/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ /* ================================================================================================ Contains the DxtEncoder implementation. ================================================================================================ */ #pragma hdrstop #include "DXTCodec_local.h" #include "DXTCodec.h" #define INSET_COLOR_SHIFT 4 // inset the bounding box with ( range >> shift ) #define INSET_ALPHA_SHIFT 5 // inset alpha channel #define C565_5_MASK 0xF8 // 0xFF minus last three bits #define C565_6_MASK 0xFC // 0xFF minus last two bits #define NVIDIA_7X_HARDWARE_BUG_FIX // keep the DXT5 colors sorted as: max, min typedef uint16 word; typedef uint32 dword; /* ======================== idDxtEncoder::NV4XHardwareBugFix ======================== */ void idDxtEncoder::NV4XHardwareBugFix( byte *minColor, byte *maxColor ) const { int minq = ( ( minColor[0] << 16 ) | ( minColor[1] << 8 ) | minColor[2] ) & 0x00F8FCF8; int maxq = ( ( maxColor[0] << 16 ) | ( maxColor[1] << 8 ) | maxColor[2] ) & 0x00F8FCF8; int mask = -( minq > maxq ) & 0x00FFFFFF; int min = *(int *)minColor; int max = *(int *)maxColor; min ^= max; max ^= ( min & mask ); min ^= max; *(int *)minColor = min; *(int *)maxColor = max; } /* ======================== idDxtEncoder::HasConstantValuePer4x4Block ======================== */ bool idDxtEncoder::HasConstantValuePer4x4Block( const byte *inBuf, int width, int height, int channel ) const { if ( width < 4 || height < 4 ) { byte value = inBuf[channel]; for ( int k = 0; k < height; k++ ) { for ( int l = 0; l < width; l++ ) { if ( inBuf[(k*width+l)*4+channel] != value ) { return false; } } } return true; } for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { const byte *inPtr = inBuf + i * 4; byte value = inPtr[channel]; for ( int k = 0; k < 4; k++ ) { for ( int l = 0; l < 4; l++ ) { if ( inPtr[(k*width+l)*4+channel] != value ) { return false; } } } } inBuf += srcPadding; } return true; } /* ======================== idDxtEncoder::WriteTinyColorDXT1 ======================== */ void idDxtEncoder::WriteTinyColorDXT1( const byte *inBuf, int width, int height ) { int numBlocks = ( ( width + 3 ) / 4 ) * ( ( height + 3 ) / 4 ); int stride = ( ( width * height ) / numBlocks ) * 4; // number of bytes from one block to the next // example: 2x8 pixels // numBlocks = 2 // stride = 32 bytes (8 pixels) for ( int i = 0; i < numBlocks; i++ ) { // FIXME: This just emits a fake block based on the color at position 0,0 EmitUShort( ColorTo565( inBuf ) ); EmitUShort( 0 ); // dummy, never used EmitUInt( 0 ); // 4 color index bytes all use the first color inBuf += stride; } } /* ======================== idDxtEncoder::WriteTinyColorDXT5 ======================== */ void idDxtEncoder::WriteTinyColorDXT5( const byte *inBuf, int width, int height ) { int numBlocks = ( ( width + 3 ) / 4 ) * ( ( height + 3 ) / 4 ); int stride = ( ( width * height ) / numBlocks ) * 4; // number of bytes from one block to the next // example: 2x8 pixels // numBlocks = 2 // stride = 32 bytes (8 pixels) for ( int i = 0; i < numBlocks; i++ ) { // FIXME: This just emits a fake block based on the color at position 0,0 EmitByte( inBuf[3] ); EmitByte( 0 ); // dummy, never used EmitByte( 0 ); // 6 alpha index bytes all use the first alpha EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitUShort( ColorTo565( inBuf ) ); EmitUShort( 0 ); // dummy, never used EmitUInt( 0 ); // 4 color index bytes all use the first color inBuf += stride; } } /* ======================== idDxtEncoder::WriteTinyColorCTX1DXT5A ======================== */ void idDxtEncoder::WriteTinyColorCTX1DXT5A( const byte *inBuf, int width, int height ) { int numBlocks = ( ( width + 3 ) / 4 ) * ( ( height + 3 ) / 4 ); int stride = ( ( width * height ) / numBlocks ) * 4; // number of bytes from one block to the next // example: 2x8 pixels // numBlocks = 2 // stride = 32 bytes (8 pixels) for ( int i = 0; i < numBlocks; i++ ) { // FIXME: This just emits a fake block based on the color at position 0,0 EmitByte( inBuf[0] ); EmitByte( inBuf[1] ); EmitByte( inBuf[0] ); EmitByte( inBuf[1] ); EmitUInt( 0 ); // 4 color index bytes all use the first color EmitByte( inBuf[3] ); EmitByte( 0 ); // dummy, never used EmitByte( 0 ); // 6 alpha index bytes all use the first alpha EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); inBuf += stride; } } /* ======================== idDxtEncoder::WriteTinyNormalMapDXT5 ======================== */ void idDxtEncoder::WriteTinyNormalMapDXT5( const byte *inBuf, int width, int height ) { int numBlocks = ( ( width + 3 ) / 4 ) * ( ( height + 3 ) / 4 ); int stride = ( ( width * height ) / numBlocks ) * 4; // number of bytes from one block to the next // example: 2x8 pixels // numBlocks = 2 // stride = 32 bytes (8 pixels) for ( int i = 0; i < numBlocks; i++ ) { // FIXME: This just emits a fake block based on the normal at position 0,0 EmitByte( inBuf[3] ); EmitByte( 0 ); // dummy, never used EmitByte( 0 ); // 6 alpha index bytes all use the first alpha EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitUShort( ColorTo565( inBuf[0], inBuf[1], inBuf[2] ) ); EmitUShort( 0 ); // dummy, never used EmitUInt( 0 ); // 4 color index bytes all use the first color inBuf += stride; } } /* ======================== idDxtEncoder::WriteTinyNormalMapDXN ======================== */ void idDxtEncoder::WriteTinyNormalMapDXN( const byte *inBuf, int width, int height ) { int numBlocks = ( ( width + 3 ) / 4 ) * ( ( height + 3 ) / 4 ); int stride = ( ( width * height ) / numBlocks ) * 4; // number of bytes from one block to the next // example: 2x8 pixels // numBlocks = 2 // stride = 32 bytes (8 pixels) for ( int i = 0; i < numBlocks; i++ ) { // FIXME: This just emits a fake block based on the normal at position 0,0 EmitByte( inBuf[0] ); EmitByte( 0 ); // dummy, never used EmitByte( 0 ); // 6 alpha index bytes all use the first alpha EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitByte( inBuf[1] ); EmitByte( 0 ); // dummy, never used EmitByte( 0 ); // 6 alpha index bytes all use the first alpha EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); inBuf += stride; } } /* ======================== idDxtEncoder::WriteTinyDXT5A ======================== */ void idDxtEncoder::WriteTinyDXT5A( const byte *inBuf, int width, int height ) { int numBlocks = ( ( width + 3 ) / 4 ) * ( ( height + 3 ) / 4 ); int stride = ( ( width * height ) / numBlocks ) * 4; // number of bytes from one block to the next // example: 2x8 pixels // numBlocks = 2 // stride = 32 bytes (8 pixels) for ( int i = 0; i < numBlocks; i++ ) { // FIXME: This just emits a fake block based on the normal at position 0,0 EmitByte( inBuf[0] ); EmitByte( 0 ); // dummy, never used EmitByte( 0 ); // 6 alpha index bytes all use the first alpha EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); EmitByte( 0 ); inBuf += stride; } } /* ======================== idDxtEncoder::ExtractBlock params: inPtr - input image, 4 bytes per pixel paramO: colorBlock - 4*4 output tile, 4 bytes per pixel ======================== */ ID_INLINE void idDxtEncoder::ExtractBlock( const byte *inPtr, int width, byte *colorBlock ) const { for ( int j = 0; j < 4; j++ ) { memcpy( &colorBlock[j*4*4], inPtr, 4*4 ); inPtr += width * 4; } } /* ======================== SwapColors ======================== */ void SwapColors( byte *c1, byte *c2 ) { byte tm[3]; memcpy( tm, c1, 3 ); memcpy( c1, c2, 3 ); memcpy( c2, tm, 3 ); } /* ======================== idDxtEncoder::GetMinMaxColorsMaxDist Finds the two RGB colors in a 4x4 block furthest apart. Also finds the two alpha values furthest apart. params: colorBlock - 4*4 input tile, 4 bytes per pixel paramO: minColor - 4 byte min color paramO: maxColor - 4 byte max color ======================== */ void idDxtEncoder::GetMinMaxColorsMaxDist( const byte *colorBlock, byte *minColor, byte *maxColor ) const { int maxDistC = -1; int maxDistA = -1; for ( int i = 0; i < 64 - 4; i += 4 ) { for ( int j = i + 4; j < 64; j += 4 ) { int dc = ColorDistance( &colorBlock[i], &colorBlock[j] ); if ( dc > maxDistC ) { maxDistC = dc; memcpy( minColor, colorBlock+i, 3 ); memcpy( maxColor, colorBlock+j, 3 ); } int da = AlphaDistance( colorBlock[i+3], colorBlock[j+3] ); if ( da > maxDistA ) { maxDistA = da; minColor[3] = colorBlock[i+3]; maxColor[3] = colorBlock[j+3]; } } } if ( maxColor[0] < minColor[0] ) { SwapColors( minColor, maxColor ); } } /* ======================== idDxtEncoder::GetMinMaxColorsLuminance Finds the two RGB colors in a 4x4 block furthest apart based on luminance. Also finds the two alpha values furthest apart. params: colorBlock - 4*4 input tile, 4 bytes per pixel paramO: minColor - 4 byte min color paramO: maxColor - 4 byte max color ======================== */ void idDxtEncoder::GetMinMaxColorsLuminance( const byte *colorBlock, byte *minColor, byte *maxColor ) const { int maxLumC = 0, minLumC = 256 * 4; int maxAlpha = 0, minAlpha = 256 * 4; for ( int i = 0; i < 16; i++ ) { int luminance = colorBlock[i*4+0] + colorBlock[i*4+1] * 2 + colorBlock[i*4+2]; if ( luminance > maxLumC ) { maxLumC = luminance; memcpy( maxColor, colorBlock+i*4, 3 ); } if ( luminance < minLumC ) { minLumC = luminance; memcpy( minColor, colorBlock+i*4, 3 ); } int alpha = colorBlock[i*4+3]; if ( alpha > maxAlpha ) { maxAlpha = alpha; maxColor[3] = (byte)alpha; } if ( alpha < minAlpha ) { minAlpha = alpha; minColor[3] = (byte)alpha; } } if ( maxColor[0] < minColor[0] ) { SwapColors( minColor, maxColor ); } } /* ======================== idDxtEncoder::GetSquareAlphaError params: colorBlock - 16 pixel block for which to find color indexes paramO: minAlpha - Min alpha found paramO: maxAlpha - Max alpha found return: 4 byte color index block ======================== */ int idDxtEncoder::GetSquareAlphaError( const byte *colorBlock, const int alphaOffset, const byte minAlpha, const byte maxAlpha, int lastError ) const { int i, j; byte alphas[8]; alphas[0] = maxAlpha; alphas[1] = minAlpha; if ( maxAlpha > minAlpha ) { alphas[2] = ( 6 * alphas[0] + 1 * alphas[1] ) / 7; alphas[3] = ( 5 * alphas[0] + 2 * alphas[1] ) / 7; alphas[4] = ( 4 * alphas[0] + 3 * alphas[1] ) / 7; alphas[5] = ( 3 * alphas[0] + 4 * alphas[1] ) / 7; alphas[6] = ( 2 * alphas[0] + 5 * alphas[1] ) / 7; alphas[7] = ( 1 * alphas[0] + 6 * alphas[1] ) / 7; } else { alphas[2] = ( 4 * alphas[0] + 1 * alphas[1] ) / 5; alphas[3] = ( 3 * alphas[0] + 2 * alphas[1] ) / 5; alphas[4] = ( 2 * alphas[0] + 3 * alphas[1] ) / 5; alphas[5] = ( 1 * alphas[0] + 4 * alphas[1] ) / 5; alphas[6] = 0; alphas[7] = 255; } int error = 0; for ( i = 0; i < 16; i++ ) { unsigned int minDist = MAX_UNSIGNED_TYPE( int ); byte a = colorBlock[i*4+alphaOffset]; for ( j = 0; j < 8; j++ ) { unsigned int dist = AlphaDistance( a, alphas[j] ); if ( dist < minDist ) { minDist = dist; } } error += minDist; if ( error >= lastError ) { return error; } } return error; } /* ======================== idDxtEncoder::GetMinMaxAlphaHQ params: colorBlock - 4*4 input tile, 4 bytes per pixel paramO: minColor - 4 byte min color found paramO: maxColor - 4 byte max color found ======================== */ int idDxtEncoder::GetMinMaxAlphaHQ( const byte *colorBlock, const int alphaOffset, byte *minColor, byte *maxColor ) const { int i, j; byte alphaMin, alphaMax; int error, bestError = MAX_TYPE( int ); alphaMin = 255; alphaMax = 0; // get alpha min / max for ( i = 0; i < 16; i++ ) { if ( colorBlock[i*4+alphaOffset] < alphaMin ) { alphaMin = colorBlock[i*4+alphaOffset]; } if ( colorBlock[i*4+alphaOffset] > alphaMax ) { alphaMax = colorBlock[i*4+alphaOffset]; } } const int ALPHA_EXPAND = 32; alphaMin = ( alphaMin <= ALPHA_EXPAND ) ? 0 : alphaMin - ALPHA_EXPAND; alphaMax = ( alphaMax >= 255 - ALPHA_EXPAND ) ? 255 : alphaMax + ALPHA_EXPAND; for ( i = alphaMin; i <= alphaMax; i++ ) { for ( j = alphaMax; j >= i; j-- ) { error = GetSquareAlphaError( colorBlock, alphaOffset, (byte)i, (byte)j, bestError ); if ( error < bestError ) { bestError = error; minColor[alphaOffset] = (byte)i; maxColor[alphaOffset] = (byte)j; } error = GetSquareAlphaError( colorBlock, alphaOffset, (byte)j, (byte)i, bestError ); if ( error < bestError ) { bestError = error; minColor[alphaOffset] = (byte)i; maxColor[alphaOffset] = (byte)j; } } } return bestError; } /* ======================== idDxtEncoder::GetSquareColorsError params: colorBlock - 16 pixel block for which to find color indexes paramO: color0 - 4 byte min color found paramO: color1 - 4 byte max color found return: 4 byte color index block ======================== */ int idDxtEncoder::GetSquareColorsError( const byte *colorBlock, const unsigned short color0, const unsigned short color1, int lastError ) const { int i, j; byte colors[4][4]; ColorFrom565( color0, colors[0] ); ColorFrom565( color1, colors[1] ); if ( color0 > color1 ) { colors[2][0] = ( 2 * colors[0][0] + 1 * colors[1][0] ) / 3; colors[2][1] = ( 2 * colors[0][1] + 1 * colors[1][1] ) / 3; colors[2][2] = ( 2 * colors[0][2] + 1 * colors[1][2] ) / 3; colors[3][0] = ( 1 * colors[0][0] + 2 * colors[1][0] ) / 3; colors[3][1] = ( 1 * colors[0][1] + 2 * colors[1][1] ) / 3; colors[3][2] = ( 1 * colors[0][2] + 2 * colors[1][2] ) / 3; } else { colors[2][0] = ( 1 * colors[0][0] + 1 * colors[1][0] ) / 2; colors[2][1] = ( 1 * colors[0][1] + 1 * colors[1][1] ) / 2; colors[2][2] = ( 1 * colors[0][2] + 1 * colors[1][2] ) / 2; colors[3][0] = 0; colors[3][1] = 0; colors[3][2] = 0; } int error = 0; for ( i = 0; i < 16; i++ ) { unsigned int minDist = MAX_UNSIGNED_TYPE( int ); for ( j = 0; j < 4; j++ ) { unsigned int dist = ColorDistance( &colorBlock[i*4], &colors[j][0] ); if ( dist < minDist ) { minDist = dist; } } // accumulated error error += minDist; if ( error > lastError ) { return error; } } return error; } /* ======================== idDxtEncoder::GetSquareNormalYError params: colorBlock - 16 pixel block for which to find color indexes paramO: color0 - 4 byte min color found paramO: color1 - 4 byte max color found return: 4 byte color index block ======================== */ int idDxtEncoder::GetSquareNormalYError( const byte *colorBlock, const unsigned short color0, const unsigned short color1, int