/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #pragma hdrstop #include "precompiled.h" //=============================================================== // // idWinding // //=============================================================== /* ============= idWinding::ReAllocate ============= */ bool idWinding::ReAllocate( int n, bool keep ) { idVec5* oldP; oldP = p; n = ( n + 3 ) & ~3; // align up to multiple of four p = new( TAG_IDLIB_WINDING ) idVec5[n]; if( oldP ) { if( keep ) { memcpy( p, oldP, numPoints * sizeof( p[0] ) ); } delete[] oldP; } allocedSize = n; return true; } /* ============= idWinding::BaseForPlane ============= */ void idWinding::BaseForPlane( const idVec3& normal, const float dist ) { idVec3 org, vright, vup; org = normal * dist; normal.NormalVectors( vup, vright ); vup *= MAX_WORLD_SIZE; vright *= MAX_WORLD_SIZE; EnsureAlloced( 4 ); numPoints = 4; p[0].ToVec3() = org - vright + vup; p[0].s = p[0].t = 0.0f; p[1].ToVec3() = org + vright + vup; p[1].s = p[1].t = 0.0f; p[2].ToVec3() = org + vright - vup; p[2].s = p[2].t = 0.0f; p[3].ToVec3() = org - vright - vup; p[3].s = p[3].t = 0.0f; } /* ============= idWinding::Split ============= */ int idWinding::Split( const idPlane& plane, const float epsilon, idWinding** front, idWinding** back ) const { float* dists; byte* sides; int counts[3]; float dot; int i, j; const idVec5* p1, *p2; idVec5 mid; idWinding* f, *b; int maxpts; assert( this ); dists = ( float* ) _alloca( ( numPoints + 4 ) * sizeof( float ) ); sides = ( byte* ) _alloca( ( numPoints + 4 ) * sizeof( byte ) ); counts[0] = counts[1] = counts[2] = 0; // determine sides for each point for( i = 0; i < numPoints; i++ ) { dists[i] = dot = plane.Distance( p[i].ToVec3() ); if( dot > epsilon ) { sides[i] = SIDE_FRONT; } else if( dot < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; dists[i] = dists[0]; *front = *back = NULL; // if coplanar, put on the front side if the normals match if( !counts[SIDE_FRONT] && !counts[SIDE_BACK] ) { idPlane windingPlane; GetPlane( windingPlane ); if( windingPlane.Normal() * plane.Normal() > 0.0f ) { *front = Copy(); return SIDE_FRONT; } else { *back = Copy(); return SIDE_BACK; } } // if nothing at the front of the clipping plane if( !counts[SIDE_FRONT] ) { *back = Copy(); return SIDE_BACK; } // if nothing at the back of the clipping plane if( !counts[SIDE_BACK] ) { *front = Copy(); return SIDE_FRONT; } maxpts = numPoints + 4; // cant use counts[0]+2 because of fp grouping errors *front = f = new( TAG_IDLIB_WINDING ) idWinding( maxpts ); *back = b = new( TAG_IDLIB_WINDING ) idWinding( maxpts ); for( i = 0; i < numPoints; i++ ) { p1 = &p[i]; if( sides[i] == SIDE_ON ) { f->p[f->numPoints] = *p1; f->numPoints++; b->p[b->numPoints] = *p1; b->numPoints++; continue; } if( sides[i] == SIDE_FRONT ) { f->p[f->numPoints] = *p1; f->numPoints++; } if( sides[i] == SIDE_BACK ) { b->p[b->numPoints] = *p1; b->numPoints++; } if( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) { continue; } // generate a split point p2 = &p[( i + 1 ) % numPoints]; // always calculate the split going from the same side // or minor epsilon issues can happen if( sides[i] == SIDE_FRONT ) { dot = dists[i] / ( dists[i] - dists[i + 1] ); for( j = 0; j < 3; j++ ) { // avoid round off error when possible if( plane.Normal()[j] == 1.0f ) { mid[j] = plane.Dist(); } else if( plane.Normal()[j] == -1.0f ) { mid[j] = -plane.Dist(); } else { mid[j] = ( *p1 )[j] + dot * ( ( *p2 )[j] - ( *p1 )[j] ); } } mid.s = p1->s + dot * ( p2->s - p1->s ); mid.t = p1->t + dot * ( p2->t - p1->t ); } else { dot = dists[i + 1] / ( dists[i + 1] - dists[i] ); for( j = 0; j < 3; j++ ) { // avoid round off error when possible if( plane.Normal()[j] == 1.0f ) { mid[j] = plane.Dist(); } else if( plane.Normal()[j] == -1.0f ) { mid[j] = -plane.Dist(); } else { mid[j] = ( *p2 )[j] + dot * ( ( *p1 )[j] - ( *p2 )[j] ); } } mid.s = p2->s + dot * ( p1->s - p2->s ); mid.t = p2->t + dot * ( p1->t - p2->t ); } f->p[f->numPoints] = mid; f->numPoints++; b->p[b->numPoints] = mid; b->numPoints++; } if( f->numPoints > maxpts || b->numPoints > maxpts ) { idLib::common->FatalError( "idWinding::Split: points exceeded estimate." ); } return SIDE_CROSS; } /* ============= idWinding::Clip ============= */ idWinding* idWinding::Clip( const idPlane& plane, const float epsilon, const bool keepOn ) { float* dists; byte* sides; idVec5* newPoints; int newNumPoints; int counts[3]; float dot; int i, j; idVec5* p1, *p2; idVec5 mid; int maxpts; assert( this ); dists = ( float* ) _alloca( ( numPoints + 4 ) * sizeof( float ) ); sides = ( byte* ) _alloca( ( numPoints + 4 ) * sizeof( byte ) ); counts[SIDE_FRONT] = counts[SIDE_BACK] = counts[SIDE_ON] = 0; // determine sides for each point for( i = 0; i < numPoints; i++ ) { dists[i] = dot = plane.Distance( p[i].ToVec3() ); if( dot > epsilon ) { sides[i] = SIDE_FRONT; } else if( dot < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; dists[i] = dists[0]; // if the winding is on the plane and we should keep it if( keepOn && !counts[SIDE_FRONT] && !counts[SIDE_BACK] ) { return this; } // if nothing at the front of the clipping plane if( !counts[SIDE_FRONT] ) { delete this; return NULL; } // if nothing at the back of the clipping plane if( !counts[SIDE_BACK] ) { return this; } maxpts = numPoints + 4; // cant use counts[0]+2 because of fp grouping errors newPoints = ( idVec5* ) _alloca16( maxpts * sizeof( idVec5 ) ); newNumPoints = 0; for( i = 0; i < numPoints; i++ ) { p1 = &p[i]; if( newNumPoints + 1 > maxpts ) { return this; // can't split -- fall back to original } if( sides[i] == SIDE_ON ) { newPoints[newNumPoints] = *p1; newNumPoints++; continue; } if( sides[i] == SIDE_FRONT ) { newPoints[newNumPoints] = *p1; newNumPoints++; } if( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) { continue; } if( newNumPoints + 1 > maxpts ) { return this; // can't split -- fall back to original } // generate a split point p2 = &p[( i + 1 ) % numPoints]; dot = dists[i] / ( dists[i] - dists[i + 1] ); for( j = 0; j < 3; j++ ) { // avoid round off error when possible if( plane.Normal()[j] == 1.0f ) { mid[j] = plane.Dist(); } else if( plane.Normal()[j] == -1.0f ) { mid[j] = -plane.Dist(); } else { mid[j] = ( *p1 )[j] + dot * ( ( *p2 )[j] - ( *p1 )[j] ); } } mid.s = p1->s + dot * ( p2->s - p1->s ); mid.t = p1->t + dot * ( p2->t - p1->t ); newPoints[newNumPoints] = mid; newNumPoints++; } if( !EnsureAlloced( newNumPoints, false ) ) { return this; } numPoints = newNumPoints; memcpy( p, newPoints, newNumPoints * sizeof( idVec5 ) ); return this; } /* ============= idWinding::ClipInPlace ============= */ bool idWinding::ClipInPlace( const idPlane& plane, const float epsilon, const bool keepOn ) { float* dists; byte* sides; idVec5* newPoints; int newNumPoints; int counts[3]; float dot; int i, j; idVec5* p1, *p2; idVec5 mid; int maxpts; assert( this ); dists = ( float* ) _alloca( ( numPoints + 4 ) * sizeof( float ) ); sides = ( byte* ) _alloca( ( numPoints + 4 ) * sizeof( byte ) ); counts[SIDE_FRONT] = counts[SIDE_BACK] = counts[SIDE_ON] = 0; // determine sides for each point for( i = 0; i < numPoints; i++ ) { dists[i] = dot = plane.Distance( p[i].ToVec3() ); if( dot > epsilon ) { sides[i] = SIDE_FRONT; } else if( dot < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; dists[i] = dists[0]; // if the winding is on the plane and we should keep it if( keepOn && !counts[SIDE_FRONT] && !counts[SIDE_BACK] ) { return true; } // if nothing at the front of the clipping plane if( !counts[SIDE_FRONT] ) { numPoints = 0; return false; } // if nothing at the back of the clipping plane if( !counts[SIDE_BACK] ) { return true; } maxpts = numPoints + 4; // cant use counts[0]+2 because of fp grouping errors newPoints = ( idVec5* ) _alloca16( maxpts * sizeof( idVec5 ) ); newNumPoints = 0; for( i = 0; i < numPoints; i++ ) { p1 = &p[i]; if( newNumPoints + 1 > maxpts ) { return true; // can't split -- fall back to original } if( sides[i] == SIDE_ON ) { newPoints[newNumPoints] = *p1; newNumPoints++; continue; } if( sides[i] == SIDE_FRONT ) { newPoints[newNumPoints] = *p1; newNumPoints++; } if( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) { continue; } if( newNumPoints + 1 > maxpts ) { return true; // can't split -- fall back to original } // generate a split point p2 = &p[( i + 1 ) % numPoints]; dot = dists[i] / ( dists[i] - dists[i + 1] ); for( j = 0; j < 3; j++ ) { // avoid round off error when possible if( plane.Normal()[j] == 1.0f ) { mid[j] = plane.Dist(); } else if( plane.Normal()[j] == -1.0f ) { mid[j] = -plane.Dist(); } else { mid[j] = ( *p1 )[j] + dot * ( ( *p2 )[j] - ( *p1 )[j] ); } } mid.s = p1->s + dot * ( p2->s - p1->s ); mid.t = p1->t + dot * ( p2->t - p1->t ); newPoints[newNumPoints] = mid; newNumPoints++; } if( !EnsureAlloced( newNumPoints, false ) ) { return true; } numPoints = newNumPoints; memcpy( p, newPoints, newNumPoints * sizeof( idVec5 ) ); return true; } /* ============= idWinding::Copy ============= */ idWinding* idWinding::Copy() const { idWinding* w; w = new( TAG_IDLIB_WINDING ) idWinding( numPoints ); w->numPoints = numPoints; memcpy( w->p, p, numPoints * sizeof( p[0] ) ); return w; } /* ============= idWinding::Reverse ============= */ idWinding* idWinding::Reverse() const { idWinding* w; int i; w = new( TAG_IDLIB_WINDING ) idWinding( numPoints ); w->numPoints = numPoints; for( i = 0; i < numPoints; i++ ) { w->p[ numPoints - i - 1 ] = p[i]; } return w; } /* ============= idWinding::ReverseSelf ============= */ void idWinding::ReverseSelf() { idVec5 v; int i; for( i = 0; i < ( numPoints >> 1 ); i++ ) { v = p[i]; p[i] = p[numPoints - i - 1]; p[numPoints - i - 1] = v; } } /* ============= idWinding::Check ============= */ bool idWinding::Check( bool print ) const { int i, j; float d, edgedist; idVec3 dir, edgenormal; float area; idPlane plane; if( numPoints < 3 ) { if( print ) { idLib::common->Printf( "idWinding::Check: only %i points.", numPoints ); } return false; } area = GetArea(); if( area < 1.0f ) { if( print ) { idLib::common->Printf( "idWinding::Check: tiny area: %f", area ); } return false; } GetPlane( plane ); for( i = 0; i < numPoints; i++ ) { const idVec3& p1 = p[i].ToVec3(); // check if the winding is huge for( j = 0; j < 3; j++ ) { if( p1[j] >= MAX_WORLD_COORD || p1[j] <= MIN_WORLD_COORD ) { if( print ) { idLib::common->Printf( "idWinding::Check: point %d outside world %c-axis: %f", i, 'X' + j, p1[j] ); } return false; } } j = i + 1 == numPoints ? 0 : i + 1; // check if the point is on the face plane d = p1 * plane.Normal() + plane[3]; if( d < -ON_EPSILON || d > ON_EPSILON ) { if( print ) { idLib::common->Printf( "idWinding::Check: point %d off plane.", i ); } return false; } // check if the edge isn't degenerate const idVec3& p2 = p[j].ToVec3(); dir = p2 - p1; if( dir.Length() < ON_EPSILON ) { if( print ) { idLib::common->Printf( "idWinding::Check: edge %d is degenerate.", i ); } return false; } // check if the winding is convex edgenormal = plane.Normal().Cross( dir ); edgenormal.Normalize(); edgedist = p1 * edgenormal; edgedist += ON_EPSILON; // all other points must be on front side for( j = 0; j < numPoints; j++ ) { if( j == i ) { continue; } d = p[j].ToVec3() * edgenormal; if( d > edgedist ) { if( print ) { idLib::common->Printf( "idWinding::Check: non-convex." ); } return false; } } } return true; } /* ============= idWinding::GetArea ============= */ float idWinding::GetArea() const { int i; idVec3 d1, d2, cross; float total; total = 0.0f; for( i = 2; i < numPoints; i++ ) { d1 = p[i - 1].ToVec3() - p[0].ToVec3(); d2 = p[i].ToVec3() - p[0].ToVec3(); cross = d1.Cross( d2 ); total += cross.Length(); } return