSize() >= numRows ); // solve L for( i = 0; i < numRows; i++ ) { sum = b[i]; for( j = 0; j < i; j++ ) { sum -= ( *this )[i][j] * x[j]; } x[i] = sum; } // solve D for( i = 0; i < numRows; i++ ) { x[i] /= ( *this )[i][i]; } // solve Lt for( i = numRows - 2; i >= 0; i-- ) { sum = x[i]; for( j = i + 1; j < numRows; j++ ) { sum -= ( *this )[j][i] * x[j]; } x[i] = sum; } } /* ============ idMatX::LDLT_Inverse Calculates the inverse of the matrix which is factored in-place as: LDL' ============ */ void idMatX::LDLT_Inverse( idMatX& inv ) const { int i, j; idVecX x, b; assert( numRows == numColumns ); x.SetData( numRows, VECX_ALLOCA( numRows ) ); b.SetData( numRows, VECX_ALLOCA( numRows ) ); b.Zero(); inv.SetSize( numRows, numColumns ); for( i = 0; i < numRows; i++ ) { b[i] = 1.0f; LDLT_Solve( x, b ); for( j = 0; j < numRows; j++ ) { inv[j][i] = x[j]; } b[i] = 0.0f; } } /* ============ idMatX::LDLT_UnpackFactors Unpacks the in-place LDL' factorization. ============ */ void idMatX::LDLT_UnpackFactors( idMatX& L, idMatX& D ) const { int i, j; L.Zero( numRows, numColumns ); D.Zero( numRows, numColumns ); for( i = 0; i < numRows; i++ ) { for( j = 0; j < i; j++ ) { L[i][j] = ( *this )[i][j]; } L[i][i] = 1.0f; D[i][i] = ( *this )[i][i]; } } /* ============ idMatX::LDLT_MultiplyFactors Multiplies the factors of the in-place LDL' factorization to form the original matrix. ============ */ void idMatX::LDLT_MultiplyFactors( idMatX& m ) const { int r, i, j; float* v; double sum; v = ( float* ) _alloca16( numRows * sizeof( float ) ); m.SetSize( numRows, numColumns ); for( r = 0; r < numRows; r++ ) { // calculate row of matrix for( i = 0; i < r; i++ ) { v[i] = ( *this )[r][i] * ( *this )[i][i]; } for( i = 0; i < numColumns; i++ ) { if( i < r ) { sum = ( *this )[i][i] * ( *this )[r][i]; } else if( i == r ) { sum = ( *this )[r][r]; } else { sum = ( *this )[r][r] * ( *this )[i][r]; } for( j = 0; j < i && j < r; j++ ) { sum += ( *this )[i][j] * v[j]; } m[r][i] = sum; } } } /* ============ idMatX::TriDiagonal_ClearTriangles ============ */ void idMatX::TriDiagonal_ClearTriangles() { int i, j; assert( numRows == numColumns ); for( i = 0; i < numRows - 2; i++ ) { for( j = i + 2; j < numColumns; j++ ) { ( *this )[i][j] = 0.0f; ( *this )[j][i] = 0.0f; } } } /* ============ idMatX::TriDiagonal_Solve Solve Ax = b with A being tridiagonal. ============ */ bool idMatX::TriDiagonal_Solve( idVecX& x, const idVecX& b ) const { int i; float d; idVecX tmp; assert( numRows == numColumns ); assert( x.GetSize() >= numRows && b.GetSize() >= numRows ); tmp.SetData( numRows, VECX_ALLOCA( numRows ) ); d = ( *this )[0][0]; if( d == 0.0f ) { return false; } d = 1.0f / d; x[0] = b[0] * d; for( i = 1; i < numRows; i++ ) { tmp[i] = ( *this )[i - 1][i] * d; d = ( *this )[i][i] - ( *this )[i][i - 1] * tmp[i]; if( d == 0.0f ) { return false; } d = 1.0f / d; x[i] = ( b[i] - ( *this )[i][i - 1] * x[i - 1] ) * d; } for( i = numRows - 2; i >= 0; i-- ) { x[i] -= tmp[i + 1] * x[i + 1]; } return true; } /* ============ idMatX::TriDiagonal_Inverse Calculates the inverse of a tri-diagonal matrix. ============ */ void idMatX::TriDiagonal_Inverse( idMatX& inv ) const { int i, j; idVecX x, b; assert( numRows == numColumns ); x.SetData( numRows, VECX_ALLOCA( numRows ) ); b.SetData( numRows, VECX_ALLOCA( numRows ) ); b.Zero(); inv.SetSize( numRows, numColumns ); for( i = 0; i < numRows; i++ ) { b[i] = 1.0f; TriDiagonal_Solve( x, b ); for( j = 0; j < numRows; j++ ) { inv[j][i] = x[j]; } b[i] = 0.0f; } } /* ============ idMatX::HouseholderReduction Householder reduction to symmetric tri-diagonal form. The original matrix is replaced by an orthogonal matrix effecting the accumulated householder transformations. The diagonal elements of the diagonal matrix are stored in diag. The off-diagonal elements of the diagonal matrix are stored in subd. The initial matrix has to be symmetric. ============ */ void idMatX::HouseholderReduction( idVecX& diag, idVecX& subd ) { int i0, i1, i2, i3; float h, f, g, invH, halfFdivH, scale, invScale, sum; assert( numRows == numColumns ); diag.SetSize( numRows ); subd.SetSize( numRows ); for( i0 = numRows - 1, i3 = numRows - 2; i0 >= 1; i0--, i3-- ) { h = 0.0f; scale = 0.0f; if( i3 > 0 ) { for( i2 = 0; i2 <= i3; i2++ ) { scale += idMath::Fabs( ( *this )[i0][i2] ); } if( scale == 0 ) { subd[i0] = ( *this )[i0][i3]; } else { invScale = 1.0f / scale; for( i2 = 0; i2 <= i3; i2++ ) { ( *this )[i0][i2] *= invScale; h += ( *this )[i0][i2] * ( *this )[i0][i2]; } f = ( *this )[i0][i3]; g = idMath::Sqrt( h ); if( f > 0.0f ) { g = -g; } subd[i0] = scale * g; h -= f * g; ( *this )[i0][i3] = f - g; f = 0.0f; invH = 1.0f / h; for( i1 = 0; i1 <= i3; i1++ ) { ( *this )[i1][i0] = ( *this )[i0][i1] * invH; g = 0.0f; for( i2 = 0; i2 <= i1; i2++ ) { g += ( *this )[i1][i2] * ( *this )[i0][i2]; } for( i2 = i1 + 1; i2 <= i3; i2++ ) { g += ( *this )[i2][i1] * ( *this )[i0][i2]; } subd[i1] = g * invH; f += subd[i1] * ( *this )[i0][i1]; } halfFdivH = 0.5f * f * invH; for( i1 = 0; i1 <= i3; i1++ ) { f = ( *this )[i0][i1]; g = subd[i1] - halfFdivH * f; subd[i1] = g; for( i2 = 0; i2 <= i1; i2++ ) { ( *this )[i1][i2] -= f * subd[i2] + g * ( *this )[i0][i2]; } } } } else { subd[i0] = ( *this )[i0][i3]; } diag[i0] = h; } diag[0] = 0.0f; subd[0] = 0.0f; for( i0 = 0, i3 = -1; i0 <= numRows - 1; i0++, i3++ ) { if( diag[i0] ) { for( i1 = 0; i1 <= i3; i1++ ) { sum = 0.0f; for( i2 = 0; i2 <= i3; i2++ ) { sum += ( *this )[i0][i2] * ( *this )[i2][i1]; } for( i2 = 0; i2 <= i3; i2++ ) { ( *this )[i2][i1] -= sum * ( *this )[i2][i0]; } } } diag[i0] = ( *this )[i0][i0]; ( *this )[i0][i0] = 1.0f; for( i1 = 0; i1 <= i3; i1++ ) { ( *this )[i1][i0] = 0.0f; ( *this )[i0][i1] = 0.0f; } } // re-order for( i0 = 1, i3 = 0; i0 < numRows; i0++, i3++ ) { subd[i3] = subd[i0]; } subd[numRows - 1] = 0.0f; } /* ============ idMatX::QL QL algorithm with implicit shifts to determine the eigenvalues and eigenvectors of a symmetric tri-diagonal matrix. diag contains the diagonal elements of the symmetric tri-diagonal matrix on input and is overwritten with the eigenvalues. subd contains the off-diagonal elements of the symmetric tri-diagonal matrix and is destroyed. This matrix has to be either the identity matrix to determine the eigenvectors for a symmetric tri-diagonal matrix, or the matrix returned by the Householder reduction to determine the eigenvalues for the original symmetric matrix. ============ */ bool idMatX::QL( idVecX& diag, idVecX& subd ) { const int maxIter = 32; int i0, i1, i2, i3; float a, b, f, g, r, p, s, c; assert( numRows == numColumns ); for( i0 = 0; i0 < numRows; i0++ ) { for( i1 = 0; i1 < maxIter; i1++ ) { for( i2 = i0; i2 <= numRows - 2; i2++ ) { a = idMath::Fabs( diag[i2] ) + idMath::Fabs( diag[i2 + 1] ); if( idMath::Fabs( subd[i2] ) + a == a ) { break; } } if( i2 == i0 ) { break; } g = ( diag[i0 + 1] - diag[i0] ) / ( 2.0f * subd[i0] ); r = idMath::Sqrt( g * g + 1.0f ); if( g < 0.0f ) { g = diag[i2] - diag[i0] + subd[i0] / ( g - r ); } else { g = diag[i2] - diag[i0] + subd[i0] / ( g + r ); } s = 1.0f; c = 1.0f; p = 0.0f; for( i3 = i2 - 1; i3 >= i0; i3-- ) { f = s * subd[i3]; b = c * subd[i3]; if( idMath::Fabs( f ) >= idMath::Fabs( g ) ) { c = g / f; r = idMath::Sqrt( c * c + 1.0f ); subd[i3 + 1] = f * r; s = 1.0f / r; c *= s; } else { s = f / g; r = idMath::Sqrt( s * s + 1.0f ); subd[i3 + 1] = g * r; c = 1.0f / r; s *= c; } g = diag[i3 + 1] - p; r = ( diag[i3] - g ) * s + 2.0f * b * c; p = s * r; diag[i3 + 1] = g + p; g = c * r - b; for( int i4 = 0; i4 < numRows; i4++ ) { f = ( *this )[i4][i3 + 1]; ( *this )[i4][i3 + 1] = s * ( *this )[i4][i3] + c * f; ( *this )[i4][i3] = c * ( *this )[i4][i3] - s * f; } } diag[i0] -= p; subd[i0] = g; subd[i2] = 0.0f; } if( i1 == maxIter ) { return false; } } return true; } /* ============ idMatX::Eigen_SolveSymmetricTriDiagonal Determine eigen values and eigen vectors for a symmetric tri-diagonal matrix. The eigen values are stored in 'eigenValues'. Column i of the original matrix will store the eigen vector corresponding to the eigenValues[i]. The initial matrix has to be symmetric tri-diagonal. ============ */ bool idMatX::Eigen_SolveSymmetricTriDiagonal( idVecX& eigenValues ) { int i; idVecX subd; assert( numRows == numColumns ); subd.SetData( numRows, VECX_ALLOCA( numRows ) ); eigenValues.SetSize( numRows ); for( i = 0; i < numRows - 1; i++ ) { eigenValues[i] = ( *this )[i][i]; subd[i] = ( *this )[i + 1][i]; } eigenValues[numRows - 1] = ( *this )[numRows - 1][numRows - 1]; Identity(); return QL( eigenValues, subd ); } /* ============ idMatX::Eigen_SolveSymmetric Determine eigen values and eigen vectors for a symmetric matrix. The eigen values are stored in 'eigenValues'. Column i of the original matrix will store the eigen vector corresponding to the eigenValues[i]. The initial matrix has to be symmetric. ============ */ bool idMatX::Eigen_SolveSymmetric( idVecX& eigenValues ) { idVecX subd; assert( numRows == numColumns ); subd.SetData( numRows, VECX_ALLOCA( numRows ) ); eigenValues.SetSize( numRows ); HouseholderReduction( eigenValues, subd ); return QL( eigenValues, subd ); } /* ============ idMatX::HessenbergReduction Reduction to Hessenberg form. ============ */ void idMatX::HessenbergReduction( idMatX& H ) { int i, j, m; int low = 0; int high = numRows - 1; float scale, f, g, h; idVecX v; v.SetData( numRows, VECX_ALLOCA( numRows ) ); for( m = low + 1; m <= high - 1; m++ ) { scale = 0.0f; for( i = m; i <= high; i++ ) { scale = scale + idMath::Fabs( H[i][m - 1] ); } if( scale != 0.0f ) { // compute Householder transformation. h = 0.0f; for( i = high; i >= m; i-- ) { v[i] = H[i][m - 1] / scale; h += v[i] * v[i]; } g = idMath::Sqrt( h ); if( v[m] > 0.0f ) { g = -g; } h = h - v[m] * g; v[m] = v[m] - g; // apply Householder similarity transformation // H = (I-u*u'/h)*H*(I-u*u')/h) for( j = m; j < numRows; j++ ) { f = 0.0f; for( i = high; i >= m; i-- ) { f += v[i] * H[i][j]; } f = f / h; for( i = m; i <= high; i++ ) { H[i][j] -= f * v[i]; } } for( i = 0; i <= high; i++ ) { f = 0.0f; for( j = high; j >= m; j-- ) { f += v[j] * H[i][j]; } f = f / h; for( j = m; j <= high; j++ ) { H[i][j] -= f * v[j]; } } v[m] = scale * v[m]; H[m][m - 1] = scale * g; } } // accumulate transformations Identity(); for( int m = high - 1; m >= low + 1; m-- ) { if( H[m][m - 1] != 0.0f ) { for( i = m + 1; i <= high; i++ ) { v[i] = H[i][m - 1]; } for( j = m; j <= high; j++ ) { g = 0.0f; for( i = m; i <= high; i++ ) { g += v[i] * ( *this )[i][j]; } // float division to avoid possible underflow g = ( g / v[m] ) / H[m][m - 1]; for( i = m; i <= high; i++ ) { ( *this )[i][j] += g * v[i]; } } } } } /* ============ idMatX::ComplexDivision Complex scalar division. ============ */ void idMatX::ComplexDivision( float xr, float xi, float yr, float yi, float& cdivr, float& cdivi ) { float r, d; if( idMath::Fabs( yr ) > idMath::Fabs( yi ) ) { r = yi / yr; d = yr + r * yi; cdivr = ( xr + r * xi ) / d; cdivi = ( xi - r * xr ) / d; } else { r = yr / yi; d = yi + r * yr; cdivr = ( r * xr + xi ) / d; cdivi = ( r * xi - xr ) / d; } } /* ============ idMatX::HessenbergToRealSchur Reduction from Hessenberg to real Schur form. ============ */ bool idMatX::HessenbergToRealSchur( idMatX& H, idVecX& realEigenValues, idVecX& imaginaryEigenValues ) { int i, j, k; int n = numRows - 1; int low = 0; int high = numRows - 1; float eps = 2e-16f, exshift = 0.0f; float p = 0.0f, q = 0.0f, r = 0.0f, s = 0.0f, z = 0.0f, t, w, x, y; // store roots isolated by balanc and compute matrix norm float norm = 0.0f; for( i = 0; i < numRows; i++ ) { if( i < low || i > high ) { realEigenValues[i] = H[i][i]; imaginaryEigenValues[i] = 0.0f; } for( j = Max( i - 1, 0 ); j < numRows; j++ ) { norm = norm + idMath::Fabs( H[i][j] ); } } int iter = 0; while( n >= low ) { // look for single small sub-diagonal element int l = n; while( l > low ) { s = idMath::Fabs( H[l - 1][l - 1] ) + idMath::Fabs( H[l][l] ); if( s == 0.0f ) { s = norm; } if( idMath::Fabs( H[l][l - 1] ) < eps * s ) { break; } l--; } // check for convergence if( l == n ) // one root found { H[n][n] = H[n][n] + exshift; realEigenValues[n] = H[n][n]; imaginaryEigenValues[n] = 0.0f; n--; iter = 0; } else if( l == n - 1 ) // two roots found { w = H[n][n - 1] * H[n - 1][n]; p = ( H[n - 1][n - 1] - H[n][n] ) / 2.0f; q = p * p + w; z = idMath::Sqrt( idMath::Fabs( q ) ); H[n][n] = H[n][n] + exshift; H[n - 1][n - 1] = H[n - 1][n - 1] + exshift; x = H[n][n]; if( q >= 0.0f ) // real pair { if( p >= 0.0f ) { z = p + z; } else { z = p - z; } realEigenValues[n - 1] = x + z; realEigenValues[n] = realEigenValues[n - 1]; if( z != 0.0f ) { realEigenValues[n] = x - w / z; } imaginaryEigenValues[n - 1] = 0.0f; imaginaryEigenValues[n] = 0.0f; x = H[n][n - 1]; s = idMath::Fabs( x ) + idMath::Fabs( z ); p = x / s; q = z / s; r = idMath::Sqrt( p * p + q * q ); p = p / r; q = q / r; // modify row for( j = n - 1; j < numRows; j++ ) { z = H[n - 1][j]; H[n - 1][j] = q * z + p * H[n][j]; H[n][j] = q * H[n][j] - p * z; } // modify column for( i = 0; i <= n; i++ ) { z = H[i][n - 1]; H[i][n - 1] = q * z + p * H[i][n]; H[i][n] = q * H[i][n] - p * z; } // accumulate transformations for( i = low; i <= high; i++ ) { z = ( *this )[i][n - 1]; ( *this )[i][n - 1] = q * z + p * ( *this )[i][n]; ( *this )[i][n] = q * ( *this )[i][n] - p * z; } } else // complex pair { realEigenValues[n - 1] = x + p; realEigenValues[n] = x + p; imaginaryEigenValues[n - 1] = z; imaginaryEigenValues[n] = -z; } n = n - 2; iter = 0; } else // no convergence yet { // form shift x = H[n][n]; y = 0.0f; w = 0.0f; if( l < n ) { y = H[n - 1][n - 1]; w = H[n][n - 1] * H[n - 1][n]; } // Wilkinson's original ad hoc shift if( iter == 10 ) { exshift += x; for( i = low; i <= n; i++ ) { H[i][i] -= x; } s = idMath::Fabs( H[n][n - 1] ) + idMath::Fabs( H[n - 1][n - 2] ); x = y = 0.75f * s; w = -0.4375f * s * s; } // new ad hoc shift if( iter == 30 ) { s = ( y - x ) / 2.0f; s = s * s + w; if( s > 0 ) { s = idMath::Sqrt( s ); if( y < x ) { s = -s; } s = x - w / ( ( y - x ) / 2.0f + s ); for( i = low; i <= n; i++ ) { H[i][i] -= s; } exshift += s; x = y = w = 0.964f; } } iter = iter + 1; // look for two consecutive small sub-diagonal elements int m; for( m = n - 2; m >= l; m-- ) { z = H[m][m]; r = x - z; s = y - z; p = ( r * s - w ) / H[m + 1][m] + H[m][m + 1]; q = H[m + 1][m + 1] - z - r - s; r = H[m + 2][m + 1]; s = idMath::Fabs( p ) + idMath::Fabs( q ) + idMath::Fabs( r ); p = p / s; q = q / s; r = r / s; if( m == l ) { break; } if( idMath::Fabs( H[m][m - 1] ) * ( idMath::Fabs( q ) + idMath::Fabs( r ) ) < eps * ( idMath::Fabs( p ) * ( idMath::Fabs( H[m - 1][m - 1] ) + idMath::Fabs( z ) + idMath::Fabs( H[m + 1][m + 1] ) ) ) ) { break; } } for( i = m + 2; i <= n; i++ ) { H[i][i - 2] = 0.0f; if( i > m + 2 ) { H[i][i - 3] = 0.0f; } } // double QR step involving rows l:n and columns m:n for( k = m; k <= n - 1; k++ ) { bool notlast = ( k != n - 1 ); if( k != m ) { p = H[k][k - 1]; q = H[k + 1][k - 1]; r = ( notlast ? H[k + 2][k - 1] : 0.0f ); x = idMath::Fabs( p ) + idMath::Fabs( q ) + idMath::Fabs( r ); if( x != 0.0f ) { p = p / x; q = q / x; r = r / x; } } if( x == 0.0f ) { break; } s = idMath::Sqrt( p * p + q * q + r * r ); if( p < 0.0f ) { s = -s; } if( s != 0.0f ) { if( k != m ) { H[k][k - 1] = -s * x; } else if( l != m ) { H[k][k - 1] = -H[k][k - 1]; } p = p + s; x = p / s; y = q / s; z = r / s; q = q / p; r = r / p; // modify row for( j = k; j < numRows; j++ ) { p = H[k][j] + q * H[k + 1][j]; if( notlast ) { p = p + r * H[k + 2][j]; H[k + 2][j] = H[k + 2][j] - p * z; } H[k][j] = H[k][j] - p * x; H[k + 1][j] = H[k + 1][j] - p * y; } // modify column for( i = 0; i <= Min( n, k + 3 ); i++ ) { p = x * H[i][k] + y * H[i][k + 1]; if( notlast ) { p = p + z * H[i][k + 2]; H[i][k + 2] = H[i][k + 2] - p * r; } H[i][k] = H[i][k] - p; H[i][k + 1] = H[i][k + 1] - p * q; } // accumulate transformations for( i = low; i <= high; i++ ) { p = x * ( *this )[i][k] + y * ( *this )[i][k + 1]; if( notlast ) { p = p + z * ( *this )[i][k + 2]; ( *this )[i][k + 2] = ( *this )[i][k + 2] - p * r; } ( *this )[i][k] = ( *this )[i][k] - p; ( *this )[i][k + 1] = ( *this )[i][k + 1] - p * q; } } } } } // backsubstitute to find vectors of upper triangular form if( norm == 0.0f ) { return false; } for( n = numRows - 1; n >= 0; n-- ) { p = realEigenValues[n]; q = imaginaryEigenValues[n]; if( q == 0.0f ) // real vector { int l = n; H[n][n] = 1.0f; for( i = n - 1; i >= 0; i-- ) { w = H[i][i] - p; r = 0.0f; for( j = l; j <= n; j++ ) { r = r + H[i][j] * H[j][n]; } if( imaginaryEigenValues[i] < 0.0f ) { z = w; s = r; } else { l = i; if( imaginaryEigenValues[i] == 0.0f ) { if( w != 0.0f ) { H[i][n] = -r / w; } else { H[i][n] = -r / ( eps * norm ); } } else // solve real equations { x = H[i][i + 1]; y = H[i + 1][i]; q = ( realEigenValues[i] - p ) * ( realEigenValues[i] - p ) + imaginaryEigenValues[i] * imaginaryEigenValues[i]; t = ( x * s - z * r ) / q; H[i][n] = t; if( idMath::Fabs( x ) > idMath::Fabs( z ) ) { H[i + 1][n] = ( -r - w * t ) / x; } else { H[i + 1][n] = ( -s - y * t ) / z; } } // overflow control t = idMath::Fabs( H[i][n] ); if( ( eps * t ) * t > 1 ) { for( j = i; j <= n; j++ ) { H[j][n] = H[j][n] / t; } } } } } else if( q < 0.0f ) // complex vector { int l = n - 1; // last vector component imaginary so matrix is triangular if( idMath::Fabs( H[n][n - 1] ) > idMath::Fabs( H[n - 1][n] ) ) { H[n - 1][n - 1] = q / H[n][n - 1]; H[n - 1][n] = -( H[n][n] - p ) / H[n][n - 1]; } else { ComplexDivision( 0.0f, -H[n - 1][n], H[n - 1][n - 1] - p, q, H[n - 1][n - 1], H[n - 1][n] ); } H[n][n - 1] = 0.0f; H[n][n] = 1.0f; for( i = n - 2; i >= 0; i-- ) { float ra, sa, vr, vi; ra = 0.0f; sa = 0.0f; for( j = l; j <= n; j++ ) { ra = ra + H[i][j] * H[j][n - 1]; sa = sa + H[i][j] * H[j][n]; } w = H[i][i] - p; if( imaginaryEigenValues[i] < 0.0f ) { z = w; r = ra; s = sa; } else { l = i; if( imaginaryEigenValues[i] == 0.0f ) { ComplexDivision( -ra, -sa, w, q, H[i][n - 1], H[i][n] ); } else { // solve complex equations x = H[i][i + 1]; y = H[i + 1][i]; vr = ( realEigenValues[i] - p ) * ( realEigenValues[i] - p ) + imaginaryEigenValues[i] * imaginaryEigenValues[i] - q * q; vi = ( realEigenValues[i] - p ) * 2.0f * q; if( vr == 0.0f && vi == 0.0f ) { vr = eps * norm * ( idMath::Fabs( w ) + idMath::Fabs( q ) + idMath::Fabs( x ) + idMath::Fabs( y ) + idMath::Fabs( z ) ); } ComplexDivision( x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi, H[i][n - 1], H[i][n] ); if( idMath::Fabs( x ) > ( idMath::Fabs( z ) + idMath::Fabs( q ) ) ) { H[i + 1][n - 1] = ( -ra - w * H[i][n - 1] + q * H[i][n] ) / x; H[i + 1][n] = ( -sa - w * H[i][n] - q * H[i][n - 1] ) / x; } else { ComplexDivision( -r - y * H[i][n - 1], -s - y * H[i][n], z, q, H[i + 1][n - 1], H[i + 1][n] ); } } // overflow control t = Max( idMath::Fabs( H[i][n - 1] ), idMath::Fabs( H[i][n] ) ); if( ( eps * t ) * t > 1 ) { for( j = i; j <= n; j++ ) { H[j][n - 1] = H[j][n - 1] / t; H[j][n] = H[j][n] / t; } } } } } } // vectors of isolated roots for( i = 0; i < numRows; i++ ) { if( i < low || i > high ) { for( j = i; j < numRows; j++ ) { ( *this )[i][j] = H[i][j]; } } } // back transformation to get eigenvectors of original matrix for( j = numRows - 1; j >= low; j-- ) { for( i = low; i <= high; i++ ) { z = 0.0f; for( k = low; k <= Min( j, high ); k++ ) { z = z + ( *this )[i][k] * H[k][j]; } ( *this )[i][j] = z; } } return true; } /* ============ idMatX::Eigen_Solve Determine eigen values and eigen vectors for a square matrix. The eigen values are stored in 'realEigenValues' and 'imaginaryEigenValues'. Column i of the original matrix will store the eigen vector corresponding to the realEigenValues[i] and imaginaryEigenValues[i]. ============ */ bool idMatX::Eigen_Solve( idVecX& realEigenValues, idVecX& imaginaryEigenValues ) { idMatX H; assert( numRows == numColumns ); realEigenValues.SetSize( numRows ); imaginaryEigenValues.SetSize( numRows ); H = *this; // reduce to Hessenberg form HessenbergReduction( H ); // reduce Hessenberg to real Schur form return HessenbergToRealSchur( H, realEigenValues, imaginaryEigenValues ); } /* ============ idMatX::Eigen_SortIncreasing ============ */ void idMatX::Eigen_SortIncreasing( idVecX& eigenValues ) { for( int i = 0, j = 0; i <= numRows - 2; i++ ) { j = i; float min = eigenValues[j]; for( int k = i + 1; k < numRows; k++ ) { if( eigenValues[k] < min ) { j = k; min = eigenValues[j]; } } if( j != i ) { eigenValues.SwapElements( i, j ); SwapColumns( i, j ); } } } /* ============ idMatX::Eigen_SortDecreasing ============ */ void idMatX::Eigen_SortDecreasing( idVecX& eigenValues ) { for( int i = 0, j = 0; i <= numRows - 2; i++ ) { j = i; float max = eigenValues[j]; for( int k = i + 1; k < numRows; k++ ) { if( eigenValues[k] > max ) { j = k; max = eigenValues[j]; } } if( j != i ) { eigenValues.SwapElements( i, j ); SwapColumns( i, j ); } } } /* ============ idMatX::DeterminantGeneric ============ */ float idMatX::DeterminantGeneric() const { int* index; float det; idMatX tmp; index = ( int* ) _alloca16( numRows * sizeof( int ) ); tmp.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) ); tmp = *this; if( !tmp.LU_Factor( index, &det ) ) { return 0.0f; } return det; } /* ============ idMatX::InverseSelfGeneric ============ */ bool idMatX::InverseSelfGeneric() { int i, j, *index; idMatX tmp; idVecX x, b; index = ( int* ) _alloca16( numRows * sizeof( int ) ); tmp.SetData( numRows, numColumns, MATX_ALLOCA( numRows * numColumns ) ); tmp = *this; if( !tmp.LU_Factor( index ) ) { return false; } x.SetData( numRows, VECX_ALLOCA( numRows ) ); b.SetData( numRows, VECX_ALLOCA( numRows ) ); b.Zero(); for( i = 0; i < numRows; i++ ) { b[i] = 1.0f; tmp.LU_Solve( x, b, index ); for( j = 0; j < numRows; j++ ) { ( *this )[j][i] = x[j]; } b[i] = 0.0f; } return true; } /* ============ idMatX::Test ============ */ void idMatX::Test() { idMatX original, m1, m2, m3, q1, q2, r1, r2; idVecX v, w, u, c, d; int offset, size, *index1, *index2; size = 6; original.Random( size, size, 0 ); original = original * original.Transpose(); index1 = ( int* ) _alloca16( ( size + 1 ) * sizeof( index1[0] ) ); index2 = ( int* ) _alloca16( ( size + 1 ) * sizeof( index2[0] ) ); /* idMatX::LowerTriangularInverse */ m1 = original; m1.ClearUpperTriangle(); m2 = m1; m2.InverseSelf(); m1.LowerTriangularInverse(); if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::LowerTriangularInverse failed" ); } /* idMatX::UpperTriangularInverse */ m1 = original; m1.ClearLowerTriangle(); m2 = m1; m2.InverseSelf(); m1.UpperTriangularInverse(); if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::UpperTriangularInverse failed" ); } /* idMatX::Inverse_GaussJordan */ m1 = original; m1.Inverse_GaussJordan(); m1 *= original; if( !m1.IsIdentity( 1e-4f ) ) { idLib::common->Warning( "idMatX::Inverse_GaussJordan failed" ); } /* idMatX::Inverse_UpdateRankOne */ m1 = original; m2 = original; w.Random( size, 1 ); v.Random( size, 2 ); // invert m1 m1.Inverse_GaussJordan(); // modify and invert m2 m2.Update_RankOne( v, w, 1.0f ); if( !m2.Inverse_GaussJordan() ) { assert( 0 ); } // update inverse of m1 m1.Inverse_UpdateRankOne( v, w, 1.0f ); if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Inverse_UpdateRankOne failed" ); } /* idMatX::Inverse_UpdateRowColumn */ for( offset = 0; offset < size; offset++ ) { m1 = original; m2 = original; v.Random( size, 1 ); w.Random( size, 2 ); w[offset] = 0.0f; // invert m1 m1.Inverse_GaussJordan(); // modify and invert m2 m2.Update_RowColumn( v, w, offset ); if( !m2.Inverse_GaussJordan() ) { assert( 0 ); } // update inverse of m1 m1.Inverse_UpdateRowColumn( v, w, offset ); if( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::Inverse_UpdateRowColumn failed" ); } } /* idMatX::Inverse_UpdateIncrement */ m1 = original; m2 = original; v.Random( size + 1, 1 ); w.Random( size + 1, 2 ); w[size] = 0.0f; // invert m1 m1.Inverse_GaussJordan(); // modify and invert m2 m2.Update_Increment( v, w ); if( !m2.Inverse_GaussJordan() ) { assert( 0 ); } // update inverse of m1 m1.Inverse_UpdateIncrement( v, w ); if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Inverse_UpdateIncrement failed" ); } /* idMatX::Inverse_UpdateDecrement */ for( offset = 0; offset < size; offset++ ) { m1 = original; m2 = original; v.SetSize( 6 ); w.SetSize( 6 ); for( int i = 0; i < size; i++ ) { v[i] = original[i][offset]; w[i] = original[offset][i]; } // invert m1 m1.Inverse_GaussJordan(); // modify and invert m2 m2.Update_Decrement( offset ); if( !m2.Inverse_GaussJordan() ) { assert( 0 ); } // update inverse of m1 m1.Inverse_UpdateDecrement( v, w, offset ); if( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::Inverse_UpdateDecrement failed" ); } } /* idMatX::LU_Factor */ m1 = original; m1.LU_Factor( NULL ); // no pivoting m1.LU_UnpackFactors( m2, m3 ); m1 = m2 * m3; if( !original.Compare( m1, 1e-4f ) ) { idLib::common->Warning( "idMatX::LU_Factor failed" ); } /* idMatX::LU_UpdateRankOne */ m1 = original; m2 = original; w.Random( size, 1 ); v.Random( size, 2 ); // factor m1 m1.LU_Factor( index1 ); // modify and factor m2 m2.Update_RankOne( v, w, 1.0f ); if( !m2.LU_Factor( index2 ) ) { assert( 0 ); } m2.LU_MultiplyFactors( m3, index2 ); m2 = m3; // update factored m1 m1.LU_UpdateRankOne( v, w, 1.0f, index1 ); m1.LU_MultiplyFactors( m3, index1 ); m1 = m3; if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::LU_UpdateRankOne failed" ); } /* idMatX::LU_UpdateRowColumn */ for( offset = 0; offset < size; offset++ ) { m1 = original; m2 = original; v.Random( size, 1 ); w.Random( size, 2 ); w[offset] = 0.0f; // factor m1 m1.LU_Factor( index1 ); // modify and factor m2 m2.Update_RowColumn( v, w, offset ); if( !m2.LU_Factor( index2 ) ) { assert( 0 ); } m2.LU_MultiplyFactors( m3, index2 ); m2 = m3; // update m1 m1.LU_UpdateRowColumn( v, w, offset, index1 ); m1.LU_MultiplyFactors( m3, index1 ); m1 = m3; if( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::LU_UpdateRowColumn failed" ); } } /* idMatX::LU_UpdateIncrement */ m1 = original; m2 = original; v.Random( size + 1, 1 ); w.Random( size + 1, 2 ); w[size] = 0.0f; // factor m1 m1.LU_Factor( index1 ); // modify and factor m2 m2.Update_Increment( v, w ); if( !m2.LU_Factor( index2 ) ) { assert( 0 ); } m2.LU_MultiplyFactors( m3, index2 ); m2 = m3; // update factored m1 m1.LU_UpdateIncrement( v, w, index1 ); m1.LU_MultiplyFactors( m3, index1 ); m1 = m3; if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::LU_UpdateIncrement failed" ); } /* idMatX::LU_UpdateDecrement */ for( offset = 0; offset < size; offset++ ) { m1 = original; m2 = original; v.SetSize( 6 ); w.SetSize( 6 ); for( int i = 0; i < size; i++ ) { v[i] = original[i][offset]; w[i] = original[offset][i]; } // factor m1 m1.LU_Factor( index1 ); // modify and factor m2 m2.Update_Decrement( offset ); if( !m2.LU_Factor( index2 ) ) { assert( 0 ); } m2.LU_MultiplyFactors( m3, index2 ); m2 = m3; u.SetSize( 6 ); for( int i = 0; i < size; i++ ) { u[i] = original[index1[offset]][i]; } // update factors of m1 m1.LU_UpdateDecrement( v, w, u, offset, index1 ); m1.LU_MultiplyFactors( m3, index1 ); m1 = m3; if( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::LU_UpdateDecrement failed" ); } } /* idMatX::LU_Inverse */ m2 = original; m2.LU_Factor( NULL ); m2.LU_Inverse( m1, NULL ); m1 *= original; if( !m1.IsIdentity( 1e-4f ) ) { idLib::common->Warning( "idMatX::LU_Inverse failed" ); } /* idMatX::QR_Factor */ c.SetSize( size ); d.SetSize( size ); m1 = original; m1.QR_Factor( c, d ); m1.QR_UnpackFactors( q1, r1, c, d ); m1 = q1 * r1; if( !original.Compare( m1, 1e-4f ) ) { idLib::common->Warning( "idMatX::QR_Factor failed" ); } /* idMatX::QR_UpdateRankOne */ c.SetSize( size ); d.SetSize( size ); m1 = original; m2 = original; w.Random( size, 0 ); v = w; // factor m1 m1.QR_Factor( c, d ); m1.QR_UnpackFactors( q1, r1, c, d ); // modify and factor m2 m2.Update_RankOne( v, w, 1.0f ); if( !m2.QR_Factor( c, d ) ) { assert( 0 ); } m2.QR_UnpackFactors( q2, r2, c, d ); m2 = q2 * r2; // update factored m1 q1.QR_UpdateRankOne( r1, v, w, 1.0f ); m1 = q1 * r1; if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::QR_UpdateRankOne failed" ); } /* idMatX::QR_UpdateRowColumn */ for( offset = 0; offset < size; offset++ ) { c.SetSize( size ); d.SetSize( size ); m1 = original; m2 = original; v.Random( size, 1 ); w.Random( size, 2 ); w[offset] = 0.0f; // factor m1 m1.QR_Factor( c, d ); m1.QR_UnpackFactors( q1, r1, c, d ); // modify and factor m2 m2.Update_RowColumn( v, w, offset ); if( !m2.QR_Factor( c, d ) ) { assert( 0 ); } m2.QR_UnpackFactors( q2, r2, c, d ); m2 = q2 * r2; // update m1 q1.QR_UpdateRowColumn( r1, v, w, offset ); m1 = q1 * r1; if( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::QR_UpdateRowColumn failed" ); } } /* idMatX::QR_UpdateIncrement */ c.SetSize( size + 1 ); d.SetSize( size + 1 ); m1 = original; m2 = original; v.Random( size + 1, 1 ); w.Random( size + 1, 2 ); w[size] = 0.0f; // factor m1 m1.QR_Factor( c, d ); m1.QR_UnpackFactors( q1, r1, c, d ); // modify and factor m2 m2.Update_Increment( v, w ); if( !m2.QR_Factor( c, d ) ) { assert( 0 ); } m2.QR_UnpackFactors( q2, r2, c, d ); m2 = q2 * r2; // update factored m1 q1.QR_UpdateIncrement( r1, v, w ); m1 = q1 * r1; if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::QR_UpdateIncrement failed" ); } /* idMatX::QR_UpdateDecrement */ for( offset = 0; offset < size; offset++ ) { c.SetSize( size + 1 ); d.SetSize( size + 1 ); m1 = original; m2 = original; v.SetSize( 6 ); w.SetSize( 6 ); for( int i = 0; i < size; i++ ) { v[i] = original[i][offset]; w[i] = original[offset][i]; } // factor m1 m1.QR_Factor( c, d ); m1.QR_UnpackFactors( q1, r1, c, d ); // modify and factor m2 m2.Update_Decrement( offset ); if( !m2.QR_Factor( c, d ) ) { assert( 0 ); } m2.QR_UnpackFactors( q2, r2, c, d ); m2 = q2 * r2; // update factors of m1 q1.QR_UpdateDecrement( r1, v, w, offset ); m1 = q1 * r1; if( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::QR_UpdateDecrement failed" ); } } /* idMatX::QR_Inverse */ m2 = original; m2.QR_Factor( c, d ); m2.QR_Inverse( m1, c, d ); m1 *= original; if( !m1.IsIdentity( 1e-4f ) ) { idLib::common->Warning( "idMatX::QR_Inverse failed" ); } /* idMatX::SVD_Factor */ m1 = original; m3.Zero( size, size ); w.Zero( size ); m1.SVD_Factor( w, m3 ); m2.Diag( w ); m3.TransposeSelf(); m1 = m1 * m2 * m3; if( !original.Compare( m1, 1e-4f ) ) { idLib::common->Warning( "idMatX::SVD_Factor failed" ); } /* idMatX::SVD_Inverse */ m2 = original; m2.SVD_Factor( w, m3 ); m2.SVD_Inverse( m1, w, m3 ); m1 *= original; if( !m1.IsIdentity( 1e-4f ) ) { idLib::common->Warning( "idMatX::SVD_Inverse failed" ); } /* idMatX::Cholesky_Factor */ m1 = original; m1.Cholesky_Factor(); m1.Cholesky_MultiplyFactors( m2 ); if( !original.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Cholesky_Factor failed" ); } /* idMatX::Cholesky_UpdateRankOne */ m1 = original; m2 = original; w.Random( size, 0 ); // factor m1 m1.Cholesky_Factor(); m1.ClearUpperTriangle(); // modify and factor m2 m2.Update_RankOneSymmetric( w, 1.0f ); if( !m2.Cholesky_Factor() ) { assert( 0 ); } m2.ClearUpperTriangle(); // update factored m1 m1.Cholesky_UpdateRankOne( w, 1.0f, 0 ); if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Cholesky_UpdateRankOne failed" ); } /* idMatX::Cholesky_UpdateRowColumn */ for( offset = 0; offset < size; offset++ ) { m1 = original; m2 = original; // factor m1 m1.Cholesky_Factor(); m1.ClearUpperTriangle(); int pdtable[] = { 1, 0, 1, 0, 0, 0 }; w.Random( size, pdtable[offset] ); w *= 0.1f; // modify and factor m2 m2.Update_RowColumnSymmetric( w, offset ); if( !m2.Cholesky_Factor() ) { assert( 0 ); } m2.ClearUpperTriangle(); // update m1 m1.Cholesky_UpdateRowColumn( w, offset ); if( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::Cholesky_UpdateRowColumn failed" ); } } /* idMatX::Cholesky_UpdateIncrement */ m1.Random( size + 1, size + 1, 0 ); m3 = m1 * m1.Transpose(); m1.SquareSubMatrix( m3, size ); m2 = m1; w.SetSize( size + 1 ); for( int i = 0; i < size + 1; i++ ) { w[i] = m3[size][i]; } // factor m1 m1.Cholesky_Factor(); // modify and factor m2 m2.Update_IncrementSymmetric( w ); if( !m2.Cholesky_Factor() ) { assert( 0 ); } // update factored m1 m1.Cholesky_UpdateIncrement( w ); m1.ClearUpperTriangle(); m2.ClearUpperTriangle(); if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Cholesky_UpdateIncrement failed" ); } /* idMatX::Cholesky_UpdateDecrement */ for( offset = 0; offset < size; offset += size - 1 ) { m1 = original; m2 = original; v.SetSize( 6 ); for( int i = 0; i < size; i++ ) { v[i] = original[i][offset]; } // factor m1 m1.Cholesky_Factor(); // modify and factor m2 m2.Update_Decrement( offset ); if( !m2.Cholesky_Factor() ) { assert( 0 ); } // update factors of m1 m1.Cholesky_UpdateDecrement( v, offset ); if( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::Cholesky_UpdateDecrement failed" ); } } /* idMatX::Cholesky_Inverse */ m2 = original; m2.Cholesky_Factor(); m2.Cholesky_Inverse( m1 ); m1 *= original; if( !m1.IsIdentity( 1e-4f ) ) { idLib::common->Warning( "idMatX::Cholesky_Inverse failed" ); } /* idMatX::LDLT_Factor */ m1 = original; m1.LDLT_Factor(); m1.LDLT_MultiplyFactors( m2 ); if( !original.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::LDLT_Factor failed" ); } m1.LDLT_UnpackFactors( m2, m3 ); m2 = m2 * m3 * m2.Transpose(); if( !original.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::LDLT_Factor failed" ); } /* idMatX::LDLT_UpdateRankOne */ m1 = original; m2 = original; w.Random( size, 0 ); // factor m1 m1.LDLT_Factor(); m1.ClearUpperTriangle(); // modify and factor m2 m2.Update_RankOneSymmetric( w, 1.0f ); if( !m2.LDLT_Factor() ) { assert( 0 ); } m2.ClearUpperTriangle(); // update factored m1 m1.LDLT_UpdateRankOne( w, 1.0f, 0 ); if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::LDLT_UpdateRankOne failed" ); } /* idMatX::LDLT_UpdateRowColumn */ for( offset = 0; offset < size; offset++ ) { m1 = original; m2 = original; w.Random( size, 0 ); // factor m1 m1.LDLT_Factor(); m1.ClearUpperTriangle(); // modify and factor m2 m2.Update_RowColumnSymmetric( w, offset ); if( !m2.LDLT_Factor() ) { assert( 0 ); } m2.ClearUpperTriangle(); // update m1 m1.LDLT_UpdateRowColumn( w, offset ); if( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::LDLT_UpdateRowColumn failed" ); } } /* idMatX::LDLT_UpdateIncrement */ m1.Random( size + 1, size + 1, 0 ); m3 = m1 * m1.Transpose(); m1.SquareSubMatrix( m3, size ); m2 = m1; w.SetSize( size + 1 ); for( int i = 0; i < size + 1; i++ ) { w[i] = m3[size][i]; } // factor m1 m1.LDLT_Factor(); // modify and factor m2 m2.Update_IncrementSymmetric( w ); if( !m2.LDLT_Factor() ) { assert( 0 ); } // update factored m1 m1.LDLT_UpdateIncrement( w ); m1.ClearUpperTriangle(); m2.ClearUpperTriangle(); if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::LDLT_UpdateIncrement failed" ); } /* idMatX::LDLT_UpdateDecrement */ for( offset = 0; offset < size; offset++ ) { m1 = original; m2 = original; v.SetSize( 6 ); for( int i = 0; i < size; i++ ) { v[i] = original[i][offset]; } // factor m1 m1.LDLT_Factor(); // modify and factor m2 m2.Update_Decrement( offset ); if( !m2.LDLT_Factor() ) { assert( 0 ); } // update factors of m1 m1.LDLT_UpdateDecrement( v, offset ); if( !m1.Compare( m2, 1e-3f ) ) { idLib::common->Warning( "idMatX::LDLT_UpdateDecrement failed" ); } } /* idMatX::LDLT_Inverse */ m2 = original; m2.LDLT_Factor(); m2.LDLT_Inverse( m1 ); m1 *= original; if( !m1.IsIdentity( 1e-4f ) ) { idLib::common->Warning( "idMatX::LDLT_Inverse failed" ); } /* idMatX::Eigen_SolveSymmetricTriDiagonal */ m3 = original; m3.TriDiagonal_ClearTriangles(); m1 = m3; v.SetSize( size ); m1.Eigen_SolveSymmetricTriDiagonal( v ); m3.TransposeMultiply( m2, m1 ); for( int i = 0; i < size; i++ ) { for( int j = 0; j < size; j++ ) { m1[i][j] *= v[j]; } } if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Eigen_SolveSymmetricTriDiagonal failed" ); } /* idMatX::Eigen_SolveSymmetric */ m3 = original; m1 = m3; v.SetSize( size ); m1.Eigen_SolveSymmetric( v ); m3.TransposeMultiply( m2, m1 ); for( int i = 0; i < size; i++ ) { for( int j = 0; j < size; j++ ) { m1[i][j] *= v[j]; } } if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Eigen_SolveSymmetric failed" ); } /* idMatX::Eigen_Solve */ m3 = original; m1 = m3; v.SetSize( size ); w.SetSize( size ); m1.Eigen_Solve( v, w ); m3.TransposeMultiply( m2, m1 ); for( int i = 0; i < size; i++ ) { for( int j = 0; j < size; j++ ) { m1[i][j] *= v[j]; } } if( !m1.Compare( m2, 1e-4f ) ) { idLib::common->Warning( "idMatX::Eigen_Solve failed" ); } }