lastError, int scale ) const { int i, j; byte colors[4][4]; ColorFrom565( color0, colors[0] ); ColorFrom565( color1, colors[1] ); if ( color0 > color1 ) { colors[2][0] = ( 2 * colors[0][0] + 1 * colors[1][0] ) / 3; colors[2][1] = ( 2 * colors[0][1] + 1 * colors[1][1] ) / 3; colors[2][2] = ( 2 * colors[0][2] + 1 * colors[1][2] ) / 3; colors[3][0] = ( 1 * colors[0][0] + 2 * colors[1][0] ) / 3; colors[3][1] = ( 1 * colors[0][1] + 2 * colors[1][1] ) / 3; colors[3][2] = ( 1 * colors[0][2] + 2 * colors[1][2] ) / 3; } else { colors[2][0] = ( 1 * colors[0][0] + 1 * colors[1][0] ) / 2; colors[2][1] = ( 1 * colors[0][1] + 1 * colors[1][1] ) / 2; colors[2][2] = ( 1 * colors[0][2] + 1 * colors[1][2] ) / 2; colors[3][0] = 0; colors[3][1] = 0; colors[3][2] = 0; } int error = 0; for ( i = 0; i < 16; i++ ) { unsigned int minDist = MAX_UNSIGNED_TYPE( int ); for ( j = 0; j < 4; j++ ) { float r = (float) colorBlock[i*4+1] / scale; float s = (float) colors[j][1] / scale; unsigned int dist = idMath::Ftoi( ( r - s ) * ( r - s ) ); if ( dist < minDist ) { minDist = dist; } } // accumulated error error += minDist; if ( error > lastError ) { return error; } } return error; } /* ======================== idDxtEncoder::GetMinMaxColorsHQ Uses an exhaustive search to find the two RGB colors that produce the least error when used to compress the 4x4 block. Also finds the minimum and maximum alpha values. params: colorBlock - 4*4 input tile, 4 bytes per pixel paramO: minColor - 4 byte min color found paramO: maxColor - 4 byte max color found ======================== */ int idDxtEncoder::GetMinMaxColorsHQ( const byte *colorBlock, byte *minColor, byte *maxColor, bool noBlack ) const { int i; int i0, i1, i2, j0, j1, j2; unsigned short minColor565, maxColor565, bestMinColor565, bestMaxColor565; byte bboxMin[3], bboxMax[3], minAxisDist[3]; int error, bestError = MAX_TYPE( int ); bboxMin[0] = bboxMin[1] = bboxMin[2] = 255; bboxMax[0] = bboxMax[1] = bboxMax[2] = 0; // get color bbox for ( i = 0; i < 16; i++ ) { if ( colorBlock[i*4+0] < bboxMin[0] ) { bboxMin[0] = colorBlock[i*4+0]; } if ( colorBlock[i*4+1] < bboxMin[1] ) { bboxMin[1] = colorBlock[i*4+1]; } if ( colorBlock[i*4+2] < bboxMin[2] ) { bboxMin[2] = colorBlock[i*4+2]; } if ( colorBlock[i*4+0] > bboxMax[0] ) { bboxMax[0] = colorBlock[i*4+0]; } if ( colorBlock[i*4+1] > bboxMax[1] ) { bboxMax[1] = colorBlock[i*4+1]; } if ( colorBlock[i*4+2] > bboxMax[2] ) { bboxMax[2] = colorBlock[i*4+2]; } } // decrease range for 565 encoding bboxMin[0] >>= 3; bboxMin[1] >>= 2; bboxMin[2] >>= 3; bboxMax[0] >>= 3; bboxMax[1] >>= 2; bboxMax[2] >>= 3; // get the minimum distance the end points of the line must be apart along each axis for ( i = 0; i < 3; i++ ) { minAxisDist[i] = ( bboxMax[i] - bboxMin[i] ); if ( minAxisDist[i] >= 16 ) { minAxisDist[i] = minAxisDist[i] * 3 / 4; } else if ( minAxisDist[i] >= 8 ) { minAxisDist[i] = minAxisDist[i] * 2 / 4; } else if ( minAxisDist[i] >= 4 ) { minAxisDist[i] = minAxisDist[i] * 1 / 4; } else { minAxisDist[i] = 0; } } // expand the bounding box const int C565_BBOX_EXPAND = 1; bboxMin[0] = ( bboxMin[0] <= C565_BBOX_EXPAND ) ? 0 : bboxMin[0] - C565_BBOX_EXPAND; bboxMin[1] = ( bboxMin[1] <= C565_BBOX_EXPAND ) ? 0 : bboxMin[1] - C565_BBOX_EXPAND; bboxMin[2] = ( bboxMin[2] <= C565_BBOX_EXPAND ) ? 0 : bboxMin[2] - C565_BBOX_EXPAND; bboxMax[0] = ( bboxMax[0] >= (255>>3)-C565_BBOX_EXPAND ) ? (255>>3) : bboxMax[0] + C565_BBOX_EXPAND; bboxMax[1] = ( bboxMax[1] >= (255>>2)-C565_BBOX_EXPAND ) ? (255>>2) : bboxMax[1] + C565_BBOX_EXPAND; bboxMax[2] = ( bboxMax[2] >= (255>>3)-C565_BBOX_EXPAND ) ? (255>>3) : bboxMax[2] + C565_BBOX_EXPAND; bestMinColor565 = 0; bestMaxColor565 = 0; for ( i0 = bboxMin[0]; i0 <= bboxMax[0]; i0++ ) { for ( j0 = bboxMax[0]; j0 >= bboxMin[0]; j0-- ) { if ( abs( i0 - j0 ) < minAxisDist[0] ) { continue; } for ( i1 = bboxMin[1]; i1 <= bboxMax[1]; i1++ ) { for ( j1 = bboxMax[1]; j1 >= bboxMin[1]; j1-- ) { if ( abs( i1 - j1 ) < minAxisDist[1] ) { continue; } for ( i2 = bboxMin[2]; i2 <= bboxMax[2]; i2++ ) { for ( j2 = bboxMax[2]; j2 >= bboxMin[2]; j2-- ) { if ( abs( i2 - j2 ) < minAxisDist[2] ) { continue; } minColor565 = (unsigned short)( ( i0 << 11 ) | ( i1 << 5 ) | ( i2 << 0 ) ); maxColor565 = (unsigned short)( ( j0 << 11 ) | ( j1 << 5 ) | ( j2 << 0 ) ); if ( !noBlack ) { error = GetSquareColorsError( colorBlock, maxColor565, minColor565, bestError ); if ( error < bestError ) { bestError = error; bestMinColor565 = minColor565; bestMaxColor565 = maxColor565; } } else { if ( minColor565 <= maxColor565 ) { SwapValues( minColor565, maxColor565 ); } } error = GetSquareColorsError( colorBlock, minColor565, maxColor565, bestError ); if ( error < bestError ) { bestError = error; bestMinColor565 = minColor565; bestMaxColor565 = maxColor565; } } } } } } } ColorFrom565( bestMinColor565, minColor ); ColorFrom565( bestMaxColor565, maxColor ); return bestError; } /* ======================== idDxtEncoder::GetSquareCTX1Error params: colorBlock - 16 pixel block for which to find color indexes paramO: color0 - Min color found paramO: color1 - Max color found return: 4 byte color index block ======================== */ int idDxtEncoder::GetSquareCTX1Error( const byte *colorBlock, const byte *color0, const byte *color1, int lastError ) const { int i, j; byte colors[4][4]; colors[0][0] = color0[0]; colors[0][1] = color0[1]; colors[1][0] = color1[0]; colors[1][1] = color1[1]; colors[2][0] = ( 2 * colors[0][0] + 1 * colors[1][0] ) / 3; colors[2][1] = ( 2 * colors[0][1] + 1 * colors[1][1] ) / 3; colors[3][0] = ( 1 * colors[0][0] + 2 * colors[1][0] ) / 3; colors[3][1] = ( 1 * colors[0][1] + 2 * colors[1][1] ) / 3; int error = 0; for ( i = 0; i < 16; i++ ) { unsigned int minDist = MAX_UNSIGNED_TYPE( int ); for ( j = 0; j < 4; j++ ) { unsigned int dist = CTX1Distance( &colorBlock[i*4], &colors[j][0] ); if ( dist < minDist ) { minDist = dist; } } // accumulated error error += minDist; if ( error > lastError ) { return error; } } return error; } /* ======================== idDxtEncoder::GetMinMaxCTX1HQ Uses an exhaustive search to find the two RGB colors that produce the least error when used to compress the 4x4 block. Also finds the minimum and maximum alpha values. params: colorBlock - 4*4 input tile, 4 bytes per pixel paramO: minColor - 4 byte Min color found paramO: maxColor - 4 byte Max color found ======================== */ int idDxtEncoder::GetMinMaxCTX1HQ( const byte *colorBlock, byte *minColor, byte *maxColor ) const { int i; int i0, i1, j0, j1; byte curMinColor[2], curMaxColor[2]; byte bboxMin[2], bboxMax[2], minAxisDist[2]; int error, bestError = MAX_TYPE( int ); bboxMin[0] = bboxMin[1] = 255; bboxMax[0] = bboxMax[1] = 0; // get color bbox for ( i = 0; i < 16; i++ ) { if ( colorBlock[i*4+0] < bboxMin[0] ) { bboxMin[0] = colorBlock[i*4+0]; } if ( colorBlock[i*4+1] < bboxMin[1] ) { bboxMin[1] = colorBlock[i*4+1]; } if ( colorBlock[i*4+0] > bboxMax[0] ) { bboxMax[0] = colorBlock[i*4+0]; } if ( colorBlock[i*4+1] > bboxMax[1] ) { bboxMax[1] = colorBlock[i*4+1]; } } // get the minimum distance the end points of the line must be apart along each axis for ( i = 0; i < 2; i++ ) { minAxisDist[i] = ( bboxMax[i] - bboxMin[i] ); if ( minAxisDist[i] >= 64 ) { minAxisDist[i] = minAxisDist[i] * 3 / 4; } else if ( minAxisDist[i] >= 32 ) { minAxisDist[i] = minAxisDist[i] * 2 / 4; } else if ( minAxisDist[i] >= 16 ) { minAxisDist[i] = minAxisDist[i] * 1 / 4; } else { minAxisDist[i] = 0; } } // expand the bounding box const int CXT1_BBOX_EXPAND = 6; bboxMin[0] = ( bboxMin[0] <= CXT1_BBOX_EXPAND ) ? 0 : bboxMin[0] - CXT1_BBOX_EXPAND; bboxMin[1] = ( bboxMin[1] <= CXT1_BBOX_EXPAND ) ? 0 : bboxMin[1] - CXT1_BBOX_EXPAND; bboxMax[0] = ( bboxMax[0] >= 255 - CXT1_BBOX_EXPAND ) ? 255 : bboxMax[0] + CXT1_BBOX_EXPAND; bboxMax[1] = ( bboxMax[1] >= 255 - CXT1_BBOX_EXPAND ) ? 255 : bboxMax[1] + CXT1_BBOX_EXPAND; for ( i0 = bboxMin[0]; i0 <= bboxMax[0]; i0++ ) { for ( j0 = bboxMax[0]; j0 >= bboxMin[0]; j0-- ) { if ( abs( i0 - j0 ) < minAxisDist[0] ) { continue; } for ( i1 = bboxMin[1]; i1 <= bboxMax[1]; i1++ ) { for ( j1 = bboxMax[1]; j1 >= bboxMin[1]; j1-- ) { if ( abs( i1 - j1 ) < minAxisDist[1] ) { continue; } curMinColor[0] = (byte)i0; curMinColor[1] = (byte)i1; curMaxColor[0] = (byte)j0; curMaxColor[1] = (byte)j1; error = GetSquareCTX1Error( colorBlock, curMinColor, curMaxColor, bestError ); if ( error < bestError ) { bestError = error; memcpy( minColor, curMinColor, 2 ); memcpy( maxColor, curMaxColor, 2 ); } } } } } return bestError; } /* ======================== idDxtEncoder::GetMinMaxNormalYHQ Uses an exhaustive search to find the two RGB colors that produce the least error when used to compress the 4x4 block. Also finds the minimum and maximum alpha values. params: colorBlock - 4*4 input tile, 4 bytes per pixel paramO: minColor - 4 byte Min color found paramO: maxColor - 4 byte Max color found ======================== */ int idDxtEncoder::GetMinMaxNormalYHQ( const byte *colorBlock, byte *minColor, byte *maxColor, bool noBlack, int scale ) const { unsigned short bestMinColor565, bestMaxColor565; byte bboxMin[3], bboxMax[3]; int error, bestError = MAX_TYPE( int ); bboxMin[1] = 255; bboxMax[1] = 0; // get color bbox for ( int i = 0; i < 16; i++ ) { if ( colorBlock[i*4+1] < bboxMin[1] ) { bboxMin[1] = colorBlock[i*4+1]; } if ( colorBlock[i*4+1] > bboxMax[1] ) { bboxMax[1] = colorBlock[i*4+1]; } } // decrease range for 565 encoding bboxMin[1] >>= 2; bboxMax[1] >>= 2; // expand the bounding box const int C565_BBOX_EXPAND = 1; bboxMin[1] = ( bboxMin[1] <= C565_BBOX_EXPAND ) ? 0 : bboxMin[1] - C565_BBOX_EXPAND; bboxMax[1] = ( bboxMax[1] >= (255>>2)-C565_BBOX_EXPAND ) ? (255>>2) : bboxMax[1] + C565_BBOX_EXPAND; bestMinColor565 = 0; bestMaxColor565 = 0; for ( int i1 = bboxMin[1]; i1 <= bboxMax[1]; i1++ ) { for ( int j1 = bboxMax[1]; j1 >= bboxMin[1]; j1-- ) { if ( abs( i1 - j1 ) < 0 ) { continue; } unsigned short minColor565 = (unsigned short)i1 << 5; unsigned short maxColor565 = (unsigned short)j1 << 5; if ( !noBlack ) { error = GetSquareNormalYError( colorBlock, maxColor565, minColor565, bestError, scale ); if ( error < bestError ) { bestError = error; bestMinColor565 = minColor565; bestMaxColor565 = maxColor565; } } else { if ( minColor565 <= maxColor565 ) { SwapValues( minColor565, maxColor565 ); } } error = GetSquareNormalYError( colorBlock, minColor565, maxColor565, bestError, scale ); if ( error < bestError ) { bestError = error; bestMinColor565 = minColor565; bestMaxColor565 = maxColor565; } } } ColorFrom565( bestMinColor565, minColor ); ColorFrom565( bestMaxColor565, maxColor ); int bias = colorBlock[0*4+0]; int size = colorBlock[0*4+2]; minColor[0] = maxColor[0] = (byte)bias; minColor[2] = maxColor[2] = (byte)size; return bestError; } ALIGN16( static float SIMD_SSE2_float_scale[4] ) = { 2.0f / 255.0f, 2.0f / 255.0f, 2.0f / 255.0f, 2.0f / 255.0f }; ALIGN16( static float SIMD_SSE2_float_descale[4] ) = { 255.0f / 2.0f, 255.0f / 2.0f, 255.0f / 2.0f, 255.0f / 2.0f }; ALIGN16( static float SIMD_SSE2_float_zero[4] ) = { 0.0f, 0.0f, 0.0f, 0.0f }; ALIGN16( static float SIMD_SSE2_float_one[4] ) = { 1.0f, 1.0f, 1.0f, 1.0f }; ALIGN16( static float SIMD_SSE2_float_half[4] ) = { 0.5f, 0.5f, 0.5f, 0.5f }; ALIGN16( static float SIMD_SSE2_float_255[4] ) = { 255.0f, 255.0f, 255.0f, 255.0f }; ALIGN16( static float SIMD_SP_rsqrt_c0[4] ) = { 3.0f, 3.0f, 3.0f, 3.0f }; ALIGN16( static float SIMD_SP_rsqrt_c1[4] ) = { -0.5f, -0.5f, -0.5f, -0.5f }; ALIGN16( static dword SIMD_SSE2_dword_maskFirstThree[4] ) = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000 }; ALIGN16( static dword SIMD_SSE2_dword_maskWords[4] ) = { 0x0000FFFF, 0x0000FFFF, 0x0000FFFF, 0x00000000 }; #define R_SHUFFLE_PS( x, y, z, w ) (( (w) & 3 ) << 6 | ( (z) & 3 ) << 4 | ( (y) & 3 ) << 2 | ( (x) & 3 )) /* ======================== NormalDistanceDXT1 ======================== */ int NormalDistanceDXT1( const int *vector, const int *normalized ) { int result; __asm { mov esi, vector mov edi, normalized cvtdq2ps xmm0, [esi] mulps xmm0, SIMD_SSE2_float_scale subps xmm0, SIMD_SSE2_float_one pand xmm0, SIMD_SSE2_dword_maskFirstThree movaps xmm1, xmm0 mulps xmm1, xmm1 pshufd xmm2, xmm1, R_SHUFFLE_PS( 2, 3, 0, 1 ) addps xmm2, xmm1 pshufd xmm1, xmm2, R_SHUFFLE_PS( 1, 0, 1, 0 ) addps xmm2, xmm1 rsqrtps xmm1, xmm2 mulps xmm2, xmm1 mulps xmm2, xmm1 subps xmm2, SIMD_SP_rsqrt_c0 mulps xmm1, SIMD_SP_rsqrt_c1 mulps xmm2, xmm1 mulps xmm0, xmm2 addps xmm0, SIMD_SSE2_float_one mulps xmm0, SIMD_SSE2_float_descale addps xmm0, SIMD_SSE2_float_half maxps xmm0, SIMD_SSE2_float_zero minps xmm0, SIMD_SSE2_float_255 cvttps2dq xmm0, xmm0 psubd xmm0, [edi] pand xmm0, SIMD_SSE2_dword_maskWords pmullw xmm0, xmm0 pshufd xmm1, xmm0, R_SHUFFLE_PS( 2, 3, 0, 1 ) paddd xmm0, xmm1 pshufd xmm1, xmm0, R_SHUFFLE_PS( 1, 0, 1, 0 ) paddd xmm0, xmm1 movd result, xmm0 } return result; } /* ======================== NormalDistanceDXT5 ======================== */ int NormalDistanceDXT5( const int *vector, const int *normalized ) { int result; __asm { mov esi, vector mov edi, normalized #if 0 // object-space pshufd xmm0, [esi], R_SHUFFLE_PS( 0, 1, 3, 2 ) #else pshufd xmm0, [esi], R_SHUFFLE_PS( 1, 2, 3, 0 ) #endif cvtdq2ps xmm0, xmm0 mulps xmm0, SIMD_SSE2_float_scale subps xmm0, SIMD_SSE2_float_one pand xmm0, SIMD_SSE2_dword_maskFirstThree movaps xmm1, xmm0 mulps xmm1, xmm1 pshufd xmm2, xmm1, R_SHUFFLE_PS( 2, 3, 0, 1 ) addps xmm2, xmm1 pshufd xmm1, xmm2, R_SHUFFLE_PS( 1, 0, 1, 0 ) addps xmm2, xmm1 rsqrtps xmm1, xmm2 mulps xmm2, xmm1 mulps xmm2, xmm1 subps xmm2, SIMD_SP_rsqrt_c0 mulps xmm1, SIMD_SP_rsqrt_c1 mulps xmm2, xmm1 mulps xmm0, xmm2 addps xmm0, SIMD_SSE2_float_one mulps xmm0, SIMD_SSE2_float_descale addps xmm0, SIMD_SSE2_float_half maxps xmm0, SIMD_SSE2_float_zero minps xmm0, SIMD_SSE2_float_255 cvttps2dq xmm0, xmm0 #if 0 // object-space pshufd xmm3, [edi], R_SHUFFLE_PS( 0, 1, 3, 2 ) #else pshufd xmm3, [edi], R_SHUFFLE_PS( 1, 2, 3, 0 ) #endif psubd xmm0, xmm3 pand xmm0, SIMD_SSE2_dword_maskWords pmullw xmm0, xmm0 pshufd xmm1, xmm0, R_SHUFFLE_PS( 2, 3, 0, 1 ) paddd xmm0, xmm1 pshufd xmm1, xmm0, R_SHUFFLE_PS( 1, 0, 1, 0 ) paddd xmm0, xmm1 movd result, xmm0 } return