total * 0.5f; } /* ============= idWinding::GetRadius ============= */ float idWinding::GetRadius( const idVec3& center ) const { int i; float radius, r; idVec3 dir; radius = 0.0f; for( i = 0; i < numPoints; i++ ) { dir = p[i].ToVec3() - center; r = dir * dir; if( r > radius ) { radius = r; } } return idMath::Sqrt( radius ); } /* ============= idWinding::GetCenter ============= */ idVec3 idWinding::GetCenter() const { int i; idVec3 center; center.Zero(); for( i = 0; i < numPoints; i++ ) { center += p[i].ToVec3(); } center *= ( 1.0f / numPoints ); return center; } /* ============= idWinding::GetPlane ============= */ void idWinding::GetPlane( idVec3& normal, float& dist ) const { idVec3 v1, v2, center; if( numPoints < 3 ) { normal.Zero(); dist = 0.0f; return; } center = GetCenter(); v1 = p[0].ToVec3() - center; v2 = p[1].ToVec3() - center; normal = v2.Cross( v1 ); normal.Normalize(); dist = p[0].ToVec3() * normal; } /* ============= idWinding::GetPlane ============= */ void idWinding::GetPlane( idPlane& plane ) const { idVec3 v1, v2; idVec3 center; if( numPoints < 3 ) { plane.Zero(); return; } center = GetCenter(); v1 = p[0].ToVec3() - center; v2 = p[1].ToVec3() - center; plane.SetNormal( v2.Cross( v1 ) ); plane.Normalize(); plane.FitThroughPoint( p[0].ToVec3() ); } /* ============= idWinding::GetBounds ============= */ void idWinding::GetBounds( idBounds& bounds ) const { int i; if( !numPoints ) { bounds.Clear(); return; } bounds[0] = bounds[1] = p[0].ToVec3(); for( i = 1; i < numPoints; i++ ) { if( p[i].x < bounds[0].x ) { bounds[0].x = p[i].x; } else if( p[i].x > bounds[1].x ) { bounds[1].x = p[i].x; } if( p[i].y < bounds[0].y ) { bounds[0].y = p[i].y; } else if( p[i].y > bounds[1].y ) { bounds[1].y = p[i].y; } if( p[i].z < bounds[0].z ) { bounds[0].z = p[i].z; } else if( p[i].z > bounds[1].z ) { bounds[1].z = p[i].z; } } } /* ============= idWinding::RemoveEqualPoints ============= */ void idWinding::RemoveEqualPoints( const float epsilon ) { int i, j; for( i = 0; i < numPoints; i++ ) { if( ( p[i].ToVec3() - p[( i + numPoints - 1 ) % numPoints].ToVec3() ).LengthSqr() >= Square( epsilon ) ) { continue; } numPoints--; for( j = i; j < numPoints; j++ ) { p[j] = p[j + 1]; } i--; } } /* ============= idWinding::RemoveColinearPoints ============= */ void idWinding::RemoveColinearPoints( const idVec3& normal, const float epsilon ) { int i, j; idVec3 edgeNormal; float dist; if( numPoints <= 3 ) { return; } for( i = 0; i < numPoints; i++ ) { // create plane through edge orthogonal to winding plane edgeNormal = ( p[i].ToVec3() - p[( i + numPoints - 1 ) % numPoints].ToVec3() ).Cross( normal ); edgeNormal.Normalize(); dist = edgeNormal * p[i].ToVec3(); if( idMath::Fabs( edgeNormal * p[( i + 1 ) % numPoints].ToVec3() - dist ) > epsilon ) { continue; } numPoints--; for( j = i; j < numPoints; j++ ) { p[j] = p[j + 1]; } i--; } } /* ============= idWinding::AddToConvexHull Adds the given winding to the convex hull. Assumes the current winding already is a convex hull with three or more points. ============= */ void idWinding::AddToConvexHull( const idWinding* winding, const idVec3& normal, const float epsilon ) { int i, j, k; idVec3 dir; float d; int maxPts; idVec3* hullDirs; bool* hullSide; bool outside; int numNewHullPoints; idVec5* newHullPoints; if( !winding ) { return; } maxPts = this->numPoints + winding->numPoints; if( !this->EnsureAlloced( maxPts, true ) ) { return; } newHullPoints = ( idVec5* ) _alloca( maxPts * sizeof( idVec5 ) ); hullDirs = ( idVec3* ) _alloca( maxPts * sizeof( idVec3 ) ); hullSide = ( bool* ) _alloca( maxPts * sizeof( bool ) ); for( i = 0; i < winding->numPoints; i++ ) { const idVec5& p1 = winding->p[i]; // calculate hull edge vectors for( j = 0; j < this->numPoints; j++ ) { dir = this->p[( j + 1 ) % this->numPoints ].ToVec3() - this->p[ j ].ToVec3(); dir.Normalize(); hullDirs[j] = normal.Cross( dir ); } // calculate side for each hull edge outside = false; for( j = 0; j < this->numPoints; j++ ) { dir = p1.ToVec3() - this->p[j].ToVec3(); d = dir * hullDirs[j]; if( d >= epsilon ) { outside = true; } if( d >= -epsilon ) { hullSide[j] = true; } else { hullSide[j] = false; } } // if the point is effectively inside, do nothing if( !outside ) { continue; } // find the back side to front side transition for( j = 0; j < this->numPoints; j++ ) { if( !hullSide[ j ] && hullSide[( j + 1 ) % this->numPoints ] ) { break; } } if( j >= this->numPoints ) { continue; } // insert the point here newHullPoints[0] = p1; numNewHullPoints = 1; // copy over all points that aren't double fronts j = ( j + 1 ) % this->numPoints; for( k = 0; k < this->numPoints; k++ ) { if( hullSide[( j + k ) % this->numPoints ] && hullSide[( j + k + 1 ) % this->numPoints ] ) { continue; } newHullPoints[numNewHullPoints] = this->p[( j + k + 1 ) % this->numPoints ]; numNewHullPoints++; } this->numPoints = numNewHullPoints; memcpy( this->p, newHullPoints, numNewHullPoints * sizeof( idVec5 ) ); } } /* ============= idWinding::AddToConvexHull Add a point to the convex hull. The current winding must be convex but may be degenerate and can have less than three points. ============= */ void idWinding::AddToConvexHull( const idVec3& point, const idVec3& normal, const float epsilon ) { int j, k, numHullPoints; idVec3 dir; float d; idVec3* hullDirs; bool* hullSide; idVec5* hullPoints; bool outside; switch( numPoints ) { case 0: { p[0] = point; numPoints++; return; } case 1: { // don't add the same point second if( p[0].ToVec3().Compare( point, epsilon ) ) { return; } p[1].ToVec3() = point; numPoints++; return; } case 2: { // don't add a point if it already exists if( p[0].ToVec3().Compare( point, epsilon ) || p[1].ToVec3().Compare( point, epsilon ) ) { return; } // if only two points make sure we have the right ordering according to the normal dir = point - p[0].ToVec3(); dir = dir.Cross( p[1].ToVec3() - p[0].ToVec3() ); if( dir[0] == 0.0f && dir[1] == 0.0f && dir[2] == 0.0f ) { // points don't make a plane return; } if( dir * normal > 0.0f ) { p[2].ToVec3() = point; } else { p[2] = p[1]; p[1].ToVec3() = point; } numPoints++; return; } } hullDirs = ( idVec3* ) _alloca( numPoints * sizeof( idVec3 ) ); hullSide = ( bool* ) _alloca( numPoints * sizeof( bool ) ); // calculate hull edge vectors for( j = 0; j < numPoints; j++ ) { dir = p[( j + 1 ) % numPoints].ToVec3() - p[j].ToVec3(); hullDirs[j] = normal.Cross( dir ); } // calculate side for each hull edge outside = false; for( j = 0; j < numPoints; j++ ) { dir = point - p[j].ToVec3(); d = dir * hullDirs[j]; if( d >= epsilon ) { outside = true; } if( d >= -epsilon ) { hullSide[j] = true; } else { hullSide[j] = false; } } // if the point is effectively inside, do nothing if( !outside ) { return; } // find the back side to front side transition for( j = 0; j < numPoints; j++ ) { if( !hullSide[ j ] && hullSide[( j + 1 ) % numPoints ] ) { break; } } if( j >= numPoints ) { return; } hullPoints = ( idVec5* ) _alloca( ( numPoints + 1 ) * sizeof( idVec5 ) ); // insert the point here hullPoints[0] = point; numHullPoints = 1; // copy over all points that aren't double fronts j = ( j + 1 ) % numPoints; for( k = 0; k < numPoints; k++ ) { if( hullSide[( j + k ) % numPoints ] && hullSide[( j + k + 1 ) % numPoints ] ) { continue; } hullPoints[numHullPoints] = p[( j + k + 1 ) % numPoints ]; numHullPoints++; } if( !EnsureAlloced( numHullPoints, false ) ) { return; } numPoints = numHullPoints; memcpy( p, hullPoints, numHullPoints * sizeof( idVec5 ) ); } /* ============= idWinding::TryMerge ============= */ #define CONTINUOUS_EPSILON 0.005f idWinding* idWinding::TryMerge( const idWinding& w, const idVec3& planenormal, int keep ) const { idVec3* p1, *p2, *p3, *p4, *back; idWinding* newf; const idWinding* f1, *f2; int i, j, k, l; idVec3 normal, delta; float dot; bool keep1, keep2; f1 = this; f2 = &w; // // find a idLib::common edge // p1 = p2 = NULL; // stop compiler warning j = 0; for( i = 0; i < f1->numPoints; i++ ) { p1 = &f1->p[i].ToVec3(); p2 = &f1->p[( i + 1 ) % f1->numPoints].ToVec3(); for( j = 0; j < f2->numPoints; j++ ) { p3 = &f2->p[j].ToVec3(); p4 = &f2->p[( j + 1 ) % f2->numPoints].ToVec3(); for( k = 0; k < 3; k++ ) { if( idMath::Fabs( ( *p1 )[k] - ( *p4 )[k] ) > 0.1f ) { break; } if( idMath::Fabs( ( *p2 )[k] - ( *p3 )[k] ) > 0.1f ) { break; } } if( k == 3 ) { break; } } if( j < f2->numPoints ) { break; } } if( i == f1->numPoints ) { return NULL; // no matching edges } // // check slope of connected lines // if the slopes are colinear, the point can be removed // back = &f1->p[( i + f1->numPoints - 1 ) % f1->numPoints].ToVec3(); delta = ( *p1 ) - ( *back ); normal = planenormal.Cross( delta ); normal.Normalize(); back = &f2->p[( j + 2 ) % f2->numPoints].ToVec3(); delta = ( *back ) - ( *p1 ); dot = delta * normal; if( dot > CONTINUOUS_EPSILON ) { return NULL; // not a convex polygon } keep1 = ( bool )( dot < -CONTINUOUS_EPSILON ); back = &f1->p[( i + 2 ) % f1->numPoints].ToVec3(); delta = ( *back ) - ( *p2 ); normal = planenormal.Cross( delta ); normal.Normalize(); back = &f2->p[( j + f2->numPoints - 1 ) % f2->numPoints].ToVec3(); delta = ( *back ) - ( *p2 ); dot = delta * normal; if( dot > CONTINUOUS_EPSILON ) { return NULL; // not a convex polygon } keep2 = ( bool )( dot < -CONTINUOUS_EPSILON ); // // build the new polygon // newf = new( TAG_IDLIB_WINDING ) idWinding( f1->numPoints + f2->numPoints ); // copy first polygon for( k = ( i + 1 ) % f1->numPoints; k != i; k = ( k + 1 ) % f1->numPoints ) { if( !keep && k == ( i + 1 ) % f1->numPoints && !keep2 ) { continue; } newf->p[newf->numPoints] = f1->p[k]; newf->numPoints++; } // copy second polygon for( l = ( j + 1 ) % f2->numPoints; l != j; l = ( l + 1 ) % f2->numPoints ) { if( !keep && l == ( j + 1 ) % f2->numPoints && !keep1 ) { continue; } newf->p[newf->numPoints] = f2->p[l]; newf->numPoints++; } return newf; } /* ============= idWinding::RemovePoint ============= */ void idWinding::RemovePoint( int point ) { if( point < 0 || point >= numPoints ) { idLib::common->FatalError( "idWinding::removePoint: point out of range" ); } if( point < numPoints - 1 ) { memmove( &p[point], &p[point + 1], ( numPoints - point - 1 ) * sizeof( p[0] ) ); } numPoints--; } /* ============= idWinding::InsertPoint ============= */ void idWinding::InsertPoint( const idVec5& point, int spot ) { int i; if( spot > numPoints ) { idLib::common->FatalError( "idWinding::insertPoint: spot > numPoints" ); } if( spot < 0 ) { idLib::common->FatalError( "idWinding::insertPoint: spot < 0" ); } EnsureAlloced( numPoints + 1, true ); for( i = numPoints; i > spot; i-- ) { p[i] = p[i - 1]; } p[spot] = point; numPoints++; } /* ============= idWinding::InsertPointIfOnEdge ============= */ bool idWinding::InsertPointIfOnEdge( const idVec5& point, const idPlane& plane, const float epsilon ) { int i; float dist, dot; idVec3 normal; // point may not be too far from the winding plane if( idMath::Fabs( plane.Distance( point.ToVec3() ) ) > epsilon ) { return false; } for( i = 0; i < numPoints; i++ ) { // create plane through edge orthogonal to winding plane normal = ( p[( i + 1 ) % numPoints].ToVec3() - p[i].ToVec3() ).Cross( plane.Normal() ); normal.Normalize(); dist = normal * p[i].ToVec3(); if( idMath::Fabs( normal * point.ToVec3() - dist ) > epsilon ) { continue; } normal = plane.Normal().Cross( normal ); dot = normal * point.ToVec3(); dist = dot - normal * p[i].ToVec3(); if( dist < epsilon ) { // if the winding already has the point if( dist > -epsilon ) { return false; } continue; } dist = dot - normal * p[( i + 1 ) % numPoints].ToVec3(); if( dist > -epsilon ) { // if the winding already has the point