/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #pragma hdrstop #include "precompiled.h" #include "Winding2D.h" /* ============ GetAxialBevel ============ */ bool GetAxialBevel( const idVec3& plane1, const idVec3& plane2, const idVec2& point, idVec3& bevel ) { if( IEEE_FLT_SIGNBITSET( plane1.x ) ^ IEEE_FLT_SIGNBITSET( plane2.x ) ) { if( idMath::Fabs( plane1.x ) > 0.1f && idMath::Fabs( plane2.x ) > 0.1f ) { bevel.x = 0.0f; if( IEEE_FLT_SIGNBITSET( plane1.y ) ) { bevel.y = -1.0f; } else { bevel.y = 1.0f; } bevel.z = - ( point.x * bevel.x + point.y * bevel.y ); return true; } } if( IEEE_FLT_SIGNBITSET( plane1.y ) ^ IEEE_FLT_SIGNBITSET( plane2.y ) ) { if( idMath::Fabs( plane1.y ) > 0.1f && idMath::Fabs( plane2.y ) > 0.1f ) { bevel.y = 0.0f; if( IEEE_FLT_SIGNBITSET( plane1.x ) ) { bevel.x = -1.0f; } else { bevel.x = 1.0f; } bevel.z = - ( point.x * bevel.x + point.y * bevel.y ); return true; } } return false; } /* ============ idWinding2D::ExpandForAxialBox ============ */ void idWinding2D::ExpandForAxialBox( const idVec2 bounds[2] ) { int i, j, numPlanes; idVec2 v; idVec3 planes[MAX_POINTS_ON_WINDING_2D], plane, bevel; // get planes for the edges and add bevels for( numPlanes = i = 0; i < numPoints; i++ ) { j = ( i + 1 ) % numPoints; if( ( p[j] - p[i] ).LengthSqr() < 0.01f ) { continue; } plane = Plane2DFromPoints( p[i], p[j], true ); if( i ) { if( GetAxialBevel( planes[numPlanes - 1], plane, p[i], bevel ) ) { planes[numPlanes++] = bevel; } } assert( numPlanes < MAX_POINTS_ON_WINDING_2D ); planes[numPlanes++] = plane; } assert( numPlanes < MAX_POINTS_ON_WINDING_2D && numPlanes > 0 ); if( GetAxialBevel( planes[numPlanes - 1], planes[0], p[0], bevel ) ) { planes[numPlanes++] = bevel; } // expand the planes for( i = 0; i < numPlanes; i++ ) { v.x = bounds[ IEEE_FLT_SIGNBITSET( planes[i].x ) ].x; v.y = bounds[ IEEE_FLT_SIGNBITSET( planes[i].y ) ].y; planes[i].z += v.x * planes[i].x + v.y * planes[i].y; } // get intersection points of the planes for( numPoints = i = 0; i < numPlanes; i++ ) { if( Plane2DIntersection( planes[( i + numPlanes - 1 ) % numPlanes], planes[i], p[numPoints] ) ) { numPoints++; } } } /* ============ idWinding2D::Expand ============ */ void idWinding2D::Expand( const float d ) { int i; idVec2 edgeNormals[MAX_POINTS_ON_WINDING_2D]; for( i = 0; i < numPoints; i++ ) { idVec2& start = p[i]; idVec2& end = p[( i + 1 ) % numPoints]; edgeNormals[i].x = start.y - end.y; edgeNormals[i].y = end.x - start.x; edgeNormals[i].Normalize(); edgeNormals[i] *= d; } for( i = 0; i < numPoints; i++ ) { p[i] += edgeNormals[i] + edgeNormals[( i + numPoints - 1 ) % numPoints]; } } /* ============= idWinding2D::Split ============= */ int idWinding2D::Split( const idVec3& plane, const float epsilon, idWinding2D** front, idWinding2D** back ) const { float dists[MAX_POINTS_ON_WINDING_2D]; byte sides[MAX_POINTS_ON_WINDING_2D]; int counts[3]; float dot; int i, j; const idVec2* p1, *p2; idVec2 mid; idWinding2D* f; idWinding2D* b; int maxpts; counts[0] = counts[1] = counts[2] = 0; // determine sides for each point for( i = 0; i < numPoints; i++ ) { dists[i] = dot = plane.x * p[i].x + plane.y * p[i].y + plane.z; if( dot > epsilon ) { sides[i] = SIDE_FRONT; } else if( dot < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; dists[i] = dists[0]; *front = *back = NULL; // if nothing at the front of the clipping plane if( !counts[SIDE_FRONT] ) { *back = Copy(); return SIDE_BACK; } // if nothing at the back of the clipping plane if( !counts[SIDE_BACK] ) { *front = Copy(); return