result; } /* ======================== idDxtEncoder::GetSquareNormalsDXT1Error params: colorBlock - 4*4 input tile, 4 bytes per pixel paramO: color0 - 4 byte Min color found paramO: color1 - 4 byte Max color found return: 4 byte color index block ======================== */ int idDxtEncoder::GetSquareNormalsDXT1Error( const int *colorBlock, const unsigned short color0, const unsigned short color1, int lastError, unsigned int &colorIndices ) const { byte byteColors[2][4]; ALIGN16( int colors[4][4] ); ColorFrom565( color0, byteColors[0] ); ColorFrom565( color1, byteColors[1] ); for ( int i = 0; i < 4; i++ ) { colors[0][i] = byteColors[0][i]; colors[1][i] = byteColors[1][i]; } if ( color0 > color1 ) { colors[2][0] = ( 2 * colors[0][0] + 1 * colors[1][0] ) / 3; colors[2][1] = ( 2 * colors[0][1] + 1 * colors[1][1] ) / 3; colors[2][2] = ( 2 * colors[0][2] + 1 * colors[1][2] ) / 3; colors[3][0] = ( 1 * colors[0][0] + 2 * colors[1][0] ) / 3; colors[3][1] = ( 1 * colors[0][1] + 2 * colors[1][1] ) / 3; colors[3][2] = ( 1 * colors[0][2] + 2 * colors[1][2] ) / 3; } else { assert( color0 == color1 ); colors[2][0] = ( 1 * colors[0][0] + 1 * colors[1][0] ) / 2; colors[2][1] = ( 1 * colors[0][1] + 1 * colors[1][1] ) / 2; colors[2][2] = ( 1 * colors[0][2] + 1 * colors[1][2] ) / 2; colors[3][0] = 0; colors[3][1] = 0; colors[3][2] = 0; } int error = 0; int tempColorIndices[16]; for ( int i = 0; i < 16; i++ ) { unsigned int minDist = MAX_UNSIGNED_TYPE( int ); for ( int j = 0; j < 4; j++ ) { unsigned int dist = NormalDistanceDXT1( &colors[j][0], &colorBlock[i*4] ); if ( dist < minDist ) { minDist = dist; tempColorIndices[i] = j; } } // accumulated error error += minDist; if ( error > lastError ) { return error; } } colorIndices = 0; for ( int i = 0; i < 16; i++ ) { colorIndices |= ( tempColorIndices[i] << (unsigned int)( i << 1 ) ); } return error; } /* ======================== idDxtEncoder::GetMinMaxNormalsDXT1HQ Uses an exhaustive search to find the two RGB colors that produce the least error when used to compress the 4x4 block. Also finds the minimum and maximum alpha values. params: colorBlock - 4*4 input tile, 4 bytes per pixel paramO: minColor - 4 byte Min color found paramO: maxColor - 4 byte Max color found ======================== */ int idDxtEncoder::GetMinMaxNormalsDXT1HQ( const byte *colorBlock, byte *minColor, byte *maxColor, unsigned int &colorIndices, bool noBlack ) const { int i; int i0, i1, i2, j0, j1, j2; unsigned short bestMinColor565 = 0; unsigned short bestMaxColor565 = 0; byte bboxMin[3], bboxMax[3], minAxisDist[3]; int error, bestError = MAX_TYPE( int ); unsigned int tempColorIndices; ALIGN16( int intColorBlock[16*4] ); bboxMin[0] = bboxMin[1] = bboxMin[2] = 128; bboxMax[0] = bboxMax[1] = bboxMax[2] = 128; // get color bbox for ( i = 0; i < 16; i++ ) { if ( colorBlock[i*4+0] < bboxMin[0] ) { bboxMin[0] = colorBlock[i*4+0]; } if ( colorBlock[i*4+1] < bboxMin[1] ) { bboxMin[1] = colorBlock[i*4+1]; } if ( colorBlock[i*4+2] < bboxMin[2] ) { bboxMin[2] = colorBlock[i*4+2]; } if ( colorBlock[i*4+0] > bboxMax[0] ) { bboxMax[0] = colorBlock[i*4+0]; } if ( colorBlock[i*4+1] > bboxMax[1] ) { bboxMax[1] = colorBlock[i*4+1]; } if ( colorBlock[i*4+2] > bboxMax[2] ) { bboxMax[2] = colorBlock[i*4+2]; } } for ( int i = 0; i < 64; i++ ) { intColorBlock[i] = colorBlock[i]; } // decrease range for 565 encoding bboxMin[0] >>= 3; bboxMin[1] >>= 2; bboxMin[2] >>= 3; bboxMax[0] >>= 3; bboxMax[1] >>= 2; bboxMax[2] >>= 3; // get the minimum distance the end points of the line must be apart along each axis for ( i = 0; i < 3; i++ ) { minAxisDist[i] = 0; } // expand the bounding box const int C565_BBOX_EXPAND = 2; bboxMin[0] = ( bboxMin[0] <= C565_BBOX_EXPAND ) ? 0 : bboxMin[0] - C565_BBOX_EXPAND; bboxMin[1] = ( bboxMin[1] <= C565_BBOX_EXPAND ) ? 0 : bboxMin[1] - C565_BBOX_EXPAND; bboxMin[2] = ( bboxMin[2] <= C565_BBOX_EXPAND ) ? 0 : bboxMin[2] - C565_BBOX_EXPAND; bboxMax[0] = ( bboxMax[0] >= (255>>3)-C565_BBOX_EXPAND ) ? (255>>3) : bboxMax[0] + C565_BBOX_EXPAND; bboxMax[1] = ( bboxMax[1] >= (255>>2)-C565_BBOX_EXPAND ) ? (255>>2) : bboxMax[1] + C565_BBOX_EXPAND; bboxMax[2] = ( bboxMax[2] >= (255>>3)-C565_BBOX_EXPAND ) ? (255>>3) : bboxMax[2] + C565_BBOX_EXPAND; for ( i0 = bboxMin[0]; i0 <= bboxMax[0]; i0++ ) { for ( j0 = bboxMax[0]; j0 >= bboxMin[0]; j0-- ) { if ( abs( i0 - j0 ) < minAxisDist[0] ) { continue; } for ( i1 = bboxMin[1]; i1 <= bboxMax[1]; i1++ ) { for ( j1 = bboxMax[1]; j1 >= bboxMin[1]; j1-- ) { if ( abs( i1 - j1 ) < minAxisDist[1] ) { continue; } for ( i2 = bboxMin[2]; i2 <= bboxMax[2]; i2++ ) { for ( j2 = bboxMax[2]; j2 >= bboxMin[2]; j2-- ) { if ( abs( i2 - j2 ) < minAxisDist[2] ) { continue; } unsigned short minColor565 = (unsigned short)( ( i0 << 11 ) | ( i1 << 5 ) | ( i2 << 0 ) ); unsigned short maxColor565 = (unsigned short)( ( j0 << 11 ) | ( j1 << 5 ) | ( j2 << 0 ) ); if ( !noBlack ) { error = GetSquareNormalsDXT1Error( intColorBlock, maxColor565, minColor565, bestError, tempColorIndices ); if ( error < bestError ) { bestError = error; bestMinColor565 = minColor565; bestMaxColor565 = maxColor565; colorIndices = tempColorIndices; } } else { if ( minColor565 <= maxColor565 ) { SwapValues( minColor565, maxColor565 ); } } error = GetSquareNormalsDXT1Error( intColorBlock, minColor565, maxColor565, bestError, tempColorIndices ); if ( error < bestError ) { bestError = error; bestMinColor565 = minColor565; bestMaxColor565 = maxColor565; colorIndices = tempColorIndices; } } } } } } } ColorFrom565( bestMinColor565, minColor ); ColorFrom565( bestMaxColor565, maxColor ); return bestError; } /* ======================== idDxtEncoder::GetSquareNormalsDXT5Error params: normalBlock - 16 pixel block for which to find normal indexes paramO: minNormal - Min normal found paramO: maxNormal - Max normal found ======================== */ int idDxtEncoder::GetSquareNormalsDXT5Error( const int *normalBlock, const byte *minNormal, const byte *maxNormal, int lastError, unsigned int &colorIndices, byte *alphaIndices ) const { byte alphas[8]; byte colors[4][4]; unsigned short smin = ColorTo565( minNormal ); unsigned short smax = ColorTo565( maxNormal ); ColorFrom565( smax, colors[0] ); ColorFrom565( smin, colors[1] ); if ( smax > smin ) { colors[2][0] = ( 2 * colors[0][0] + 1 * colors[1][0] ) / 3; colors[2][1] = ( 2 * colors[0][1] + 1 * colors[1][1] ) / 3; colors[2][2] = ( 2 * colors[0][2] + 1 * colors[1][2] ) / 3; colors[3][0] = ( 1 * colors[0][0] + 2 * colors[1][0] ) / 3; colors[3][1] = ( 1 * colors[0][1] + 2 * colors[1][1] ) / 3; colors[3][2] = ( 1 * colors[0][2] + 2 * colors[1][2] ) / 3; } else { assert( smax == smin ); colors[2][0] = ( 1 * colors[0][0] + 1 * colors[1][0] ) / 2; colors[2][1] = ( 1 * colors[0][1] + 1 * colors[1][1] ) / 2; colors[2][2] = ( 1 * colors[0][2] + 1 * colors[1][2] ) / 2; colors[3][0] = 0; colors[3][1] = 0; colors[3][2] = 0; } alphas[0] = maxNormal[3]; alphas[1] = minNormal[3]; if ( maxNormal[3] > minNormal[3] ) { alphas[2] = ( 6 * alphas[0] + 1 * alphas[1] ) / 7; alphas[3] = ( 5 * alphas[0] + 2 * alphas[1] ) / 7; alphas[4] = ( 4 * alphas[0] + 3 * alphas[1] ) / 7; alphas[5] = ( 3 * alphas[0] + 4 * alphas[1] ) / 7; alphas[6] = ( 2 * alphas[0] + 5 * alphas[1] ) / 7; alphas[7] = ( 1 * alphas[0] + 6 * alphas[1] ) / 7; } else { alphas[2] = ( 4 * alphas[0] + 1 * alphas[1] ) / 5; alphas[3] = ( 3 * alphas[0] + 2 * alphas[1] ) / 5; alphas[4] = ( 2 * alphas[0] + 3 * alphas[1] ) / 5; alphas[5] = ( 1 * alphas[0] + 4 * alphas[1] ) / 5; alphas[6] = 0; alphas[7] = 255; } int error = 0; int tempColorIndices[16]; int tempAlphaIndices[16]; for ( int i = 0; i < 16; i++ ) { ALIGN16( int normal[4] ); unsigned int minDist = MAX_UNSIGNED_TYPE( int ); for ( int j = 0; j < 4; j++ ) { normal[0] = colors[j][0]; normal[1] = colors[j][1]; normal[2] = colors[j][2]; for ( int k = 0; k < 8; k++ ) { normal[3] = alphas[k]; unsigned int dist = NormalDistanceDXT5( normal, &normalBlock[i*4] ); if ( dist < minDist ) { minDist = dist; tempColorIndices[i] = j; tempAlphaIndices[i] = k; } } } error += minDist; if ( error >= lastError ) { return error; } } alphaIndices[0] = byte( (tempAlphaIndices[ 0] >> 0) | (tempAlphaIndices[ 1] << 3) | (tempAlphaIndices[ 2] << 6) ); alphaIndices[1] = byte( (tempAlphaIndices[ 2] >> 2) | (tempAlphaIndices[ 3] << 1) | (tempAlphaIndices[ 4] << 4) | (tempAlphaIndices[ 5] << 7) ); alphaIndices[2] = byte( (tempAlphaIndices[ 5] >> 1) | (tempAlphaIndices[ 6] << 2) | (tempAlphaIndices[ 7] << 5) ); alphaIndices[3] = byte( (tempAlphaIndices[ 8] >> 0) | (tempAlphaIndices[ 9] << 3) | (tempAlphaIndices[10] << 6) ); alphaIndices[4] = byte( (tempAlphaIndices[10] >> 2) | (tempAlphaIndices[11] << 1) | (tempAlphaIndices[12] << 4) | (tempAlphaIndices[13] << 7) ); alphaIndices[5] = byte( (tempAlphaIndices[13] >> 1) | (tempAlphaIndices[14] << 2) | (tempAlphaIndices[15] << 5) ); colorIndices = 0; for ( int i = 0; i < 16; i++ ) { colorIndices |= ( tempColorIndices[i] << (unsigned int)( i << 1 ) ); } return error; } /* ======================== idDxtEncoder::GetMinMaxNormalsDXT5HQ Uses an exhaustive search to find the two RGB colors that produce the least error when used to compress the 4x4 block. Also finds the minimum and maximum alpha values. params: colorBlock - 4*4 input tile, 4 bytes per pixel paramO: minColor - 4 byte Min color found paramO: maxColor - 4 byte Max color found ======================== */ int idDxtEncoder::GetMinMaxNormalsDXT5HQ( const byte *colorBlock, byte *minColor, byte *maxColor, unsigned int &colorIndices, byte *alphaIndices ) const { int i; int i0, i1, i3, j0, j1, j3; byte bboxMin[4], bboxMax[4], minAxisDist[4]; byte tmin[4], tmax[4]; int error, bestError = MAX_TYPE( int ); unsigned int tempColorIndices; byte tempAlphaIndices[6]; ALIGN16( int intColorBlock[16*4] ); bboxMin[0] = bboxMin[1] = bboxMin[2] = bboxMin[3] = 255; bboxMax[0] = bboxMax[1] = bboxMax[2] = bboxMax[3] = 0; // get color bbox for ( i = 0; i < 16; i++ ) { if ( colorBlock[i*4+0] < bboxMin[0] ) { bboxMin[0] = colorBlock[i*4+0]; } if ( colorBlock[i*4+1] < bboxMin[1] ) { bboxMin[1] = colorBlock[i*4+1]; } if ( colorBlock[i*4+2] < bboxMin[2] ) { bboxMin[2] = colorBlock[i*4+2]; } if ( colorBlock[i*4+3] < bboxMin[3] ) { bboxMin[3] = colorBlock[i*4+3]; } if ( colorBlock[i*4+0] > bboxMax[0] ) { bboxMax[0] = colorBlock[i*4+0]; } if ( colorBlock[i*4+1] > bboxMax[1] ) { bboxMax[1] = colorBlock[i*4+1]; } if ( colorBlock[i*4+2] > bboxMax[2] ) { bboxMax[2] = colorBlock[i*4+2]; } if ( colorBlock[i*4+3] > bboxMax[3] ) { bboxMax[3] = colorBlock[i*4+3]; } } for ( int i = 0; i < 64; i++ ) { intColorBlock[i] = colorBlock[i]; } // decrease range for 565 encoding bboxMin[0] >>= 3; bboxMin[1] >>= 2; bboxMax[0] >>= 3; bboxMax[1] >>= 2; // get the minimum distance the end points of the line must be apart along each axis for ( i = 0; i < 4; i++ ) { minAxisDist[i] = 0; } // expand the bounding box const int C565_BBOX_EXPAND = 2; const int ALPHA_BBOX_EXPAND = 32; bboxMin[0] = ( bboxMin[0] <= C565_BBOX_EXPAND ) ? 0 : bboxMin[0] - C565_BBOX_EXPAND; bboxMin[1] = ( bboxMin[1] <= C565_BBOX_EXPAND ) ? 0 : bboxMin[1] - C565_BBOX_EXPAND; bboxMin[3] = ( bboxMin[3] <= ALPHA_BBOX_EXPAND ) ? 0 : bboxMin[3] - ALPHA_BBOX_EXPAND; bboxMax[0] = ( bboxMax[0] >= (255>>3)-C565_BBOX_EXPAND ) ? (255>>3) : bboxMax[0] + C565_BBOX_EXPAND; bboxMax[1] = ( bboxMax[1] >= (255>>2)-C565_BBOX_EXPAND ) ? (255>>2) : bboxMax[1] + C565_BBOX_EXPAND; bboxMax[3] = ( bboxMax[3] >= (255)-ALPHA_BBOX_EXPAND ) ? (255) : bboxMax[3] + ALPHA_BBOX_EXPAND; for ( i0 = bboxMin[0]; i0 <= bboxMax[0]; i0++ ) { for ( j0 = bboxMax[0]; j0 >= bboxMin[0]; j0-- ) { if ( abs( i0 - j0 ) < minAxisDist[0] ) { continue; } for ( i1 = bboxMin[1]; i1 <= bboxMax[1]; i1++ ) { for ( j1 = bboxMax[1]; j1 >= bboxMin[1]; j1-- ) { if ( abs( i1 - j1 ) < minAxisDist[1] ) { continue; } tmin[0] = (byte)j0 << 3; tmin[1] = (byte)j1 << 2; tmin[2] = 0; tmax[0] = (byte)i0 << 3; tmax[1] = (byte)i1 << 2; tmax[2] = 0; for ( i3 = bboxMin[3]; i3 <= bboxMax[3]; i3++ ) { for ( j3 = bboxMax[3]; j3 >= bboxMin[3]; j3-- ) { if ( abs( i3 - j3 ) < minAxisDist[3] ) { continue; } tmin[3] = (byte)j3; tmax[3] = (byte)i3; error = GetSquareNormalsDXT5Error( intColorBlock, tmin, tmax, bestError, tempColorIndices, tempAlphaIndices ); if ( error < bestError ) { bestError = error; memcpy( minColor, tmin, 4 ); memcpy( maxColor, tmax, 4 ); colorIndices = tempColorIndices; memcpy( alphaIndices, tempAlphaIndices, 6 ); } tmin[3] = (byte)i3; tmax[3] = (byte)j3; error = GetSquareNormalsDXT5Error( intColorBlock, tmin, tmax, bestError, tempColorIndices, tempAlphaIndices ); if ( error < bestError ) { bestError = error; memcpy( minColor, tmin, 4 ); memcpy( maxColor, tmax, 4 ); colorIndices = tempColorIndices; memcpy( alphaIndices, tempAlphaIndices, 6 ); } } } } } } } return bestError; } /* ======================== idDxtEncoder::GetMinMaxNormalsDXT5HQFast Uses an exhaustive search to find the two RGB colors that produce the least error when used to compress the 4x4 block. Also finds the minimum and maximum alpha values. params: colorBlock - 4*4 input tile, 4 bytes per pixel paramO: minColor - 4 byte Min color found paramO: maxColor - 4 byte Max color found ======================== */ int idDxtEncoder::GetMinMaxNormalsDXT5HQFast( const byte *colorBlock, byte *minColor, byte *maxColor, unsigned int &colorIndices, byte *alphaIndices ) const { int i0, i1, i2, i3, j0, j1, j2, j3; byte bboxMin[4], bboxMax[4], minAxisDist[4]; byte tmin[4], tmax[4]; int error, bestError = MAX_TYPE( int ); unsigned int tempColorIndices; byte tempAlphaIndices[6]; ALIGN16( int intColorBlock[16*4] ); bboxMin[0] = bboxMin[1] = bboxMin[2] = bboxMin[3] = 255; bboxMax[0] = bboxMax[1] = bboxMax[2] = bboxMax[3] = 0; // get color bbox for ( int i = 0; i < 16; i++ ) { if ( colorBlock[i*4+0] < bboxMin[0] ) { bboxMin[0] = colorBlock[i*4+0]; } if ( colorBlock[i*4+1] < bboxMin[1] ) { bboxMin[1] = colorBlock[i*4+1]; } if ( colorBlock[i*4+2] < bboxMin[2] ) { bboxMin[2] = colorBlock[i*4+2]; } if ( colorBlock[i*4+3] < bboxMin[3] ) { bboxMin[3] = colorBlock[i*4+3]; } if ( colorBlock[i*4+0] > bboxMax[0] ) { bboxMax[0] = colorBlock[i*4+0]; } if ( colorBlock[i*4+1] > bboxMax[1] ) { bboxMax[1] = colorBlock[i*4+1]; } if ( colorBlock[i*4+2] > bboxMax[2] ) { bboxMax[2] = colorBlock[i*4+2]; } if ( colorBlock[i*4+3] > bboxMax[3] ) { bboxMax[3] = colorBlock[i*4+3]; } } for ( int i = 0; i < 64; i++ ) { intColorBlock[i] = colorBlock[i]; } // decrease range for 565 encoding bboxMin[0] >>= 3; bboxMin[1] >>= 2; bboxMin[2] >>= 3; bboxMax[0] >>= 3; bboxMax[1] >>= 2; bboxMax[2] >>= 3; bboxMin[3] = 0; bboxMax[3] = 255; // get the minimum distance the end points of the line must be apart along each axis for ( int i = 0; i < 4; i++ ) { minAxisDist[i] = 0; } // expand the bounding box const int C565_BBOX_EXPAND = 1; const int ALPHA_BBOX_EXPAND = 128; #if 0 // object-space bboxMin[0] = ( bboxMin[0] <= C565_BBOX_EXPAND ) ? 