if( dist < epsilon ) { return false; } continue; } InsertPoint( point, i + 1 ); return true; } return false; } /* ============= idWinding::IsTiny ============= */ #define EDGE_LENGTH 0.2f bool idWinding::IsTiny() const { int i; float len; idVec3 delta; int edges; edges = 0; for( i = 0; i < numPoints; i++ ) { delta = p[( i + 1 ) % numPoints].ToVec3() - p[i].ToVec3(); len = delta.Length(); if( len > EDGE_LENGTH ) { if( ++edges == 3 ) { return false; } } } return true; } /* ============= idWinding::IsHuge ============= */ bool idWinding::IsHuge() const { int i, j; for( i = 0; i < numPoints; i++ ) { for( j = 0; j < 3; j++ ) { if( p[i][j] <= MIN_WORLD_COORD || p[i][j] >= MAX_WORLD_COORD ) { return true; } } } return false; } /* ============= idWinding::Print ============= */ void idWinding::Print() const { int i; for( i = 0; i < numPoints; i++ ) { idLib::common->Printf( "(%5.1f, %5.1f, %5.1f)\n", p[i][0], p[i][1], p[i][2] ); } } /* ============= idWinding::PlaneDistance ============= */ float idWinding::PlaneDistance( const idPlane& plane ) const { int i; float d, min, max; min = idMath::INFINITY; max = -min; for( i = 0; i < numPoints; i++ ) { d = plane.Distance( p[i].ToVec3() ); if( d < min ) { min = d; if( IEEE_FLT_SIGNBITSET( min ) & IEEE_FLT_SIGNBITNOTSET( max ) ) { return 0.0f; } } if( d > max ) { max = d; if( IEEE_FLT_SIGNBITSET( min ) & IEEE_FLT_SIGNBITNOTSET( max ) ) { return 0.0f; } } } if( IEEE_FLT_SIGNBITNOTSET( min ) ) { return min; } if( IEEE_FLT_SIGNBITSET( max ) ) { return max; } return 0.0f; } /* ============= idWinding::PlaneSide ============= */ int idWinding::PlaneSide( const idPlane& plane, const float epsilon ) const { bool front, back; int i; float d; front = false; back = false; for( i = 0; i < numPoints; i++ ) { d = plane.Distance( p[i].ToVec3() ); if( d < -epsilon ) { if( front ) { return SIDE_CROSS; } back = true; continue; } else if( d > epsilon ) { if( back ) { return SIDE_CROSS; } front = true; continue; } } if( back ) { return SIDE_BACK; } if( front ) { return SIDE_FRONT; } return SIDE_ON; } /* ============= idWinding::PlanesConcave ============= */ #define WCONVEX_EPSILON 0.2f bool idWinding::PlanesConcave( const idWinding& w2, const idVec3& normal1, const idVec3& normal2, float dist1, float dist2 ) const { int i; // check if one of the points of winding 1 is at the back of the plane of winding 2 for( i = 0; i < numPoints; i++ ) { if( normal2 * p[i].ToVec3() - dist2 > WCONVEX_EPSILON ) { return true; } } // check if one of the points of winding 2 is at the back of the plane of winding 1 for( i = 0; i < w2.numPoints; i++ ) { if( normal1 * w2.p[i].ToVec3() - dist1 > WCONVEX_EPSILON ) { return true; } } return false; } /* ============= idWinding::PointInside ============= */ bool idWinding::PointInside( const idVec3& normal, const idVec3& point, const float epsilon ) const { int i; idVec3 dir, n, pointvec; for( i = 0; i < numPoints; i++ ) { dir = p[( i + 1 ) % numPoints].ToVec3() - p[i].ToVec3(); pointvec = point - p[i].ToVec3(); n = dir.Cross( normal ); if( pointvec * n < -epsilon ) { return false; } } return true; } /* ============= idWinding::LineIntersection ============= */ bool idWinding::LineIntersection( const idPlane& windingPlane, const idVec3& start, const idVec3& end, bool backFaceCull ) const { float front, back, frac; idVec3 mid; front = windingPlane.Distance( start ); back = windingPlane.Distance( end ); // if both points at the same side of the plane if( front < 0.0f && back < 0.0f ) { return false; } if( front > 0.0f && back > 0.0f ) { return false; } // if back face culled if( backFaceCull && front < 0.0f ) { return false; } // get point of intersection with winding plane if( idMath::Fabs( front - back ) < 0.0001f ) { mid = end; } else { frac = front / ( front - back ); mid[0] = start[0] + ( end[0] - start[0] ) * frac; mid[1] = start[1] + ( end[1] - start[1] ) * frac; mid[2] = start[2] + ( end[2] - start[2] ) * frac; } return