SIDE_FRONT; } maxpts = numPoints + 4; // cant use counts[0]+2 because of fp grouping errors *front = f = new( TAG_IDLIB_WINDING ) idWinding2D; *back = b = new( TAG_IDLIB_WINDING ) idWinding2D; for( i = 0; i < numPoints; i++ ) { p1 = &p[i]; if( sides[i] == SIDE_ON ) { f->p[f->numPoints] = *p1; f->numPoints++; b->p[b->numPoints] = *p1; b->numPoints++; continue; } if( sides[i] == SIDE_FRONT ) { f->p[f->numPoints] = *p1; f->numPoints++; } if( sides[i] == SIDE_BACK ) { b->p[b->numPoints] = *p1; b->numPoints++; } if( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) { continue; } // generate a split point p2 = &p[( i + 1 ) % numPoints]; // always calculate the split going from the same side // or minor epsilon issues can happen if( sides[i] == SIDE_FRONT ) { dot = dists[i] / ( dists[i] - dists[i + 1] ); for( j = 0; j < 2; j++ ) { // avoid round off error when possible if( plane[j] == 1.0f ) { mid[j] = plane.z; } else if( plane[j] == -1.0f ) { mid[j] = -plane.z; } else { mid[j] = ( *p1 )[j] + dot * ( ( *p2 )[j] - ( *p1 )[j] ); } } } else { dot = dists[i + 1] / ( dists[i + 1] - dists[i] ); for( j = 0; j < 2; j++ ) { // avoid round off error when possible if( plane[j] == 1.0f ) { mid[j] = plane.z; } else if( plane[j] == -1.0f ) { mid[j] = -plane.z; } else { mid[j] = ( *p2 )[j] + dot * ( ( *p1 )[j] - ( *p2 )[j] ); } } } f->p[f->numPoints] = mid; f->numPoints++; b->p[b->numPoints] = mid; b->numPoints++; } return SIDE_CROSS; } /* ============ idWinding2D::ClipInPlace ============ */ bool idWinding2D::ClipInPlace( const idVec3& plane, const float epsilon, const bool keepOn ) { int i, j, maxpts, newNumPoints; int sides[MAX_POINTS_ON_WINDING_2D + 1], counts[3]; float dot, dists[MAX_POINTS_ON_WINDING_2D + 1]; idVec2* p1, *p2, mid, newPoints[MAX_POINTS_ON_WINDING_2D + 4]; counts[SIDE_FRONT] = counts[SIDE_BACK] = counts[SIDE_ON] = 0; for( i = 0; i < numPoints; i++ ) { dists[i] = dot = plane.x * p[i].x + plane.y * p[i].y + plane.z; if( dot > epsilon ) { sides[i] = SIDE_FRONT; } else if( dot < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; dists[i] = dists[0]; // if the winding is on the plane and we should keep it if( keepOn && !counts[SIDE_FRONT] && !counts[SIDE_BACK] ) { return true; } if( !counts[SIDE_FRONT] ) { numPoints = 0; return false; } if( !counts[SIDE_BACK] ) { return true; } maxpts = numPoints + 4; // cant use counts[0]+2 because of fp grouping errors newNumPoints = 0; for( i = 0; i < numPoints; i++ ) { p1 = &p[i]; if( newNumPoints + 1 > maxpts ) { return true; // can't split -- fall back to original } if( sides[i] == SIDE_ON ) { newPoints[newNumPoints] = *p1; newNumPoints++; continue; } if( sides[i] == SIDE_FRONT ) { newPoints[newNumPoints] = *p1; newNumPoints++; } if( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) { continue; } if( newNumPoints + 1 > maxpts ) { return true; // can't split -- fall back to original } // generate a split point p2 = &p[( i + 1 ) % numPoints]; dot = dists[i] / ( dists[i] - dists[i + 1] ); for( j = 0; j < 2; j++ ) { // avoid round off error when possible if( plane[j] == 1.0f ) { mid[j] = plane.z; } else if( plane[j] == -1.0f ) { mid[j] = -plane.z; } else { mid[j] = ( *p1 )[j] + dot * ( ( *p2 )[j] - ( *p1 )[j] ); } } newPoints[newNumPoints] = mid; newNumPoints++; } if( newNumPoints >= MAX_POINTS_ON_WINDING_2D ) { return true; } numPoints = newNumPoints; memcpy( p, newPoints, newNumPoints * sizeof( idVec2 ) ); return true; } /* ============= idWinding2D::Copy ============= */ idWinding2D* idWinding2D::Copy() const { idWinding2D* w; w = new( TAG_IDLIB_WINDING ) idWinding2D; w->numPoints = numPoints; memcpy( w->p, p, numPoints * sizeof( p[0] ) ); return w; } /* ============= idWinding2D::Reverse ============= */ idWinding2D* idWinding2D::Reverse() const { idWinding2D* w; int i; w = new( TAG_IDLIB_WINDING ) idWinding2D; w->numPoints = numPoints; for( i = 0; i < numPoints; i++ ) { w->p[ numPoints - i - 1 ] = p[i]; } return w; } /* ============ idWinding2D::GetArea ============ */ float idWinding2D::GetArea() const { int i; idVec2 d1, d2; float total; total = 0.0f; for( i = 2; i < numPoints; i++ ) { d1 = p[i - 1] - p[0]; d2 = p[i] - p[0]; total += d1.x * d2.y - d1.y * d2.x; } return total * 0.5f; } /* ============ idWinding2D::GetCenter ============ */ idVec2 idWinding2D::GetCenter() const { int i; idVec2 center; center.Zero(); for( i = 0; i < numPoints; i++ ) { center += p[i]; } center *= ( 1.0f / numPoints ); return center; } /* ============ idWinding2D::GetRadius ============ */ float idWinding2D::GetRadius( const idVec2& center ) const { int i; float radius, r; idVec2 dir; radius = 0.0f; for( i = 0; i < numPoints; i++ ) { dir = p[i] - center; r = dir * dir; if( r > radius ) { radius = r; } } return idMath::Sqrt( radius ); } /* ============ idWinding2D::GetBounds ============ */ void idWinding2D::GetBounds( idVec2 bounds[2] ) const { int i; if( !numPoints ) { bounds[0].x = bounds[0].y = idMath::INFINITY; bounds[1].x = bounds[1].y = -idMath::INFINITY; return; } bounds[0] = bounds[1] = p[0]; for( i = 1; i < numPoints; i++ ) { if( p[i].x < bounds[0].x ) { bounds[0].x = p[i].x; } else if( p[i].x > bounds[1].x ) { bounds[1].x = p[i].x; } if( p[i].y < bounds[0].y ) { bounds[0].y = p[i].y; } else if( p[i].y > bounds[1].y ) { bounds[1].y = p[i].y; } } } /* ============= idWinding2D::IsTiny ============= */ #define EDGE_LENGTH 0.2f bool idWinding2D::IsTiny() const { int i; float len; idVec2 delta; int edges; edges = 0; for( i = 0; i < numPoints; i++ ) { delta = p[( i + 1 ) % numPoints] - p[i]; len = delta.Length(); if( len > EDGE_LENGTH ) { if( ++edges == 3 ) { return false; } } } return true; } /* ============= idWinding2D::IsHuge ============= */ bool idWinding2D::IsHuge() const { int i, j; for( i = 0; i < numPoints; i++ ) { for( j = 0; j < 2; j++ ) { if( p[i][j] <= MIN_WORLD_COORD || p[i][j] >= MAX_WORLD_COORD ) { return true; } } } return false; } /* ============= idWinding2D::Print ============= */ void idWinding2D::Print() const { int i; for( i = 0; i < numPoints; i++ ) { idLib::common->Printf( "(%5.1f, %5.1f)\n", p[i][0], p[i][1] ); } } /* ============= idWinding2D::PlaneDistance ============= */ float idWinding2D::PlaneDistance( const idVec3& plane ) const { int i; float d, min, max; min = idMath::INFINITY; max = -min; for( i = 0; i < numPoints; i++ ) { d = plane.x * p[i].x + plane.y * p[i].y + plane.z; if( d < min ) { min = d; if( IEEE_FLT_SIGNBITSET( min ) & IEEE_FLT_SIGNBITNOTSET( max ) ) { return 0.0f; } } if( d > max ) { max = d; if( IEEE_FLT_SIGNBITSET( min ) & IEEE_FLT_SIGNBITNOTSET( max ) ) { return 0.0f; } } } if( IEEE_FLT_SIGNBITNOTSET( min ) ) { return min; } if( IEEE_FLT_SIGNBITSET( max ) ) { return max; } return 0.0f; } /* ============= idWinding2D::PlaneSide ============= */ int idWinding2D::PlaneSide( const idVec3& plane, const float epsilon ) const { bool front, back; int i; float d; front = false; back = false; for( i = 0; i < numPoints; i++ ) { d = plane.x * p[i].x + plane.y * p[i].y + plane.z; if( d < -epsilon ) { if( front ) { return