0 : bboxMin[0] - C565_BBOX_EXPAND; bboxMax[0] = ( bboxMax[0] >= (255>>3)-C565_BBOX_EXPAND ) ? (255>>3) : bboxMax[0] + C565_BBOX_EXPAND; bboxMin[2] = 0; bboxMax[2] = 0; #else bboxMin[0] = 0; bboxMax[0] = 0; bboxMin[2] = ( bboxMin[2] <= C565_BBOX_EXPAND ) ? 0 : bboxMin[2] - C565_BBOX_EXPAND; bboxMax[2] = ( bboxMax[2] >= (255>>2)-C565_BBOX_EXPAND ) ? (255>>2) : bboxMax[2] + C565_BBOX_EXPAND; #endif bboxMin[1] = ( bboxMin[1] <= C565_BBOX_EXPAND ) ? 0 : bboxMin[1] - C565_BBOX_EXPAND; bboxMax[1] = ( bboxMax[1] >= (255>>2)-C565_BBOX_EXPAND ) ? (255>>2) : bboxMax[1] + C565_BBOX_EXPAND; bboxMin[3] = ( bboxMin[3] <= ALPHA_BBOX_EXPAND ) ? 0 : bboxMin[3] - ALPHA_BBOX_EXPAND; bboxMax[3] = ( bboxMax[3] >= (255)-ALPHA_BBOX_EXPAND ) ? (255) : bboxMax[3] + ALPHA_BBOX_EXPAND; for ( i0 = bboxMin[0]; i0 <= bboxMax[0]; i0++ ) { for ( j0 = bboxMax[0]; j0 >= bboxMin[0]; j0-- ) { if ( abs( i0 - j0 ) < minAxisDist[0] ) { continue; } for ( i1 = bboxMin[1]; i1 <= bboxMax[1]; i1++ ) { for ( j1 = bboxMax[1]; j1 >= bboxMin[1]; j1-- ) { if ( abs( i1 - j1 ) < minAxisDist[1] ) { continue; } for ( i2 = bboxMin[2]; i2 <= bboxMax[2]; i2++ ) { for ( j2 = bboxMax[2]; j2 >= bboxMin[2]; j2-- ) { if ( abs( i2 - j2 ) < minAxisDist[2] ) { continue; } unsigned short minColor565 = (unsigned short)( ( i0 << 11 ) | ( i1 << 5 ) | i2 ); unsigned short maxColor565 = (unsigned short)( ( j0 << 11 ) | ( j1 << 5 ) | j2 ); if ( minColor565 > maxColor565 ) { SwapValues( minColor565, maxColor565 ); } error = GetSquareNormalsDXT1Error( intColorBlock, maxColor565, minColor565, bestError, tempColorIndices ); if ( error < bestError ) { bestError = error; ColorFrom565( minColor565, minColor ); ColorFrom565( maxColor565, maxColor ); colorIndices = tempColorIndices; } } } } } } } bestError = MAX_TYPE( int ); memcpy( tmin, minColor, 4 ); memcpy( tmax, maxColor, 4 ); for ( i3 = bboxMin[3]; i3 <= bboxMax[3]; i3++ ) { for ( j3 = bboxMax[3]; j3 >= bboxMin[3]; j3-- ) { if ( abs( i3 - j3 ) < minAxisDist[3] ) { continue; } tmin[3] = (byte)j3; tmax[3] = (byte)i3; error = GetSquareNormalsDXT5Error( intColorBlock, tmin, tmax, bestError, tempColorIndices, tempAlphaIndices ); if ( error < bestError ) { bestError = error; memcpy( minColor, tmin, 4 ); memcpy( maxColor, tmax, 4 ); colorIndices = tempColorIndices; memcpy( alphaIndices, tempAlphaIndices, 6 ); } tmin[3] = (byte)i3; tmax[3] = (byte)j3; error = GetSquareNormalsDXT5Error( intColorBlock, tmin, tmax, bestError, tempColorIndices, tempAlphaIndices ); if ( error < bestError ) { bestError = error; memcpy( minColor, tmin, 4 ); memcpy( maxColor, tmax, 4 ); colorIndices = tempColorIndices; memcpy( alphaIndices, tempAlphaIndices, 6 ); } } } return bestError; } /* ======================== idDxtEncoder::FindColorIndices params: colorBlock - 16 pixel block for which find color indexes paramO: color0 - Min color found paramO: color1 - Max color found return: 4 byte color index block ======================== */ int idDxtEncoder::FindColorIndices( const byte *colorBlock, const unsigned short color0, const unsigned short color1, unsigned int &result ) const { int i, j; unsigned int indexes[16]; byte colors[4][4]; ColorFrom565( color0, colors[0] ); ColorFrom565( color1, colors[1] ); if ( color0 > color1 ) { colors[2][0] = ( 2 * colors[0][0] + 1 * colors[1][0] ) / 3; colors[2][1] = ( 2 * colors[0][1] + 1 * colors[1][1] ) / 3; colors[2][2] = ( 2 * colors[0][2] + 1 * colors[1][2] ) / 3; colors[3][0] = ( 1 * colors[0][0] + 2 * colors[1][0] ) / 3; colors[3][1] = ( 1 * colors[0][1] + 2 * colors[1][1] ) / 3; colors[3][2] = ( 1 * colors[0][2] + 2 * colors[1][2] ) / 3; } else { colors[2][0] = ( 1 * colors[0][0] + 1 * colors[1][0] ) / 2; colors[2][1] = ( 1 * colors[0][1] + 1 * colors[1][1] ) / 2; colors[2][2] = ( 1 * colors[0][2] + 1 * colors[1][2] ) / 2; colors[3][0] = 0; colors[3][1] = 0; colors[3][2] = 0; } int error = 0; for ( i = 0; i < 16; i++ ) { unsigned int minDist = MAX_UNSIGNED_TYPE( int ); for ( j = 0; j < 4; j++ ) { unsigned int dist = ColorDistance( &colorBlock[i*4], &colors[j][0] ); if ( dist < minDist ) { minDist = dist; indexes[i] = j; } } // accumulated error error += minDist; } result = 0; for ( i = 0; i < 16; i++ ) { result |= ( indexes[i] << (unsigned int)( i << 1 ) ); } return error; } /* ======================== idDxtEncoder::FindAlphaIndices params: colorBlock - 16 pixel block for which find alpha indexes paramO: alpha0 - Min alpha found paramO: alpha1 - Max alpha found params: rindexes - 6 byte alpha index block return: error metric for this compression ======================== */ int idDxtEncoder::FindAlphaIndices( const byte *colorBlock, const int alphaOffset, const byte alpha0, const byte alpha1, byte *rindexes ) const { int i, j; unsigned int indexes[16]; byte alphas[8]; alphas[0] = alpha0; alphas[1] = alpha1; if ( alpha0 > alpha1 ) { alphas[2] = ( 6 * alpha0 + 1 * alpha1 ) / 7; alphas[3] = ( 5 * alpha0 + 2 * alpha1 ) / 7; alphas[4] = ( 4 * alpha0 + 3 * alpha1 ) / 7; alphas[5] = ( 3 * alpha0 + 4 * alpha1 ) / 7; alphas[6] = ( 2 * alpha0 + 5 * alpha1 ) / 7; alphas[7] = ( 1 * alpha0 + 6 * alpha1 ) / 7; } else { alphas[2] = ( 4 * alpha0 + 1 * alpha1 ) / 5; alphas[3] = ( 3 * alpha0 + 2 * alpha1 ) / 5; alphas[4] = ( 2 * alpha0 + 3 * alpha1 ) / 5; alphas[5] = ( 1 * alpha0 + 4 * alpha1 ) / 5; alphas[6] = 0; alphas[7] = 255; } int error = 0; for ( i = 0; i < 16; i++ ) { unsigned int minDist = MAX_UNSIGNED_TYPE( int ); byte a = colorBlock[i*4+alphaOffset]; for ( j = 0; j < 8; j++ ) { unsigned int dist = AlphaDistance( a, alphas[j] ); if ( dist < minDist ) { minDist = dist; indexes[i] = j; } } error += minDist; } rindexes[0] = byte( (indexes[ 0] >> 0) | (indexes[ 1] << 3) | (indexes[ 2] << 6) ); rindexes[1] = byte( (indexes[ 2] >> 2) | (indexes[ 3] << 1) | (indexes[ 4] << 4) | (indexes[ 5] << 7) ); rindexes[2] = byte( (indexes[ 5] >> 1) | (indexes[ 6] << 2) | (indexes[ 7] << 5) ); rindexes[3] = byte( (indexes[ 8] >> 0) | (indexes[ 9] << 3) | (indexes[10] << 6) ); rindexes[4] = byte( (indexes[10] >> 2) | (indexes[11] << 1) | (indexes[12] << 4) | (indexes[13] << 7) ); rindexes[5] = byte( (indexes[13] >> 1) | (indexes[14] << 2) | (indexes[15] << 5) ); return error; } /* ======================== idDxtEncoder::FindCTX1Indices params: colorBlock - 16 pixel block for which find color indexes paramO: color0 - Min color found paramO: color1 - Max color found return: 4 byte color index block ======================== */ int idDxtEncoder::FindCTX1Indices( const byte *colorBlock, const byte *color0, const byte *color1, unsigned int &result ) const { int i, j; unsigned int indexes[16]; byte colors[4][4]; colors[0][0] = color1[0]; colors[0][1] = color1[1]; colors[1][0] = color0[0]; colors[1][1] = color0[1]; colors[2][0] = ( 2 * colors[0][0] + 1 * colors[1][0] ) / 3; colors[2][1] = ( 2 * colors[0][1] + 1 * colors[1][1] ) / 3; colors[3][0] = ( 1 * colors[0][0] + 2 * colors[1][0] ) / 3; colors[3][1] = ( 1 * colors[0][1] + 2 * colors[1][1] ) / 3; int error = 0; for ( i = 0; i < 16; i++ ) { unsigned int minDist = MAX_UNSIGNED_TYPE( int ); for ( j = 0; j < 4; j++ ) { unsigned int dist = CTX1Distance( &colorBlock[i*4], &colors[j][0] ); if ( dist < minDist ) { minDist = dist; indexes[i] = j; } } // accumulated error error += minDist; } result = 0; for ( i = 0; i < 16; i++ ) { result |= ( indexes[i] << (unsigned int)( i << 1 ) ); } return error; } /* ======================== idDxtEncoder::CompressImageDXT1HQ params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressImageDXT1HQ( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); unsigned int colorIndices1; unsigned int colorIndices2; byte col1[4]; byte col2[4]; int error1; int error2; this->width = width; this->height = height; this->outData = outBuf; if ( width > 4 && ( width & 3 ) != 0 ) { return; } if ( height > 4 && ( height & 3 ) != 0 ) { return; } if ( width < 4 || height < 4 ) { WriteTinyColorDXT1( inBuf, width, height ); return; } for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); GetMinMaxColorsHQ( block, col1, col2, false ); // Write out color data. Try and find minimum error for the two encoding methods. unsigned short scol1 = ColorTo565( col1 ); unsigned short scol2 = ColorTo565( col2 ); error1 = FindColorIndices( block, scol1, scol2, colorIndices1 ); error2 = FindColorIndices( block, scol2, scol1, colorIndices2 ); if ( error1 < error2 ) { EmitUShort( scol1 ); EmitUShort( scol2 ); EmitUInt( colorIndices1 ); } else { EmitUShort( scol2 ); EmitUShort( scol1 ); EmitUInt( colorIndices2 ); } //idLib::Printf( "\r%3d%%", ( j * width + i ) * 100 / ( width * height ) ); } outData += dstPadding; inBuf += srcPadding; } //idLib::Printf( "\r100%%\n" ); } /* ======================== idDxtEncoder::CompressImageDXT5HQ params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressImageDXT5HQ( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); byte alphaIndices1[6]; byte alphaIndices2[6]; unsigned int colorIndices; byte col1[4]; byte col2[4]; int error1; int error2; this->width = width; this->height = height; this->outData = outBuf; if ( width > 4 && ( width & 3 ) != 0 ) { return; } if ( height > 4 && ( height & 3 ) != 0 ) { return; } if ( width < 4 || height < 4 ) { WriteTinyColorDXT5( inBuf, width, height ); return; } for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); GetMinMaxColorsHQ( block, col1, col2, true ); GetMinMaxAlphaHQ( block, 3, col1, col2 ); // Write out alpha data. Try and find minimum error for the two encoding methods. error1 = FindAlphaIndices( block, 3, col1[3], col2[3], alphaIndices1 ); error2 = FindAlphaIndices( block, 3, col2[3], col1[3], alphaIndices2 ); if ( error1 < error2 ) { EmitByte( col1[3] ); EmitByte( col2[3] ); EmitByte( alphaIndices1[0] ); EmitByte( alphaIndices1[1] ); EmitByte( alphaIndices1[2] ); EmitByte( alphaIndices1[3] ); EmitByte( alphaIndices1[4] ); EmitByte( alphaIndices1[5] ); } else { EmitByte( col2[3] ); EmitByte( col1[3] ); EmitByte( alphaIndices2[0] ); EmitByte( alphaIndices2[1] ); EmitByte( alphaIndices2[2] ); EmitByte( alphaIndices2[3] ); EmitByte( alphaIndices2[4] ); EmitByte( alphaIndices2[5] ); } #ifdef NVIDIA_7X_HARDWARE_BUG_FIX NV4XHardwareBugFix( col2, col1 ); #endif // Write out color data. Always take the path with 4 interpolated values. unsigned short scol1 = ColorTo565( col1 ); unsigned short scol2 = ColorTo565( col2 ); EmitUShort( scol1 ); EmitUShort( scol2 ); FindColorIndices( block, scol1, scol2, colorIndices ); EmitUInt( colorIndices ); //idLib::Printf( "\r%3d%%", ( j * width + i ) * 100 / ( width * height ) ); } outData += dstPadding; inBuf += srcPadding; } //idLib::Printf( "\r100%%\n" ); } /* ======================== idDxtEncoder::CompressImageCTX1HQ params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressImageCTX1HQ( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); unsigned int colorIndices; byte col1[4]; byte col2[4]; this->width = width; this->height = height; this->outData = outBuf; if ( width > 4 && ( width & 3 ) != 0 ) { return; } if ( height > 4 && ( height & 3 ) != 0 ) { return; } if ( width < 4 || height < 4 ) { WriteTinyColorCTX1DXT5A( inBuf, width, height ); return; } for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); GetMinMaxCTX1HQ( block, col1, col2 ); EmitByte( col2[0] ); EmitByte( col2[1] ); EmitByte( col1[0] ); EmitByte( col1[1] ); FindCTX1Indices( block, col1, col2, colorIndices ); EmitUInt( colorIndices ); //idLib::Printf( "\r%3d%%", ( j * width + i ) * 100 / ( width * height ) ); } outData += dstPadding; inBuf += srcPadding; } //idLib::Printf( "\r100%%\n" ); } /* ======================== idDxtEncoder::ScaleYCoCg params: colorBlock - 16 pixel block for which find color indexes ======================== */ void idDxtEncoder::ScaleYCoCg( byte *colorBlock ) const { ALIGN16( byte minColor[4] ); ALIGN16( byte maxColor[4] ); minColor[0] = minColor[1] = minColor[2] = minColor[3] = 255; maxColor[0] = maxColor[1] = maxColor[2] = maxColor[3] = 0; for ( int i = 0; i < 16; i++ ) { if ( colorBlock[i*4+0] < minColor[0] ) { minColor[0] = colorBlock[i*4+0]; } if ( colorBlock[i*4+1] < minColor[1] ) { minColor[1] = colorBlock[i*4+1]; } if ( colorBlock[i*4+0] > maxColor[0] ) { maxColor[0] = colorBlock[i*4+0]; } if ( colorBlock[i*4+1] > maxColor[1] ) { maxColor[1] = colorBlock[i*4+1]; } } int m0 = abs( minColor[0] - 128 ); int m1 = abs( minColor[1] - 128 ); int m2 = abs( maxColor[0] - 128 ); int m3 = abs( maxColor[1] - 128 ); if ( m1 > m0 ) m0 = m1; if ( m3 > m2 ) m2 = m3; if ( m2 > m0 ) m0 = m2; const int s0 = 128 / 2 - 1; const int s1 = 128 / 4 - 1; int scale = 1 + ( m0 <= s0 ) + 2 * ( m0 <= s1 ); for ( int i = 0; i < 16; i++ ) { colorBlock[i*4+0] = byte( ( colorBlock[i*4+0] - 128 ) * scale + 128 ); colorBlock[i*4+1] = byte( ( colorBlock[i*4+1] - 128 ) * scale + 128 ); colorBlock[i*4+2] = byte( ( scale - 1 ) << 3 ); } } /* ======================== idDxtEncoder::CompressYCoCgDXT5HQ params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressYCoCgDXT5HQ( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); byte alphaIndices1[6]; byte alphaIndices2[6]; unsigned int colorIndices; byte col1[4]; byte col2[4]; int error1; int error2; assert( HasConstantValuePer4x4Block( inBuf, width, height, 2 ) ); this->width = width; this->height = height; this->outData = outBuf; if ( width > 4 && ( width & 3 ) != 0 ) { return; } if ( height > 4 && ( height & 3 ) != 0 ) { return; } if ( width < 4 || height < 4 ) { WriteTinyColorDXT5( inBuf, width, height ); return; } for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); ScaleYCoCg( block ); GetMinMaxColorsHQ( block, col1, col2, true ); GetMinMaxAlphaHQ( block, 3, col1, col2 ); // Write out alpha data. Try and find minimum error for the two encoding methods. error1 = FindAlphaIndices( block, 3, col1[3], col2[3], alphaIndices1 ); error2 = FindAlphaIndices( block, 3, col2[3], col1[3], alphaIndices2 ); if ( error1 < error2 ) { EmitByte( col1[3] ); EmitByte( col2[3] ); EmitByte( alphaIndices1[0] ); EmitByte( alphaIndices1[1] ); EmitByte( alphaIndices1[2] ); EmitByte( alphaIndices1[3] ); EmitByte( alphaIndices1[4] ); EmitByte( alphaIndices1[5] ); } else { EmitByte( col2[3] ); EmitByte( col1[3] ); EmitByte( alphaIndices2[0] ); EmitByte( alphaIndices2[1] ); EmitByte( alphaIndices2[2] ); EmitByte( alphaIndices2[3] ); EmitByte( alphaIndices2[4] ); EmitByte( alphaIndices2[5] ); } #ifdef NVIDIA_7X_HARDWARE_BUG_FIX NV4XHardwareBugFix( col2, col1 ); #endif // Write out color data. Always take the path with 4 interpolated values. unsigned short scol1 = ColorTo565( col1 ); unsigned short scol2 = ColorTo565( col2 ); EmitUShort( scol1 ); EmitUShort( scol2 ); FindColorIndices( block, scol1, scol2, colorIndices ); EmitUInt( colorIndices ); //idLib::Printf( "\r%3d%%", ( j * width + i ) * 100 / ( width * height ) ); } outData += dstPadding; inBuf += srcPadding; } //idLib::Printf( "\r100%%\n" ); } /* ======================== idDxtEncoder::CompressYCoCgCTX1DXT5AHQ params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressYCoCgCTX1DXT5AHQ( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); byte alphaIndices1[6]; byte alphaIndices2[6]; unsigned int colorIndices; byte col1[4]; byte col2[4]; int error1; int error2; assert( HasConstantValuePer4x4Block( inBuf, width, height, 2 ) ); this->width = width; this->height = height; this->outData = outBuf; if ( width > 4 && ( width & 3 ) != 0 ) { return; } if ( height > 4 && ( height & 3 ) != 0 ) { return; } if ( width < 4 || height < 4 ) { WriteTinyColorCTX1DXT5A( inBuf, width, height ); return; } for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); GetMinMaxAlphaHQ( block, 3, col1, col2 ); // Write out alpha data. Try and find minimum error for the two encoding methods. error1 = FindAlphaIndices( block, 3, col1[3], col2[3], alphaIndices1 ); error2 = FindAlphaIndices( block, 3, col2[3], col1[3], alphaIndices2 ); if ( error1 < error2 ) { EmitByte( col1[3] ); EmitByte( col2[3] ); EmitByte( alphaIndices1[0] ); EmitByte( alphaIndices1[1] ); EmitByte( alphaIndices1[2] ); EmitByte( alphaIndices1[3] ); EmitByte( alphaIndices1[4] ); EmitByte( alphaIndices1[5] ); } else { EmitByte( col2[3] ); EmitByte( col1[3] ); EmitByte( alphaIndices2[0] ); EmitByte( alphaIndices2[1] ); EmitByte( alphaIndices2[2] ); EmitByte( alphaIndices2[3] ); EmitByte( alphaIndices2[4] ); EmitByte( alphaIndices2[5] ); } GetMinMaxCTX1HQ( block, col1, col2 ); EmitByte( col2[0] ); EmitByte( col2[1] ); EmitByte( col1[0] ); EmitByte( col1[1] ); FindCTX1Indices( block, col1, col2, colorIndices ); EmitUInt( colorIndices ); //idLib::Printf( "\r%3d%%", ( j * width + i ) * 100 / ( width * height ) ); } outData += dstPadding; inBuf += srcPadding; } //idLib::Printf( "\r100%%\n" ); } /* ======================== idDxtEncoder::RotateNormalsDXT1 ======================== */ void idDxtEncoder::RotateNormalsDXT1( byte *block ) const { byte rotatedBlock[64]; byte col1[4]; byte col2[4]; int bestError = MAX_TYPE( int ); int bestRotation = 0; for ( int i = 0; i < 32; i += 1 ) { int r = ( i << 3 ) | ( i >> 2 ); float angle = ( r / 255.0f ) * idMath::PI; float s = sin( angle ); float c = cos( angle ); for ( int j = 0; j < 16; j++ ) { float x = block[j*4+0] / 255.0f * 2.0f - 1.0f; float y = block[j*4+1] / 255.0f * 2.0f - 1.0f; float rx = c * x - s * y; float ry = s * x + c * y; rotatedBlock[j*4+0] = idMath::Ftob( ( rx + 1.0f ) / 2.0f * 255.0f ); rotatedBlock[j*4+1] = idMath::Ftob( ( ry + 1.0f ) / 2.0f * 255.0f ); } int error = GetMinMaxColorsHQ( rotatedBlock, col1, col2, true ); if ( error < bestError ) { bestError = error; bestRotation = r; } } float angle = ( bestRotation / 255.0f ) * idMath::PI; float s = sin( angle ); float c = cos( angle ); for ( int j = 0; j < 16; j++ ) { float x = block[j*4+0] / 255.0f * 2.0f - 1.0f; float y = block[j*4+1] / 255.0f * 2.0f - 1.0f; float rx = c * x - s * y; float ry = s * x + c * y; block[j*4+0] = idMath::Ftob( ( rx + 1.0f ) / 2.0f * 255.0f ); block[j*4+1] = idMath::Ftob( ( ry + 1.0f ) / 2.0f * 255.0f ); block[j*4+2] = (byte)bestRotation; } } /* ======================== idDxtEncoder::CompressNormalMapDXT1HQ params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressNormalMapDXT1HQ( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); unsigned int colorIndices; byte col1[4]; byte col2[4]; this->width = width; this->height = height; this->outData = outBuf; if ( width > 4 && ( width & 3 ) != 0 ) { return; } if ( height > 4 && ( height & 3 ) != 0 ) { return; } if ( width < 4 || height < 4 ) { WriteTinyColorDXT1( inBuf, width, height ); return; } for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); for ( int k = 0; k < 16; k++ ) { block[k*4+2] = 0; } GetMinMaxColorsHQ( block, col1, col2, true ); // Write out color data. Always take the path with 4 interpolated values. unsigned short scol1 = ColorTo565( col1 ); unsigned short scol2 = ColorTo565( col2 ); EmitUShort( scol1 ); EmitUShort( scol2 ); FindColorIndices( block, scol1, scol2, colorIndices ); EmitUInt( colorIndices ); //idLib::Printf( "\r%3d%%", ( j * width + i * 4 ) * 100 / ( width * height ) ); } outData += dstPadding; inBuf += srcPadding; } //idLib::Printf( "\r100%%\n" ); } /* ======================== idDxtEncoder::CompressNormalMapDXT1RenormalizeHQ params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressNormalMapDXT1RenormalizeHQ( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); unsigned int colorIndices; byte col1[4]; byte col2[4]; this->width = width; this->height = height; this->outData = outBuf; if ( width > 4 && ( width & 3 ) != 0 ) { return; } if ( height > 4 && ( height & 3 ) != 0 ) { return; } if ( width < 4 || height < 4 ) { WriteTinyColorDXT1( inBuf, width, height ); return; } for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); // clear alpha channel for ( int k = 0; k < 16; k++ ) { block[k*4+3] = 0; } GetMinMaxNormalsDXT1HQ( block, col1, col2, colorIndices, true ); // Write out color data. Always take the path with 4 interpolated values. unsigned short scol1 = ColorTo565( col1 ); unsigned short scol2 = ColorTo565( col2 ); EmitUShort( scol1 ); EmitUShort( scol2 ); EmitUInt( colorIndices ); ////idLib::Printf( "\r%3d%%", ( j * width + i * 4 ) * 100 / ( width * height ) ); } outData += dstPadding; inBuf += srcPadding; } ////idLib::Printf( "\r100%%\n" ); } #define USE_SCALE 1 #define USE_BIAS 1 static int c_blocks; static int c_scaled; static int c_scaled2x; static int c_scaled4x; static int c_differentBias; static int c_biasHelped; /* ======================== idDxtEncoder::BiasScaleNormalY * scale2x = 33% * scale4x = 23% * bias + scale2x = 30% * bias + scale4x = 55% ======================== */ void idDxtEncoder::BiasScaleNormalY( byte *colorBlock ) const { byte minColor = 255; byte maxColor = 0; for ( int i = 0; i < 16; i++ ) { if ( colorBlock[i*4+1] < minColor ) { minColor = colorBlock[i*4+1]; } if ( colorBlock[i*4+1] > maxColor ) { maxColor = colorBlock[i*4+1]; } } int bestBias = 128; int bestRange = Max( abs( minColor - bestBias ), abs( maxColor - bestBias ) ); #if USE_BIAS for ( int i = 0; i < 32; i++ ) { int bias = ( ( i << 3 ) | ( i >> 2 ) ) - 4; int range = Max( abs( minColor - bias ), abs( maxColor - bias ) ); if ( range < bestRange ) { bestRange = range; bestBias = bias; } } #endif const int s0 = 128 / 2 - 1; const int s1 = 128 / 4 - 1; #if USE_SCALE int scale = 1 + ( bestRange <= s0 ) + 2 * ( bestRange <= s1 ); #else int scale = 1; #endif if ( scale == 1 ) { bestBias = 128; } else { c_scaled++; if ( scale == 2 ) c_scaled2x++; if ( scale == 4 ) c_scaled4x++; if ( bestBias != 128 ) { c_differentBias++; int r = Max( abs( minColor - 128 ), abs( maxColor - 128 ) ); int s = 1 + ( r <= s0 ) + 2 * ( r <= s1 ); if ( scale > s ) { c_biasHelped++; } } } c_blocks++; for ( int i = 0; i < 16; i++ ) { colorBlock[i*4+0] = byte( bestBias + 4 ); colorBlock[i*4+1] = byte( ( colorBlock[i*4+1] - bestBias ) * scale + 128 ); colorBlock[i*4+2] = byte( ( scale - 1 ) << 3 ); } } /* ======================== idDxtEncoder::RotateNormalsDXT5 ======================== */ void idDxtEncoder::RotateNormalsDXT5( byte *block ) const { byte rotatedBlock[64]; byte col1[4]; byte col2[4]; int bestError = MAX_TYPE( int ); int bestRotation = 0; int bestScale = 1; for ( int i = 0; i < 32; i += 1 ) { int r = ( i << 3 ) | ( i >> 2 ); float angle = ( r / 255.0f ) * idMath::PI; float s = sin( angle ); float c = cos( angle ); for ( int j = 0; j < 16; j++ ) { float x = block[j*4+3] / 255.0f * 2.0f - 1.0f; float y = block[j*4+1] / 255.0f * 2.0f - 1.0f; float rx = c * x - s * y; float ry = s * x + c * y; rotatedBlock[j*4+3] = idMath::Ftob( ( rx + 1.0f ) / 2.0f * 255.0f ); rotatedBlock[j*4+1] = idMath::Ftob( ( ry + 1.0f ) / 2.0f * 255.0f ); } #if USE_SCALE byte minColor = 255; byte maxColor = 0; for ( int j = 0; j < 16; j++ ) { if ( rotatedBlock[j*4+1] < minColor ) { minColor = rotatedBlock[j*4+1]; } if ( rotatedBlock[j*4+1] > maxColor ) { maxColor = rotatedBlock[j*4+1]; } } const int s0 = 128 / 2 - 1; const int s1 = 128 / 4 - 1; int range = Max( abs( minColor - 128 ), abs( maxColor - 128 ) ); int scale = 1 + ( range <= s0 ) + 2 * ( range <= s1 ); for ( int j = 0; j < 16; j++ ) { rotatedBlock[j*4+1] = byte( ( rotatedBlock[j*4+1] - 128 ) * scale + 128 ); } #endif int errorY = GetMinMaxNormalYHQ( rotatedBlock, col1, col2, true, scale ); int errorX = GetMinMaxAlphaHQ( rotatedBlock, 3, col1, col2 ); int error = errorX + errorY; if ( error < bestError ) { bestError = error; bestRotation = r; bestScale = scale; } } float angle = ( bestRotation / 255.0f ) * idMath::PI; float s = sin( angle ); float c = cos( angle ); for ( int j = 0; j < 16; j++ ) { float x = block[j*4+3] / 255.0f * 2.0f - 1.0f; float y = block[j*4+1] / 255.0f * 2.0f - 1.0f; float rx = c * x - s * y; float ry = s * x + c * y; block[j*4+0] = (byte)bestRotation; block[j*4+1] = idMath::Ftob( ( ry + 1.0f ) / 2.0f * 255.0f ); block[j*4+3] = idMath::Ftob( ( rx + 1.0f ) / 2.0f * 255.0f ); #if USE_SCALE block[j*4+1] = byte( ( block[j*4+1] - 128 ) * bestScale + 128 ); block[j*4+2] = byte( ( bestScale - 1 ) << 3 ); #endif } } /* ======================== idDxtEncoder::CompressNormalMapDXT5HQ params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressNormalMapDXT5HQ( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); byte alphaIndices1[6]; byte alphaIndices2[6]; unsigned int colorIndices; byte col1[4]; byte col2[4]; int error1; int error2; this->width = width; this->height = height; this->outData = outBuf; if ( width > 4 && ( width & 3 ) != 0 ) { return; } if ( height > 4 && ( height & 3 ) != 0 ) { return; } if ( width < 4 || height < 4 ) { WriteTinyColorDXT5( inBuf, width, height ); return; } for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); // swizzle components for ( int k = 0; k < 16; k++ ) { block[k*4+3] = block[k*4+0]; block[k*4+0] = 0; block[k*4+2] = 0; } //BiasScaleNormalY( block ); //RotateNormalsDXT5( block ); GetMinMaxNormalYHQ( block, col1, col2, true, 1 ); GetMinMaxAlphaHQ( block, 3, col1, col2 ); // Write out alpha data. Try and find minimum error for the two encoding methods. error1 = FindAlphaIndices( block, 3, col1[3], col2[3], alphaIndices1 ); error2 = FindAlphaIndices( block, 3, col2[3], col1[3], alphaIndices2 ); if ( error1 < error2 ) { EmitByte( col1[3] ); EmitByte( col2[3] ); EmitByte( alphaIndices1[0] ); EmitByte( alphaIndices1[1] ); EmitByte( alphaIndices1[2] ); EmitByte( alphaIndices1[3] ); EmitByte( alphaIndices1[4] ); EmitByte( alphaIndices1[5] ); } else { EmitByte( col2[3] ); EmitByte( col1[3] ); EmitByte( alphaIndices2[0] ); EmitByte( alphaIndices2[1] ); EmitByte( alphaIndices2[2] ); EmitByte( alphaIndices2[3] ); EmitByte( alphaIndices2[4] ); EmitByte( alphaIndices2[5] ); } #ifdef NVIDIA_7X_HARDWARE_BUG_FIX NV4XHardwareBugFix( col2, col1 ); #endif // Write out color data. Always take the path with 4 interpolated values. unsigned short scol1 = ColorTo565( col1 ); unsigned short scol2 = ColorTo565( col2 ); EmitUShort( scol1 ); EmitUShort( scol2 ); FindColorIndices( block, scol1, scol2, colorIndices ); EmitUInt( colorIndices ); //idLib::Printf( "\r%3d%%", ( j * width + i ) * 100 / ( width * height ) ); } outData += dstPadding; inBuf += srcPadding; } //idLib::Printf( "\r100%%\n" ); } /* ======================== idDxtEncoder::CompressNormalMapDXT5RenormalizeHQ params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressNormalMapDXT5RenormalizeHQ( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); unsigned int colorIndices; byte alphaIndices[6]; byte col1[4]; byte col2[4]; this->width = width; this->height = height; this->outData = outBuf; if ( width > 4 && ( width & 3 ) != 0 ) { return; } if ( height > 4 && ( height & 3 ) != 0 ) { return; } if ( width < 4 || height < 4 ) { WriteTinyColorDXT5( inBuf, width, height ); return; } for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); // swizzle components for ( int k = 0; k < 16; k++ ) { #if 0 // object-space block[k*4+3] = block[k*4+2]; block[k*4+2] = 0; #else block[k*4+3] = block[k*4+0]; block[k*4+0] = 0; #endif } GetMinMaxNormalsDXT5HQFast( block, col1, col2, colorIndices, alphaIndices ); EmitByte( col2[3] ); EmitByte( col1[3] ); EmitByte( alphaIndices[0] ); EmitByte( alphaIndices[1] ); EmitByte( alphaIndices[2] ); EmitByte( alphaIndices[3] ); EmitByte( alphaIndices[4] ); EmitByte( alphaIndices[5] ); unsigned short scol1 = ColorTo565( col1 ); unsigned short scol2 = ColorTo565( col2 ); EmitUShort( scol2 ); EmitUShort( scol1 ); EmitUInt( colorIndices ); ////idLib::Printf( "\r%3d%%", ( j * width + i ) * 100 / ( width * height ) ); } outData += dstPadding; inBuf += srcPadding; } ////idLib::Printf( "\r100%%\n" ); } /* ======================== idDxtEncoder::CompressNormalMapDXN2HQ params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressNormalMapDXN2HQ( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); byte alphaIndices1[6]; byte alphaIndices2[6]; byte col1[4]; byte col2[4]; int error1; int error2; this->width = width; this->height = height; this->outData = outBuf; if ( width > 4 && ( width & 3 ) != 0 ) { return; } if ( height > 4 && ( height & 3 ) != 0 ) { return; } if ( width < 4 || height < 4 ) { WriteTinyColorDXT5( inBuf, width, height ); return; } for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); for ( int k = 0; k < 2; k++ ) { GetMinMaxAlphaHQ( block, k, col1, col2 ); // Write out alpha data. Try and find minimum error for the two encoding methods. error1 = FindAlphaIndices( block, k, col1[k], col2[k], alphaIndices1 ); error2 = FindAlphaIndices( block, k, col2[k], col1[k], alphaIndices2 ); if ( error1 < error2 ) { EmitByte( col1[k] ); EmitByte( col2[k] ); EmitByte( alphaIndices1[0] ); EmitByte( alphaIndices1[1] ); EmitByte( alphaIndices1[2] ); EmitByte( alphaIndices1[3] ); EmitByte( alphaIndices1[4] ); EmitByte( alphaIndices1[5] ); } else { EmitByte( col2[k] ); EmitByte( col1[k] ); EmitByte( alphaIndices2[0] ); EmitByte( alphaIndices2[1] ); EmitByte( alphaIndices2[2] ); EmitByte( alphaIndices2[3] ); EmitByte( alphaIndices2[4] ); EmitByte( alphaIndices2[5] ); } } //idLib::Printf( "\r%3d%%", ( j * width + i ) * 100 / ( width * height ) ); } outData += dstPadding; inBuf += srcPadding; } //idLib::Printf( "\r100%%\n" ); } /* ======================== idDxtEncoder::GetMinMaxBBox Takes the extents of the bounding box of the colors in the 4x4 block in RGB space. Also finds the minimum and maximum alpha values. params: colorBlock - 4*4 input tile, 4 bytes per pixel paramO: minColor - 4 byte Min color found paramO: maxColor - 4 byte Max color found ======================== */ ID_INLINE void idDxtEncoder::GetMinMaxBBox( const byte *colorBlock, byte *minColor, byte *maxColor ) const { minColor[0] = minColor[1] = minColor[2] = minColor[3] = 255; maxColor[0] = maxColor[1] = maxColor[2] = maxColor[3] = 0; for ( int i = 0; i < 16; i++ ) { if ( colorBlock[i*4+0] < minColor[0] ) { minColor[0] = colorBlock[i*4+0]; } if ( colorBlock[i*4+1] < minColor[1] ) { minColor[1] = colorBlock[i*4+1]; } if ( colorBlock[i*4+2] < minColor[2] ) { minColor[2] = colorBlock[i*4+2]; } if ( colorBlock[i*4+3] < minColor[3] ) { minColor[3] = colorBlock[i*4+3]; } if ( colorBlock[i*4+0] > maxColor[0] ) { maxColor[0] = colorBlock[i*4+0]; } if ( colorBlock[i*4+1] > maxColor[1] ) { maxColor[1] = colorBlock[i*4+1]; } if ( colorBlock[i*4+2] > maxColor[2] ) { maxColor[2] = colorBlock[i*4+2]; } if ( colorBlock[i*4+3] > maxColor[3] ) { maxColor[3] = colorBlock[i*4+3]; } } } /* ======================== idDxtEncoder::InsetColorsBBox ======================== */ ID_INLINE void idDxtEncoder::InsetColorsBBox( byte *minColor, byte *maxColor ) const { byte inset[4]; inset[0] = ( maxColor[0] - minColor[0] ) >> INSET_COLOR_SHIFT; inset[1] = ( maxColor[1] - minColor[1] ) >> INSET_COLOR_SHIFT; inset[2] = ( maxColor[2] - minColor[2] ) >> INSET_COLOR_SHIFT; inset[3] = ( maxColor[3] - minColor[3] ) >> INSET_ALPHA_SHIFT; minColor[0] = ( minColor[0] + inset[0] <= 255 ) ? minColor[0] + inset[0] : 255; minColor[1] = ( minColor[1] + inset[1] <= 255 ) ? minColor[1] + inset[1] : 255; minColor[2] = ( minColor[2] + inset[2] <= 255 ) ? minColor[2] + inset[2] : 255; minColor[3] = ( minColor[3] + inset[3] <= 255 ) ? minColor[3] + inset[3] : 255; maxColor[0] = ( maxColor[0] >= inset[0] ) ? maxColor[0] - inset[0] : 0; maxColor[1] = ( maxColor[1] >= inset[1] ) ? maxColor[1] - inset[1] : 0; maxColor[2] = ( maxColor[2] >= inset[2] ) ? maxColor[2] - inset[2] : 0; maxColor[3] = ( maxColor[3] >= inset[3] ) ? maxColor[3] - inset[3] : 0; } /* ======================== idDxtEncoder::SelectColorsDiagonal ======================== */ void idDxtEncoder::SelectColorsDiagonal( const byte *colorBlock, byte *minColor, byte *maxColor ) const { byte mid0 = byte( ( (int) minColor[0] + maxColor[0] + 1 ) >> 1 ); byte mid1 = byte( ( (int) minColor[1] + maxColor[1] + 1 ) >> 1 ); byte mid2 = byte( ( (int) minColor[2] + maxColor[2] + 1 ) >> 1 ); #if 0 // using the covariance is the best way to select the diagonal int side0 = 0; int side1 = 0; for ( int i = 0; i < 16; i++ ) { int b0 = colorBlock[i*4+0] - mid0; int b1 = colorBlock[i*4+1] - mid1; int b2 = colorBlock[i*4+2] - mid2; side0 += ( b0 * b1 ); side1 += ( b1 * b2 ); } byte mask0 = -( side0 < 0 ); byte mask1 = -( side1 < 0 ); #else // calculating the covariance of just the sign bits is much faster and gives almost the same result int side0 = 0; int side1 = 0; for ( int i = 0; i < 16; i++ ) { byte b0 = colorBlock[i*4+0] >= mid0; byte b1 = colorBlock[i*4+1] >= mid1; byte b2 = colorBlock[i*4+2] >= mid2; side0 += ( b0 ^ b1 ); side1 += ( b1 ^ b2 ); } byte mask0 = -( side0 > 8 ); byte mask1 = -( side1 > 8 ); #endif byte c0 = minColor[0]; byte c1 = maxColor[0]; byte c2 = minColor[2]; byte c3 = maxColor[2]; c0 ^= c1; mask0 &= c0; c1 ^= mask0; c0 ^= c1; c2 ^= c3; mask1 &= c2; c3 ^= mask1; c2 ^= c3; minColor[0] = c0; maxColor[0] = c1; minColor[2] = c2; maxColor[2] = c3; if ( ColorTo565( minColor ) > ColorTo565( maxColor ) ) { SwapValues( minColor[0], maxColor[0] ); SwapValues( minColor[1], maxColor[1] ); SwapValues( minColor[2], maxColor[2] ); } } /* ======================== idDxtEncoder::EmitColorIndices params: colorBlock - 16 pixel block for which find color indexes paramO: minColor - Min color found paramO: maxColor - Max color found return: 4 byte color index block ======================== */ void idDxtEncoder::EmitColorIndices( const byte *colorBlock, const byte *minColor, const byte *maxColor ) { #if 1 ALIGN16( uint16 colors[4][4] ); unsigned int result = 0; colors[0][0] = ( maxColor[0] & C565_5_MASK ) | ( maxColor[0] >> 5 ); colors[0][1] = ( maxColor[1] & C565_6_MASK ) | ( maxColor[1] >> 6 ); colors[0][2] = ( maxColor[2] & C565_5_MASK ) | ( maxColor[2] >> 5 ); colors[0][3] = 0; colors[1][0] = ( minColor[0] & C565_5_MASK ) | ( minColor[0] >> 5 ); colors[1][1] = ( minColor[1] & C565_6_MASK ) | ( minColor[1] >> 6 ); colors[1][2] = ( minColor[2] & C565_5_MASK ) | ( minColor[2] >> 5 ); colors[1][3] = 0; colors[2][0] = ( 2 * colors[0][0] + 1 * colors[1][0] ) / 3; colors[2][1] = ( 2 * colors[0][1] + 1 * colors[1][1] ) / 3; colors[2][2] = ( 2 * colors[0][2] + 1 * colors[1][2] ) / 3; colors[2][3] = 0; colors[3][0] = ( 1 * colors[0][0] + 2 * colors[1][0] ) / 3; colors[3][1] = ( 1 * colors[0][1] + 2 * colors[1][1] ) / 3; colors[3][2] = ( 1 * colors[0][2] + 2 * colors[1][2] ) / 3; colors[3][3] = 0; // uses sum of absolute differences instead of squared distance to find the best match for ( int i = 15; i >= 0; i-- ) { int c0, c1, c2, c3, m, d0, d1, d2, d3; c0 = colorBlock[i*4+0]; c1 = colorBlock[i*4+1]; c2 = colorBlock[i*4+2]; c3 = colorBlock[i*4+3]; m = colors[0][0] - c0; d0 = abs( m ); m = colors[1][0] - c0; d1 = abs( m ); m = colors[2][0] - c0; d2 = abs( m ); m = colors[3][0] - c0; d3 = abs( m ); m = colors[0][1] - c1; d0 += abs( m ); m = colors[1][1] - c1; d1 += abs( m ); m = colors[2][1] - c1; d2 += abs( m ); m = colors[3][1] - c1; d3 += abs( m ); m = colors[0][2] - c2; d0 += abs( m ); m = colors[1][2] - c2; d1 += abs( m ); m = colors[2][2] - c2; d2 += abs( m ); m = colors[3][2] - c2; d3 += abs( m ); #if 0 int b0 = d0 > d2; int b1 = d1 > d3; int b2 = d0 > d3; int b3 = d1 > d2; int b4 = d0 > d1; int b5 = d2 > d3; result |= ( ( !b3 & b4 ) | ( b2 & b5 ) | ( ( ( b0 & b3 ) | ( b1 & b2 ) ) << 1 ) ) << ( i << 1 ); #else bool b0 = d0 > d3; bool b1 = d1 > d2; bool b2 = d0 > d2; bool b3 = d1 > d3; bool b4 = d2 > d3; int x0 = b1 & b2; int x1 = b0 & b3; int x2 = b0 & b4; result |= ( x2 | ( ( x0 | x1 ) << 1 ) ) << ( i << 1 ); #endif } EmitUInt( result ); #elif 1 byte colors[4][4]; unsigned int indexes[16]; colors[0][0] = ( maxColor[0] & C565_5_MASK ) | ( maxColor[0] >> 6 ); colors[0][1] = ( maxColor[1] & C565_6_MASK ) | ( maxColor[1] >> 5 ); colors[0][2] = ( maxColor[2] & C565_5_MASK ) | ( maxColor[2] >> 6 ); colors[0][3] = 0; colors[1][0] = ( minColor[0] & C565_5_MASK ) | ( minColor[0] >> 6 ); colors[1][1] = ( minColor[1] & C565_6_MASK ) | ( minColor[1] >> 5 ); colors[1][2] = ( minColor[2] & C565_5_MASK ) | ( minColor[2] >> 6 ); colors[1][3] = 0; colors[2][0] = ( 2 * colors[0][0] + 1 * colors[1][0] ) / 3; colors[2][1] = ( 2 * colors[0][1] + 1 * colors[1][1] ) / 3; colors[2][2] = ( 2 * colors[0][2] + 1 * colors[1][2] ) / 3; colors[2][3] = 0; colors[3][0] = ( 1 * colors[0][0] + 2 * colors[1][0] ) / 3; colors[3][1] = ( 1 * colors[0][1] + 2 * colors[1][1] ) / 3; colors[3][2] = ( 1 * colors[0][2] + 2 * colors[1][2] ) / 3; colors[3][3] = 0; for ( int i = 0; i < 16; i++ ) { int c0, c1, c2, m, d, minDist; c0 = colorBlock[i*4+0]; c1 = colorBlock[i*4+1]; c2 = colorBlock[i*4+2]; m = colors[0][0] - c0; d = m * m; m = colors[0][1] - c1; d += m * m; m = colors[0][2] - c2; d += m * m; minDist = d; indexes[i] = 0; m = colors[1][0] - c0; d = m * m; m = colors[1][1] - c1; d += m * m; m = colors[1][2] - c2; d += m * m; if ( d < minDist ) { minDist = d; indexes[i] = 1; } m = colors[2][0] - c0; d = m * m; m = colors[2][1] - c1; d += m * m; m = colors[2][2] - c2; d += m * m; if ( d < minDist ) { minDist = d; indexes[i] = 2; } m = colors[3][0] - c0; d = m * m; m = colors[3][1] - c1; d += m * m; m = colors[3][2] - c2; d += m * m; if ( d < minDist ) { minDist = d; indexes[i] = 3; } } unsigned int result = 0; for ( int i = 0; i < 16; i++ ) { result |= ( indexes[i] << (unsigned int)( i << 1 ) ); } EmitUInt( result ); #else byte colors[4][4]; unsigned int indexes[16]; colors[0][0] = ( maxColor[0] & C565_5_MASK ) | ( maxColor[0] >> 6 ); colors[0][1] = ( maxColor[1] & C565_6_MASK ) | ( maxColor[1] >> 5 ); colors[0][2] = ( maxColor[2] & C565_5_MASK ) | ( maxColor[2] >> 6 ); colors[0][3] = 0; colors[1][0] = ( minColor[0] & C565_5_MASK ) | ( minColor[0] >> 6 ); colors[1][1] = ( minColor[1] & C565_6_MASK ) | ( minColor[1] >> 5 ); colors[1][2] = ( minColor[2] & C565_5_MASK ) | ( minColor[2] >> 6 ); colors[1][3] = 0; colors[2][0] = ( 2 * colors[0][0] + 1 * colors[1][0] ) / 3; colors[2][1] = ( 2 * colors[0][1] + 1 * colors[1][1] ) / 3; colors[2][2] = ( 2 * colors[0][2] + 1 * colors[1][2] ) / 3; colors[2][3] = 0; colors[3][0] = ( 1 * colors[0][0] + 2 * colors[1][0] ) / 3; colors[3][1] = ( 1 * colors[0][1] + 2 * colors[1][1] ) / 3; colors[3][2] = ( 1 * colors[0][2] + 2 * colors[1][2] ) / 3; colors[3][3] = 0; for ( int i = 0; i < 16; i++ ) { unsigned int minDist = (255*255)*4; for ( int j = 0; j < 4; j++ ) { unsigned int dist = ColorDistance( &colorBlock[i*4], &colors[j][0] ); if ( dist < minDist ) { minDist = dist; indexes[i] = j; } } } unsigned int result = 0; for ( int i = 0; i < 16; i++ ) { result |= ( indexes[i] << (unsigned int)( i << 1 ) ); } EmitUInt( result ); #endif } /* ======================== idDxtEncoder::EmitColorAlphaIndices params: colorBlock - 16 pixel block for which find color indexes paramO: minColor - Min color found paramO: maxColor - Max color found return: 4 byte color index block ======================== */ void idDxtEncoder::EmitColorAlphaIndices( const byte *colorBlock, const byte *minColor, const byte *maxColor ) { ALIGN16( uint16 colors[4][4] ); unsigned int result = 0; colors[0][0] = ( minColor[0] & C565_5_MASK ) | ( minColor[0] >> 5 ); colors[0][1] = ( minColor[1] & C565_6_MASK ) | ( minColor[1] >> 6 ); colors[0][2] = ( minColor[2] & C565_5_MASK ) | ( minColor[2] >> 5 ); colors[0][3] = 255; colors[1][0] = ( maxColor[0] & C565_5_MASK ) | ( maxColor[0] >> 5 ); colors[1][1] = ( maxColor[1] & C565_6_MASK ) | ( maxColor[1] >> 6 ); colors[1][2] = ( maxColor[2] & C565_5_MASK ) | ( maxColor[2] >> 5 ); colors[1][3] = 255; colors[2][0] = ( colors[0][0] + colors[1][0] ) / 2; colors[2][1] = ( colors[0][1] + colors[1][1] ) / 2; colors[2][2] = ( colors[0][2] + colors[1][2] ) / 2; colors[2][3] = 255; colors[3][0] = 0; colors[3][1] = 0; colors[3][2] = 0; colors[3][3] = 0; // uses sum of absolute differences instead of squared distance to find the best match for ( int i = 15; i >= 0; i-- ) { int c0, c1, c2, c3, m, d0, d1, d2; c0 = colorBlock[i*4+0]; c1 = colorBlock[i*4+1]; c2 = colorBlock[i*4+2]; c3 = colorBlock[i*4+3]; m = colors[0][0] - c0; d0 = abs( m ); m = colors[1][0] - c0; d1 = abs( m ); m = colors[2][0] - c0; d2 = abs( m ); m = colors[0][1] - c1; d0 += abs( m ); m = colors[1][1] - c1; d1 += abs( m ); m = colors[2][1] - c1; d2 += abs( m ); m = colors[0][2] - c2; d0 += abs( m ); m = colors[1][2] - c2; d1 += abs( m ); m = colors[2][2] - c2; d2 += abs( m ); unsigned int b0 = d2 > d0; unsigned int b1 = d2 > d1; unsigned int b2 = d1 > d0; unsigned int b3 = c3 < 128; result |= ( ( ( b0 & b1 | b3 ) << 1 ) | ( b2 ^ b1 | b3 ) ) << ( i << 1 ); } EmitUInt( result ); } /* ======================== idDxtEncoder::EmitCTX1Indices params: colorBlock - 16 pixel block for which find color indexes paramO: minColor - Min color found paramO: maxColor - Max color found return: 4 byte color index block ======================== */ void idDxtEncoder::EmitCTX1Indices( const byte *colorBlock, const byte *minColor, const byte *maxColor ) { ALIGN16( uint16 colors[4][2] ); unsigned int result = 0; colors[0][0] = maxColor[0]; colors[0][1] = maxColor[1]; colors[1][0] = minColor[0]; colors[1][1] = minColor[1]; colors[2][0] = ( 2 * colors[0][0] + 1 * colors[1][0] ) / 3; colors[2][1] = ( 2 * colors[0][1] + 1 * colors[1][1] ) / 3; colors[3][0] = ( 1 * colors[0][0] + 2 * colors[1][0] ) / 3; colors[3][1] = ( 1 * colors[0][1] + 2 * colors[1][1] ) / 3; for ( int i = 15; i >= 0; i-- ) { int c0, c1, m, d0, d1, d2, d3; c0 = colorBlock[i*4+0]; c1 = colorBlock[i*4+1]; m = colors[0][0] - c0; d0 = abs( m ); m = colors[1][0] - c0; d1 = abs( m ); m = colors[2][0] - c0; d2 = abs( m ); m = colors[3][0] - c0; d3 = abs( m ); m = colors[0][1] - c1; d0 += abs( m ); m = colors[1][1] - c1; d1 += abs( m ); m = colors[2][1] - c1; d2 += abs( m ); m = colors[3][1] - c1; d3 += abs( m ); bool b0 = d0 > d3; bool b1 = d1 > d2; bool b2 = d0 > d2; bool b3 = d1 > d3; bool b4 = d2 > d3; int x0 = b1 & b2; int x1 = b0 & b3; int x2 = b0 & b4; result |= ( x2 | ( ( x0 | x1 ) << 1 ) ) << ( i << 1 ); } EmitUInt( result ); } /* ======================== idDxtEncoder::EmitAlphaIndices