PointInside( windingPlane.Normal(), mid, 0.0f ); } /* ============= idWinding::RayIntersection ============= */ bool idWinding::RayIntersection( const idPlane& windingPlane, const idVec3& start, const idVec3& dir, float& scale, bool backFaceCull ) const { int i; bool side, lastside = false; idPluecker pl1, pl2; scale = 0.0f; pl1.FromRay( start, dir ); for( i = 0; i < numPoints; i++ ) { pl2.FromLine( p[i].ToVec3(), p[( i + 1 ) % numPoints].ToVec3() ); side = pl1.PermutedInnerProduct( pl2 ) > 0.0f; if( i && side != lastside ) { return false; } lastside = side; } if( !backFaceCull || lastside ) { windingPlane.RayIntersection( start, dir, scale ); return true; } return false; } /* ================= idWinding::TriangleArea ================= */ float idWinding::TriangleArea( const idVec3& a, const idVec3& b, const idVec3& c ) { idVec3 v1, v2; idVec3 cross; v1 = b - a; v2 = c - a; cross = v1.Cross( v2 ); return 0.5f * cross.Length(); } //=============================================================== // // idFixedWinding // //=============================================================== /* ============= idFixedWinding::ReAllocate ============= */ bool idFixedWinding::ReAllocate( int n, bool keep ) { assert( n <= MAX_POINTS_ON_WINDING ); if( n > MAX_POINTS_ON_WINDING ) { idLib::common->Printf( "WARNING: idFixedWinding -> MAX_POINTS_ON_WINDING overflowed\n" ); return false; } return true; } /* ============= idFixedWinding::Split ============= */ int idFixedWinding::Split( idFixedWinding* back, const idPlane& plane, const float epsilon ) { int counts[3]; float dists[MAX_POINTS_ON_WINDING + 4]; byte sides[MAX_POINTS_ON_WINDING + 4]; float dot; int i, j; idVec5* p1, *p2; idVec5 mid; idFixedWinding out; counts[SIDE_FRONT] = counts[SIDE_BACK] = counts[SIDE_ON] = 0; // determine sides for each point for( i = 0; i < numPoints; i++ ) { dists[i] = dot = plane.Distance( p[i].ToVec3() ); if( dot > epsilon ) { sides[i] = SIDE_FRONT; } else if( dot < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } if( !counts[SIDE_BACK] ) { if( !counts[SIDE_FRONT] ) { return SIDE_ON; } else { return SIDE_FRONT; } } if( !counts[SIDE_FRONT] ) { return SIDE_BACK; } sides[i] = sides[0]; dists[i] = dists[0]; out.numPoints = 0; back->numPoints = 0; for( i = 0; i < numPoints; i++ ) { p1 = &p[i]; if( !out.EnsureAlloced( out.numPoints + 1, true ) ) { return SIDE_FRONT; // can't split -- fall back to original } if( !back->EnsureAlloced( back->numPoints + 1, true ) ) { return SIDE_FRONT; // can't split -- fall back to original } if( sides[i] == SIDE_ON ) { out.p[out.numPoints] = *p1; out.numPoints++; back->p[back->numPoints] = *p1; back->numPoints++; continue; } if( sides[i] == SIDE_FRONT ) { out.p[out.numPoints] = *p1; out.numPoints++; } if( sides[i] == SIDE_BACK ) { back->p[back->numPoints] = *p1; back->numPoints++; } if( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) { continue; } if( !out.EnsureAlloced( out.numPoints + 1, true ) ) { return SIDE_FRONT; // can't split -- fall back to original } if( !back->EnsureAlloced( back->numPoints + 1, true ) ) { return SIDE_FRONT; // can't split -- fall back to original } // generate a split point j = i + 1; if( j >= numPoints ) { p2 = &p[0]; } else { p2 = &p[j]; } dot = dists[i] / ( dists[i] - dists[i + 1] ); for( j = 0; j < 3; j++ ) { // avoid round off error when possible if( plane.Normal()[j] == 1.0f ) { mid[j] = plane.Dist(); } else if( plane.Normal()[j] == -1.0f ) { mid[j] = -plane.Dist(); } else { mid[j] = ( *p1 )[j] + dot * ( ( *p2 )[j] - ( *p1 )[j] ); } } mid.s = p1->s + dot * ( p2->s - p1->s ); mid.t = p1->t + dot * ( p2->t - p1->t ); out.p[out.numPoints] = mid; out.numPoints++; back->p[back->numPoints] = mid; back->numPoints++; } for( i = 0; i < out.numPoints; i++ ) { p[i] = out.p[i]; } numPoints = out.numPoints; return SIDE_CROSS; }