SIDE_CROSS; } back = true; continue; } else if( d > epsilon ) { if( back ) { return SIDE_CROSS; } front = true; continue; } } if( back ) { return SIDE_BACK; } if( front ) { return SIDE_FRONT; } return SIDE_ON; } /* ============ idWinding2D::PointInside ============ */ bool idWinding2D::PointInside( const idVec2& point, const float epsilon ) const { int i; float d; idVec3 plane; for( i = 0; i < numPoints; i++ ) { plane = Plane2DFromPoints( p[i], p[( i + 1 ) % numPoints] ); d = plane.x * point.x + plane.y * point.y + plane.z; if( d > epsilon ) { return false; } } return true; } /* ============ idWinding2D::LineIntersection ============ */ bool idWinding2D::LineIntersection( const idVec2& start, const idVec2& end ) const { int i, numEdges; int sides[MAX_POINTS_ON_WINDING_2D + 1], counts[3]; float d1, d2, epsilon = 0.1f; idVec3 plane, edges[2]; counts[SIDE_FRONT] = counts[SIDE_BACK] = counts[SIDE_ON] = 0; plane = Plane2DFromPoints( start, end ); for( i = 0; i < numPoints; i++ ) { d1 = plane.x * p[i].x + plane.y * p[i].y + plane.z; if( d1 > epsilon ) { sides[i] = SIDE_FRONT; } else if( d1 < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; if( !counts[SIDE_FRONT] ) { return false; } if( !counts[SIDE_BACK] ) { return false; } numEdges = 0; for( i = 0; i < numPoints; i++ ) { if( sides[i] != sides[i + 1] && sides[i + 1] != SIDE_ON ) { edges[numEdges++] = Plane2DFromPoints( p[i], p[( i + 1 ) % numPoints] ); if( numEdges >= 2 ) { break; } } } if( numEdges < 2 ) { return false; } d1 = edges[0].x * start.x + edges[0].y * start.y + edges[0].z; d2 = edges[0].x * end.x + edges[0].y * end.y + edges[0].z; if( IEEE_FLT_SIGNBITNOTSET( d1 ) & IEEE_FLT_SIGNBITNOTSET( d2 ) ) { return false; } d1 = edges[1].x * start.x + edges[1].y * start.y + edges[1].z; d2 = edges[1].x * end.x + edges[1].y * end.y + edges[1].z; if( IEEE_FLT_SIGNBITNOTSET( d1 ) & IEEE_FLT_SIGNBITNOTSET( d2 ) ) { return false; } return true; } /* ============ idWinding2D::RayIntersection ============ */ bool idWinding2D::RayIntersection( const idVec2& start, const idVec2& dir, float& scale1, float& scale2, int* edgeNums ) const { int i, numEdges, localEdgeNums[2]; int sides[MAX_POINTS_ON_WINDING_2D + 1], counts[3]; float d1, d2, epsilon = 0.1f; idVec3 plane, edges[2]; scale1 = scale2 = 0.0f; counts[SIDE_FRONT] = counts[SIDE_BACK] = counts[SIDE_ON] = 0; plane = Plane2DFromVecs( start, dir ); for( i = 0; i < numPoints; i++ ) { d1 = plane.x * p[i].x + plane.y * p[i].y + plane.z; if( d1 > epsilon ) { sides[i] = SIDE_FRONT; } else if( d1 < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; if( !counts[SIDE_FRONT] ) { return false; } if( !counts[SIDE_BACK] ) { return false; } numEdges = 0; for( i = 0; i < numPoints; i++ ) { if( sides[i] != sides[i + 1] && sides[i + 1] != SIDE_ON ) { localEdgeNums[numEdges] = i; edges[numEdges++] = Plane2DFromPoints( p[i], p[( i + 1 ) % numPoints] ); if( numEdges >= 2 ) { break; } } } if( numEdges < 2 ) { return false; } d1 = edges[0].x * start.x + edges[0].y * start.y + edges[0].z; d2 = - ( edges[0].x * dir.x + edges[0].y * dir.y ); if( d2 == 0.0f ) { return false; } scale1 = d1 / d2; d1 = edges[1].x * start.x + edges[1].y * start.y + edges[1].z; d2 = - ( edges[1].x * dir.x + edges[1].y * dir.y ); if( d2 == 0.0f ) { return false; } scale2 = d1 / d2; if( idMath::Fabs( scale1 ) > idMath::Fabs( scale2 ) ) { SwapValues( scale1, scale2 ); SwapValues( localEdgeNums[0], localEdgeNums[1] ); } if( edgeNums ) { edgeNums[0] = localEdgeNums[0]; edgeNums[1] = localEdgeNums[1]; } return true; }