params: colorBlock - 16 pixel block for which find alpha indexes paramO: minAlpha - Min alpha found paramO: maxAlpha - Max alpha found ======================== */ void idDxtEncoder::EmitAlphaIndices( const byte *colorBlock, const int offset, const byte minAlpha, const byte maxAlpha ) { assert( maxAlpha >= minAlpha ); const int ALPHA_RANGE = 7; #if 1 byte ab1, ab2, ab3, ab4, ab5, ab6, ab7; ALIGN16( byte indexes[16] ); ab1 = ( 13 * maxAlpha + 1 * minAlpha + ALPHA_RANGE ) / (ALPHA_RANGE*2); ab2 = ( 11 * maxAlpha + 3 * minAlpha + ALPHA_RANGE ) / (ALPHA_RANGE*2); ab3 = ( 9 * maxAlpha + 5 * minAlpha + ALPHA_RANGE ) / (ALPHA_RANGE*2); ab4 = ( 7 * maxAlpha + 7 * minAlpha + ALPHA_RANGE ) / (ALPHA_RANGE*2); ab5 = ( 5 * maxAlpha + 9 * minAlpha + ALPHA_RANGE ) / (ALPHA_RANGE*2); ab6 = ( 3 * maxAlpha + 11 * minAlpha + ALPHA_RANGE ) / (ALPHA_RANGE*2); ab7 = ( 1 * maxAlpha + 13 * minAlpha + ALPHA_RANGE ) / (ALPHA_RANGE*2); colorBlock += offset; for ( int i = 0; i < 16; i++ ) { byte a = colorBlock[i*4]; int b1 = ( a >= ab1 ); int b2 = ( a >= ab2 ); int b3 = ( a >= ab3 ); int b4 = ( a >= ab4 ); int b5 = ( a >= ab5 ); int b6 = ( a >= ab6 ); int b7 = ( a >= ab7 ); int index = ( 8 - b1 - b2 - b3 - b4 - b5 - b6 - b7 ) & 7; indexes[i] = byte( index ^ ( 2 > index ) ); } EmitByte( (indexes[ 0] >> 0) | (indexes[ 1] << 3) | (indexes[ 2] << 6) ); EmitByte( (indexes[ 2] >> 2) | (indexes[ 3] << 1) | (indexes[ 4] << 4) | (indexes[ 5] << 7) ); EmitByte( (indexes[ 5] >> 1) | (indexes[ 6] << 2) | (indexes[ 7] << 5) ); EmitByte( (indexes[ 8] >> 0) | (indexes[ 9] << 3) | (indexes[10] << 6) ); EmitByte( (indexes[10] >> 2) | (indexes[11] << 1) | (indexes[12] << 4) | (indexes[13] << 7) ); EmitByte( (indexes[13] >> 1) | (indexes[14] << 2) | (indexes[15] << 5) ); #elif 0 ALIGN16( byte indexes[16] ); byte delta = maxAlpha - minAlpha; byte half = delta >> 1; byte bias = delta / ( 2 * ALPHA_RANGE ); byte bottom = minAlpha + bias; byte top = maxAlpha - bias; colorBlock += offset; for ( int i = 0; i < 16; i++ ) { byte a = colorBlock[i*4]; if ( a <= bottom ) { indexes[i] = 1; } else if ( a >= top ) { indexes[i] = 0; } else { indexes[i] = (ALPHA_RANGE+1) + ( ( minAlpha - a ) * ALPHA_RANGE - half ) / delta; } } EmitByte( (indexes[ 0] >> 0) | (indexes[ 1] << 3) | (indexes[ 2] << 6) ); EmitByte( (indexes[ 2] >> 2) | (indexes[ 3] << 1) | (indexes[ 4] << 4) | (indexes[ 5] << 7) ); EmitByte( (indexes[ 5] >> 1) | (indexes[ 6] << 2) | (indexes[ 7] << 5) ); EmitByte( (indexes[ 8] >> 0) | (indexes[ 9] << 3) | (indexes[10] << 6) ); EmitByte( (indexes[10] >> 2) | (indexes[11] << 1) | (indexes[12] << 4) | (indexes[13] << 7) ); EmitByte( (indexes[13] >> 1) | (indexes[14] << 2) | (indexes[15] << 5) ); #elif 0 ALIGN16( byte indexes[16] ); byte delta = maxAlpha - minAlpha; byte half = delta >> 1; byte bias = delta / ( 2 * ALPHA_RANGE ); byte bottom = minAlpha + bias; byte top = maxAlpha - bias; colorBlock += offset; for ( int i = 0; i < 16; i++ ) { byte a = colorBlock[i*4]; int index = (ALPHA_RANGE+1) + ( ( minAlpha - a ) * ALPHA_RANGE - half ) / delta; int c0 = a > bottom; int c1 = a < top; indexes[i] = ( index & -( c0 & c1 ) ) | ( c0 ^ 1 ); } EmitByte( (indexes[ 0] >> 0) | (indexes[ 1] << 3) | (indexes[ 2] << 6) ); EmitByte( (indexes[ 2] >> 2) | (indexes[ 3] << 1) | (indexes[ 4] << 4) | (indexes[ 5] << 7) ); EmitByte( (indexes[ 5] >> 1) | (indexes[ 6] << 2) | (indexes[ 7] << 5) ); EmitByte( (indexes[ 8] >> 0) | (indexes[ 9] << 3) | (indexes[10] << 6) ); EmitByte( (indexes[10] >> 2) | (indexes[11] << 1) | (indexes[12] << 4) | (indexes[13] << 7) ); EmitByte( (indexes[13] >> 1) | (indexes[14] << 2) | (indexes[15] << 5) ); #else ALIGN16( byte indexes[16] ); ALIGN16( byte alphas[8] ); alphas[0] = maxAlpha; alphas[1] = minAlpha; alphas[2] = ( 6 * maxAlpha + 1 * minAlpha ) / ALPHA_RANGE; alphas[3] = ( 5 * maxAlpha + 2 * minAlpha ) / ALPHA_RANGE; alphas[4] = ( 4 * maxAlpha + 3 * minAlpha ) / ALPHA_RANGE; alphas[5] = ( 3 * maxAlpha + 4 * minAlpha ) / ALPHA_RANGE; alphas[6] = ( 2 * maxAlpha + 5 * minAlpha ) / ALPHA_RANGE; alphas[7] = ( 1 * maxAlpha + 6 * minAlpha ) / ALPHA_RANGE; colorBlock += offset; for ( int i = 0; i < 16; i++ ) { int minDist = INT_MAX; byte a = colorBlock[i*4]; for ( int j = 0; j < 8; j++ ) { int dist = abs( a - alphas[j] ); if ( dist < minDist ) { minDist = dist; indexes[i] = j; } } } EmitByte( (indexes[ 0] >> 0) | (indexes[ 1] << 3) | (indexes[ 2] << 6) ); EmitByte( (indexes[ 2] >> 2) | (indexes[ 3] << 1) | (indexes[ 4] << 4) | (indexes[ 5] << 7) ); EmitByte( (indexes[ 5] >> 1) | (indexes[ 6] << 2) | (indexes[ 7] << 5) ); EmitByte( (indexes[ 8] >> 0) | (indexes[ 9] << 3) | (indexes[10] << 6) ); EmitByte( (indexes[10] >> 2) | (indexes[11] << 1) | (indexes[12] << 4) | (indexes[13] << 7) ); EmitByte( (indexes[13] >> 1) | (indexes[14] << 2) | (indexes[15] << 5) ); #endif } /* ======================== idDxtEncoder::CompressImageDXT1Fast_Generic params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressImageDXT1Fast_Generic( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); ALIGN16( byte minColor[4] ); ALIGN16( byte maxColor[4] ); assert( width >= 4 && ( width & 3 ) == 0 ); assert( height >= 4 && ( height & 3 ) == 0 ); this->width = width; this->height = height; this->outData = outBuf; for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); GetMinMaxBBox( block, minColor, maxColor ); //SelectColorsDiagonal( block, minColor, maxColor ); InsetColorsBBox( minColor, maxColor ); EmitUShort( ColorTo565( maxColor ) ); EmitUShort( ColorTo565( minColor ) ); EmitColorIndices( block, minColor, maxColor ); } outData += dstPadding; inBuf += srcPadding; } } /* ======================== idDxtEncoder::CompressImageDXT1AlphaFast_Generic params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressImageDXT1AlphaFast_Generic( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); ALIGN16( byte minColor[4] ); ALIGN16( byte maxColor[4] ); assert( width >= 4 && ( width & 3 ) == 0 ); assert( height >= 4 && ( height & 3 ) == 0 ); this->width = width; this->height = height; this->outData = outBuf; for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); GetMinMaxBBox( block, minColor, maxColor ); byte minAlpha = minColor[3]; //SelectColorsDiagonal( block, minColor, maxColor ); InsetColorsBBox( minColor, maxColor ); if ( minAlpha >= 128 ) { EmitUShort( ColorTo565( maxColor ) ); EmitUShort( ColorTo565( minColor ) ); EmitColorIndices( block, minColor, maxColor ); } else { EmitUShort( ColorTo565( minColor ) ); EmitUShort( ColorTo565( maxColor ) ); EmitColorAlphaIndices( block, minColor, maxColor ); } } outData += dstPadding; inBuf += srcPadding; } } /* ======================== idDxtEncoder::CompressImageDXT5Fast_Generic params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressImageDXT5Fast_Generic( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); ALIGN16( byte minColor[4] ); ALIGN16( byte maxColor[4] ); assert( width >= 4 && ( width & 3 ) == 0 ); assert( height >= 4 && ( height & 3 ) == 0 ); this->width = width; this->height = height; this->outData = outBuf; for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); GetMinMaxBBox( block, minColor, maxColor ); //SelectColorsDiagonal( block, minColor, maxColor ); InsetColorsBBox( minColor, maxColor ); EmitByte( maxColor[3] ); EmitByte( minColor[3] ); EmitAlphaIndices( block, 3, minColor[3], maxColor[3] ); #ifdef NVIDIA_7X_HARDWARE_BUG_FIX // the colors are already always guaranteed to be sorted properly #endif EmitUShort( ColorTo565( maxColor ) ); EmitUShort( ColorTo565( minColor ) ); EmitColorIndices( block, minColor, maxColor ); } outData += dstPadding; inBuf += srcPadding; } } /* ======================== idDxtEncoder::ScaleYCoCg ======================== */ void idDxtEncoder::ScaleYCoCg( byte *colorBlock, byte *minColor, byte *maxColor ) const { int m0 = abs( minColor[0] - 128 ); int m1 = abs( minColor[1] - 128 ); int m2 = abs( maxColor[0] - 128 ); int m3 = abs( maxColor[1] - 128 ); if ( m1 > m0 ) m0 = m1; if ( m3 > m2 ) m2 = m3; if ( m2 > m0 ) m0 = m2; const int s0 = 128 / 2 - 1; const int s1 = 128 / 4 - 1; int mask0 = -( m0 <= s0 ); int mask1 = -( m0 <= s1 ); int scale = 1 + ( 1 & mask0 ) + ( 2 & mask1 ); minColor[0] = byte( ( minColor[0] - 128 ) * scale + 128 ); minColor[1] = byte( ( minColor[1] - 128 ) * scale + 128 ); minColor[2] = byte( ( scale - 1 ) << 3 ); maxColor[0] = byte( ( maxColor[0] - 128 ) * scale + 128 ); maxColor[1] = byte( ( maxColor[1] - 128 ) * scale + 128 ); maxColor[2] = byte( ( scale - 1 ) << 3 ); for ( int i = 0; i < 16; i++ ) { colorBlock[i*4+0] = byte( ( colorBlock[i*4+0] - 128 ) * scale + 128 ); colorBlock[i*4+1] = byte( ( colorBlock[i*4+1] - 128 ) * scale + 128 ); } } /* ======================== idDxtEncoder::InsetYCoCgBBox ======================== */ ID_INLINE void idDxtEncoder::InsetYCoCgBBox( byte *minColor, byte *maxColor ) const { #if 0 byte inset[4]; inset[0] = ( maxColor[0] - minColor[0] ) >> INSET_COLOR_SHIFT; inset[1] = ( maxColor[1] - minColor[1] ) >> INSET_COLOR_SHIFT; inset[3] = ( maxColor[3] - minColor[3] ) >> INSET_ALPHA_SHIFT; minColor[0] = ( minColor[0] + inset[0] <= 255 ) ? minColor[0] + inset[0] : 255; minColor[1] = ( minColor[1] + inset[1] <= 255 ) ? minColor[1] + inset[1] : 255; minColor[3] = ( minColor[3] + inset[3] <= 255 ) ? minColor[3] + inset[3] : 255; maxColor[0] = ( maxColor[0] >= inset[0] ) ? maxColor[0] - inset[0] : 0; maxColor[1] = ( maxColor[1] >= inset[1] ) ? maxColor[1] - inset[1] : 0; maxColor[3] = ( maxColor[3] >= inset[3] ) ? maxColor[3] - inset[3] : 0; minColor[0] = ( minColor[0] & C565_5_MASK ) | ( minColor[0] >> 5 ); minColor[1] = ( minColor[1] & C565_6_MASK ) | ( minColor[1] >> 6 ); maxColor[0] = ( maxColor[0] & C565_5_MASK ) | ( maxColor[0] >> 5 ); maxColor[1] = ( maxColor[1] & C565_6_MASK ) | ( maxColor[1] >> 6 ); #elif 0 float inset[4]; float minf[4]; float maxf[4]; for ( int i = 0; i < 4; i++ ) { minf[i] = minColor[i] / 255.0f; maxf[i] = maxColor[i] / 255.0f; } inset[0] = ( maxf[0] - minf[0] ) / 16.0f; inset[1] = ( maxf[1] - minf[1] ) / 16.0f; inset[2] = ( maxf[2] - minf[2] ) / 16.0f; inset[3] = ( maxf[3] - minf[3] ) / 32.0f; for ( int i = 0; i < 4; i++ ) { minf[i] = ( minf[i] + inset[i] <= 1.0f ) ? minf[i] + inset[i] : 1.0f; maxf[i] = ( maxf[i] >= inset[i] ) ? maxf[i] - inset[i] : 0; } minColor[0] = ((int)floor( minf[0] * 31 )) & ( ( 1 << 5 ) - 1 ); minColor[1] = ((int)floor( minf[1] * 63 )) & ( ( 1 << 6 ) - 1 ); maxColor[0] = ((int)ceil( maxf[0] * 31 )) & ( ( 1 << 5 ) - 1 ); maxColor[1] = ((int)ceil( maxf[1] * 63 )) & ( ( 1 << 6 ) - 1 ); minColor[0] = ( minColor[0] << 3 ) | ( minColor[0] >> 2 ); minColor[1] = ( minColor[1] << 2 ) | ( minColor[1] >> 4 ); maxColor[0] = ( maxColor[0] << 3 ) | ( maxColor[0] >> 2 ); maxColor[1] = ( maxColor[1] << 2 ) | ( maxColor[1] >> 4 ); minColor[3] = (int)floor( minf[3] * 255.0f ); maxColor[3] = (int)ceil( maxf[3] * 255.0f ); #elif 0 int inset[4]; int mini[4]; int maxi[4]; inset[0] = ( maxColor[0] - minColor[0] ); inset[1] = ( maxColor[1] - minColor[1] ); inset[3] = ( maxColor[3] - minColor[3] ); mini[0] = ( minColor[0] << INSET_COLOR_SHIFT ) + inset[0]; mini[1] = ( minColor[1] << INSET_COLOR_SHIFT ) + inset[1]; mini[3] = ( minColor[3] << INSET_ALPHA_SHIFT ) + inset[3]; maxi[0] = ( maxColor[0] << INSET_COLOR_SHIFT ) - inset[0]; maxi[1] = ( maxColor[1] << INSET_COLOR_SHIFT ) - inset[1]; maxi[3] = ( maxColor[3] << INSET_ALPHA_SHIFT ) - inset[3]; mini[0] = ( mini[0] - ((1<<(3))-1) ) >> (INSET_COLOR_SHIFT+3); mini[1] = ( mini[1] - ((1<<(3))-1) ) >> (INSET_COLOR_SHIFT+2); mini[3] = ( mini[3] - ((1<<(2))-1) ) >> (INSET_ALPHA_SHIFT+0); maxi[0] = ( maxi[0] + ((1<<(3))-1) ) >> (INSET_COLOR_SHIFT+3); maxi[1] = ( maxi[1] + ((1<<(3))-1) ) >> (INSET_COLOR_SHIFT+2); maxi[3] = ( maxi[3] + ((1<<(2))-1) ) >> (INSET_ALPHA_SHIFT+0); if ( mini[0] < 0 ) mini[0] = 0; if ( mini[1] < 0 ) mini[1] = 0; if ( mini[3] < 0 ) mini[3] = 0; if ( maxi[0] > 31 ) maxi[0] = 31; if ( maxi[1] > 63 ) maxi[1] = 63; if ( maxi[3] > 255 ) maxi[3] = 255; minColor[0] = ( mini[0] << 3 ) | ( mini[0] >> 2 ); minColor[1] = ( mini[1] << 2 ) | ( mini[1] >> 4 ); minColor[3] = mini[3]; maxColor[0] = ( maxi[0] << 3 ) | ( maxi[0] >> 2 ); maxColor[1] = ( maxi[1] << 2 ) | ( maxi[1] >> 4 ); maxColor[3] = maxi[3]; #elif 1 int inset[4]; int mini[4]; int maxi[4]; inset[0] = ( maxColor[0] - minColor[0] ) - ((1<<(INSET_COLOR_SHIFT-1))-1); inset[1] = ( maxColor[1] - minColor[1] ) - ((1<<(INSET_COLOR_SHIFT-1))-1); inset[3] = ( maxColor[3] - minColor[3] ) - ((1<<(INSET_ALPHA_SHIFT-1))-1); mini[0] = ( ( minColor[0] << INSET_COLOR_SHIFT ) + inset[0] ) >> INSET_COLOR_SHIFT; mini[1] = ( ( minColor[1] << INSET_COLOR_SHIFT ) + inset[1] ) >> INSET_COLOR_SHIFT; mini[3] = ( ( minColor[3] << INSET_ALPHA_SHIFT ) + inset[3] ) >> INSET_ALPHA_SHIFT; maxi[0] = ( ( maxColor[0] << INSET_COLOR_SHIFT ) - inset[0] ) >> INSET_COLOR_SHIFT; maxi[1] = ( ( maxColor[1] << INSET_COLOR_SHIFT ) - inset[1] ) >> INSET_COLOR_SHIFT; maxi[3] = ( ( maxColor[3] << INSET_ALPHA_SHIFT ) - inset[3] ) >> INSET_ALPHA_SHIFT; mini[0] = ( mini[0] >= 0 ) ? mini[0] : 0; mini[1] = ( mini[1] >= 0 ) ? mini[1] : 0; mini[3] = ( mini[3] >= 0 ) ? mini[3] : 0; maxi[0] = ( maxi[0] <= 255 ) ? maxi[0] : 255; maxi[1] = ( maxi[1] <= 255 ) ? maxi[1] : 255; maxi[3] = ( maxi[3] <= 255 ) ? maxi[3] : 255; minColor[0] = byte( ( mini[0] & C565_5_MASK ) | ( mini[0] >> 5 ) ); minColor[1] = byte( ( mini[1] & C565_6_MASK ) | ( mini[1] >> 6 ) ); minColor[3] = byte( mini[3] ); maxColor[0] = byte( ( maxi[0] & C565_5_MASK ) | ( maxi[0] >> 5 ) ); maxColor[1] = byte( ( maxi[1] & C565_6_MASK ) | ( maxi[1] >> 6 ) ); maxColor[3] = byte( maxi[3] ); #endif } /* ======================== idDxtEncoder::InsetYCoCgAlpaBBox ======================== */ ID_INLINE void idDxtEncoder::InsetYCoCgAlpaBBox( byte *minColor, byte *maxColor ) const { int inset[4]; int mini[4]; int maxi[4]; inset[0] = ( maxColor[0] - minColor[0] ) - ((1<<(INSET_COLOR_SHIFT-1))-1); inset[1] = ( maxColor[1] - minColor[1] ) - ((1<<(INSET_COLOR_SHIFT-1))-1); inset[2] = ( maxColor[2] - minColor[2] ) - ((1<<(INSET_COLOR_SHIFT-1))-1); inset[3] = ( maxColor[3] - minColor[3] ) - ((1<<(INSET_ALPHA_SHIFT-1))-1); mini[0] = ( ( minColor[0] << INSET_COLOR_SHIFT ) + inset[0] ) >> INSET_COLOR_SHIFT; mini[1] = ( ( minColor[1] << INSET_COLOR_SHIFT ) + inset[1] ) >> INSET_COLOR_SHIFT; mini[2] = ( ( minColor[2] << INSET_COLOR_SHIFT ) + inset[2] ) >> INSET_COLOR_SHIFT; mini[3] = ( ( minColor[3] << INSET_ALPHA_SHIFT ) + inset[3] ) >> INSET_ALPHA_SHIFT; maxi[0] = ( ( maxColor[0] << INSET_COLOR_SHIFT ) - inset[0] ) >> INSET_COLOR_SHIFT; maxi[1] = ( ( maxColor[1] << INSET_COLOR_SHIFT ) - inset[1] ) >> INSET_COLOR_SHIFT; maxi[2] = ( ( maxColor[2] << INSET_COLOR_SHIFT ) - inset[2] ) >> INSET_COLOR_SHIFT; maxi[3] = ( ( maxColor[3] << INSET_ALPHA_SHIFT ) - inset[3] ) >> INSET_ALPHA_SHIFT; mini[0] = ( mini[0] >= 0 ) ? mini[0] : 0; mini[1] = ( mini[1] >= 0 ) ? mini[1] : 0; mini[2] = ( mini[2] >= 0 ) ? mini[2] : 0; mini[3] = ( mini[3] >= 0 ) ? mini[3] : 0; maxi[0] = ( maxi[0] <= 255 ) ? maxi[0] : 255; maxi[1] = ( maxi[1] <= 255 ) ? maxi[1] : 255; maxi[2] = ( maxi[2] <= 255 ) ? maxi[2] : 255; maxi[3] = ( maxi[3] <= 255 ) ? maxi[3] : 255; minColor[0] = byte( ( mini[0] & C565_5_MASK ) | ( mini[0] >> 5 ) ); minColor[1] = byte( ( mini[1] & C565_6_MASK ) | ( mini[1] >> 6 ) ); minColor[2] = byte( ( mini[2] & C565_5_MASK ) | ( mini[2] >> 5 ) ); minColor[3] = byte( mini[3] ); maxColor[0] = byte( ( maxi[0] & C565_5_MASK ) | ( maxi[0] >> 5 ) ); maxColor[1] = byte( ( maxi[1] & C565_6_MASK ) | ( maxi[1] >> 6 ) ); maxColor[2] = byte( ( maxi[2] & C565_5_MASK ) | ( maxi[2] >> 5 ) ); maxColor[3] = byte( maxi[3] ); } /* ======================== idDxtEncoder::SelectYCoCgDiagonal ======================== */ void idDxtEncoder::SelectYCoCgDiagonal( const byte *colorBlock, byte *minColor, byte *maxColor ) const { byte side = 0; byte mid0 = byte( ( (int) minColor[0] + maxColor[0] + 1 ) >> 1 ); byte mid1 = byte( ( (int) minColor[1] + maxColor[1] + 1 ) >> 1 ); for ( int i = 0; i < 16; i++ ) { byte b0 = colorBlock[i*4+0] >= mid0; byte b1 = colorBlock[i*4+1] >= mid1; side += ( b0 ^ b1 ); } byte mask = -( side > 8 ); #if defined NVIDIA_7X_HARDWARE_BUG_FIX mask &= -( minColor[0] != maxColor[0] ); #endif byte c0 = minColor[1]; byte c1 = maxColor[1]; c0 ^= c1; mask &= c0; c1 ^= mask; c0 ^= c1; minColor[1] = c0; maxColor[1] = c1; } /* ======================== idDxtEncoder::CompressYCoCgDXT5Fast_Generic params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressYCoCgDXT5Fast_Generic( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); ALIGN16( byte minColor[4] ); ALIGN16( byte maxColor[4] ); //assert( HasConstantValuePer4x4Block( inBuf, width, height, 2 ) ); assert( width >= 4 && ( width & 3 ) == 0 ); assert( height >= 4 && ( height & 3 ) == 0 ); this->width = width; this->height = height; this->outData = outBuf; for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); GetMinMaxBBox( block, minColor, maxColor ); ScaleYCoCg( block, minColor, maxColor ); InsetYCoCgBBox( minColor, maxColor ); SelectYCoCgDiagonal( block, minColor, maxColor ); EmitByte( maxColor[3] ); EmitByte( minColor[3] ); EmitAlphaIndices( block, 3, minColor[3], maxColor[3] ); #ifdef NVIDIA_7X_HARDWARE_BUG_FIX // the colors are already sorted when selecting the diagonal #endif EmitUShort( ColorTo565( maxColor ) ); EmitUShort( ColorTo565( minColor ) ); EmitColorIndices( block, minColor, maxColor ); } outData += dstPadding; inBuf += srcPadding; } } /* ======================== idDxtEncoder::CompressYCoCgAlphaDXT5Fast params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressYCoCgAlphaDXT5Fast( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); ALIGN16( byte minColor[4] ); ALIGN16( byte maxColor[4] ); assert( width >= 4 && ( width & 3 ) == 0 ); assert( height >= 4 && ( height & 3 ) == 0 ); this->width = width; this->height = height; this->outData = outBuf; for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); // scale down the chroma of texels that are close to gray with low luminance for ( int k = 0; k < 16; k++ ) { if ( abs( block[k*4+0] - 132 ) <= 8 && abs( block[k*4+2] - 132 ) <= 8 && block[k*4+3] < 96 ) { block[k*4+0] = ( block[k*4+0] - 132 ) / 2 + 132; block[k*4+2] = ( block[k*4+2] - 132 ) / 2 + 132; } } GetMinMaxBBox( block, minColor, maxColor ); InsetYCoCgAlpaBBox( minColor, maxColor ); SelectColorsDiagonal( block, minColor, maxColor ); EmitByte( maxColor[3] ); EmitByte( minColor[3] ); EmitAlphaIndices( block, 3, minColor[3], maxColor[3] ); #ifdef NVIDIA_7X_HARDWARE_BUG_FIX // the colors are already sorted when selecting the diagonal #endif EmitUShort( ColorTo565( maxColor ) ); EmitUShort( ColorTo565( minColor ) ); EmitColorIndices( block, minColor, maxColor ); } outData += dstPadding; inBuf += srcPadding; } } /* ======================== idDxtEncoder::CompressYCoCgCTX1DXT5AFast_Generic params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressYCoCgCTX1DXT5AFast_Generic( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); ALIGN16( byte minColor[4] ); ALIGN16( byte maxColor[4] ); assert( HasConstantValuePer4x4Block( inBuf, width, height, 2 ) ); assert( width >= 4 && ( width & 3 ) == 0 ); assert( height >= 4 && ( height & 3 ) == 0 ); this->width = width; this->height = height; this->outData = outBuf; for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); GetMinMaxBBox( block, minColor, maxColor ); SelectYCoCgDiagonal( block, minColor, maxColor ); InsetColorsBBox( minColor, maxColor ); EmitByte( maxColor[3] ); EmitByte( minColor[3] ); EmitAlphaIndices( block, 3, minColor[3], maxColor[3] ); EmitByte( maxColor[0] ); EmitByte( maxColor[1] ); EmitByte( minColor[0] ); EmitByte( minColor[1] ); EmitCTX1Indices( block, minColor, maxColor ); } outData += dstPadding; inBuf += srcPadding; } } /* ======================== idDxtEncoder::EmitGreenIndices params: block - block for which to find green indices paramO: minGreen - Min green found paramO: maxGreen - Max green found ======================== */ void idDxtEncoder::EmitGreenIndices( const byte *block, const int offset, const byte minGreen, const byte maxGreen ) { assert( maxGreen >= minGreen ); const int COLOR_RANGE = 3; #if 1 byte yb1 = ( 5 * maxGreen + 1 * minGreen + COLOR_RANGE ) / ( 2 * COLOR_RANGE ); byte yb2 = ( 3 * maxGreen + 3 * minGreen + COLOR_RANGE ) / ( 2 * COLOR_RANGE ); byte yb3 = ( 1 * maxGreen + 5 * minGreen + COLOR_RANGE ) / ( 2 * COLOR_RANGE ); unsigned int result = 0; block += offset; for ( int i = 15; i >= 0; i-- ) { result <<= 2; byte y = block[i*4]; int b1 = ( y >= yb1 ); int b2 = ( y >= yb2 ); int b3 = ( y >= yb3 ); int index = ( 4 - b1 - b2 - b3 ) & 3; index ^= ( 2 > index ); result |= index; } EmitUInt( result ); #else byte green[4]; green[0] = maxGreen; green[1] = minGreen; green[2] = ( 2 * green[0] + 1 * green[1] ) / 3; green[3] = ( 1 * green[0] + 2 * green[1] ) / 3; unsigned int result = 0; block += offset; for ( int i = 15; i >= 0; i-- ) { result <<= 2; byte y = block[i*4]; int minDist = INT_MAX; int index; for ( int j = 0; j < 4; j++ ) { int dist = abs( y - green[j] ); if ( dist < minDist ) { minDist = dist; index = j; } } result |= index; } EmitUInt( result ); #endif } /* ======================== idDxtEncoder::InsetNormalsBBoxDXT5 ======================== */ void idDxtEncoder::InsetNormalsBBoxDXT5( byte *minNormal, byte *maxNormal ) const { int inset[4]; int mini[4]; int maxi[4]; inset[3] = ( maxNormal[3] - minNormal[3] ) - ((1<<(INSET_ALPHA_SHIFT-1))-1); inset[1] = ( maxNormal[1] - minNormal[1] ) - ((1<<(INSET_COLOR_SHIFT-1))-1); mini[3] = ( ( minNormal[3] << INSET_ALPHA_SHIFT ) + inset[3] ) >> INSET_ALPHA_SHIFT; mini[1] = ( ( minNormal[1] << INSET_COLOR_SHIFT ) + inset[1] ) >> INSET_COLOR_SHIFT; maxi[3] = ( ( maxNormal[3] << INSET_ALPHA_SHIFT ) - inset[3] ) >> INSET_ALPHA_SHIFT; maxi[1] = ( ( maxNormal[1] << INSET_COLOR_SHIFT ) - inset[1] ) >> INSET_COLOR_SHIFT; mini[3] = ( mini[3] >= 0 ) ? mini[3] : 0; mini[1] = ( mini[1] >= 0 ) ? mini[1] : 0; maxi[3] = ( maxi[3] <= 255 ) ? maxi[3] : 255; maxi[1] = ( maxi[1] <= 255 ) ? maxi[1] : 255; minNormal[3] = byte( mini[3] ); minNormal[1] = byte( ( mini[1] & C565_6_MASK ) | ( mini[1] >> 6 ) ); maxNormal[3] = byte( maxi[3] ); maxNormal[1] = byte( ( maxi[1] & C565_6_MASK ) | ( maxi[1] >> 6 ) ); } /* ======================== idDxtEncoder::InsetNormalsBBox3Dc ======================== */ void idDxtEncoder::InsetNormalsBBox3Dc( byte *minNormal, byte *maxNormal ) const { int inset[4]; int mini[4]; int maxi[4]; inset[0] = ( maxNormal[0] - minNormal[0] ) - ((1<<(INSET_ALPHA_SHIFT-1))-1); inset[1] = ( maxNormal[1] - minNormal[1] ) - ((1<<(INSET_ALPHA_SHIFT-1))-1); mini[0] = ( ( minNormal[0] << INSET_ALPHA_SHIFT ) + inset[0] ) >> INSET_ALPHA_SHIFT; mini[1] = ( ( minNormal[1] << INSET_ALPHA_SHIFT ) + inset[1] ) >> INSET_ALPHA_SHIFT; maxi[0] = ( ( maxNormal[0] << INSET_ALPHA_SHIFT ) - inset[0] ) >> INSET_ALPHA_SHIFT; maxi[1] = ( ( maxNormal[1] << INSET_ALPHA_SHIFT ) - inset[1] ) >> INSET_ALPHA_SHIFT; mini[0] = ( mini[0] >= 0 ) ? mini[0] : 0; mini[1] = ( mini[1] >= 0 ) ? mini[1] : 0; maxi[0] = ( maxi[0] <= 255 ) ? maxi[0] : 255; maxi[1] = ( maxi[1] <= 255 ) ? maxi[1] : 255; minNormal[0] = (byte)mini[0]; minNormal[1] = (byte)mini[1]; maxNormal[0] = (byte)maxi[0]; maxNormal[1] = (byte)maxi[1]; } /* ======================== idDxtEncoder::CompressNormalMapDXT5Fast_Generic params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressNormalMapDXT5Fast_Generic( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); ALIGN16( byte normal1[4] ); ALIGN16( byte normal2[4] ); assert( width >= 4 && ( width & 3 ) == 0 ); assert( height >= 4 && ( height & 3 ) == 0 ); this->width = width; this->height = height; this->outData = outBuf; for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); GetMinMaxBBox( block, normal1, normal2 ); InsetNormalsBBoxDXT5( normal1, normal2 ); // Write out Nx into alpha channel. EmitByte( normal2[3] ); EmitByte( normal1[3] ); EmitAlphaIndices( block, 3, normal1[3], normal2[3] ); // Write out Ny into green channel. EmitUShort( ColorTo565( block[0], normal2[1], block[2] ) ); EmitUShort( ColorTo565( block[0], normal1[1], block[2] ) ); EmitGreenIndices( block, 1, normal1[1], normal2[1] ); } outData += dstPadding; inBuf += srcPadding; } } /* ======================== idDxtEncoder::CompressImageDXN1Fast_Generic params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressImageDXN1Fast_Generic( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); ALIGN16( byte min[4] ); ALIGN16( byte max[4] ); assert( width >= 4 && ( width & 3 ) == 0 ); assert( height >= 4 && ( height & 3 ) == 0 ); this->width = width; this->height = height; this->outData = outBuf; for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); GetMinMaxBBox( block, min, max ); InsetNormalsBBox3Dc( min, max ); // Write out an alpha channel. EmitByte( max[0] ); EmitByte( min[0] ); EmitAlphaIndices( block, 0, min[0], max[0] ); } outData += dstPadding; inBuf += srcPadding; } } /* ======================== idDxtEncoder::CompressNormalMapDXN2Fast_Generic params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::CompressNormalMapDXN2Fast_Generic( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte block[64] ); ALIGN16( byte normal1[4] ); ALIGN16( byte normal2[4] ); assert( width >= 4 && ( width & 3 ) == 0 ); assert( height >= 4 && ( height & 3 ) == 0 ); this->width = width; this->height = height; this->outData = outBuf; for ( int j = 0; j < height; j += 4, inBuf += width * 4*4 ) { for ( int i = 0; i < width; i += 4 ) { ExtractBlock( inBuf + i * 4, width, block ); GetMinMaxBBox( block, normal1, normal2 ); InsetNormalsBBox3Dc( normal1, normal2 ); // Write out Nx as an alpha channel. EmitByte( normal2[0] ); EmitByte( normal1[0] ); EmitAlphaIndices( block, 0, normal1[0], normal2[0] ); // Write out Ny as an alpha channel. EmitByte( normal2[1] ); EmitByte( normal1[1] ); EmitAlphaIndices( block, 1, normal1[1], normal2[1] ); } outData += dstPadding; inBuf += srcPadding; } } /* ======================== idDxtEncoder::DecodeDXNAlphaValues ======================== */ void idDxtEncoder::DecodeDXNAlphaValues( const byte *inBuf, byte *values ) { int i; unsigned int indices; byte alphas[8]; if ( inBuf[0] <= inBuf[1] ) { alphas[0] = inBuf[0]; alphas[1] = inBuf[1]; alphas[2] = ( 4 * alphas[0] + 1 * alphas[1] ) / 5; alphas[3] = ( 3 * alphas[0] + 2 * alphas[1] ) / 5; alphas[4] = ( 2 * alphas[0] + 3 * alphas[1] ) / 5; alphas[5] = ( 1 * alphas[0] + 4 * alphas[1] ) / 5; alphas[6] = 0; alphas[7] = 255; } else { alphas[0] = inBuf[0]; alphas[1] = inBuf[1]; alphas[2] = ( 6 * alphas[0] + 1 * alphas[1] ) / 7; alphas[3] = ( 5 * alphas[0] + 2 * alphas[1] ) / 7; alphas[4] = ( 4 * alphas[0] + 3 * alphas[1] ) / 7; alphas[5] = ( 3 * alphas[0] + 4 * alphas[1] ) / 7; alphas[6] = ( 2 * alphas[0] + 5 * alphas[1] ) / 7; alphas[7] = ( 1 * alphas[0] + 6 * alphas[1] ) / 7; } indices = (int)inBuf[2] | ( (int)inBuf[3] << 8 ) | ( (int)inBuf[4] << 16 ); for ( i = 0; i < 8; i++ ) { values[i] = alphas[indices & 7]; indices >>= 3; } indices = (int)inBuf[5] | ( (int)inBuf[6] << 8 ) | ( (int)inBuf[7] << 16 ); for ( i = 8; i < 16; i++ ) { values[i] = alphas[indices & 7]; indices >>= 3; } } /* ======================== idDxtEncoder::EncodeNormalRGBIndices params: values - 16 normal block for which to find normal Y indices paramO: min - Min grayscale value paramO: max - Max grayscale value ======================== */ void idDxtEncoder::EncodeNormalRGBIndices( byte *outBuf, const byte min, const byte max, const byte *values ) { const int COLOR_RANGE = 3; byte maskedMin, maskedMax, mid, yb1, yb2, yb3; maskedMax = max & C565_6_MASK; maskedMin = min & C565_6_MASK; mid = ( maskedMax - maskedMin ) / ( 2 * COLOR_RANGE ); yb1 = maskedMax - mid; yb2 = ( 2 * maskedMax + 1 * maskedMin ) / COLOR_RANGE - mid; yb3 = ( 1 * maskedMax + 2 * maskedMin ) / COLOR_RANGE - mid; unsigned int result = 0; for ( int i = 15; i >= 0; i-- ) { result <<= 2; byte y = values[i]; int b1 = ( y >= yb1 ); int b2 = ( y >= yb2 ); int b3 = ( y >= yb3 ); int index = ( 4 - b1 - b2 - b3 ) & 3; index ^= ( 2 > index ); result |= index; } unsigned short maskedMax5 = (max & C565_5_MASK) >> 3; unsigned short maskedMin5 = (min & C565_5_MASK) >> 3; unsigned short smax = (maskedMax5 << 11) | (maskedMax << 3) | maskedMax5; unsigned short smin = (maskedMin5 << 11) | (maskedMin << 3) | maskedMin5; outBuf[0] = byte( ( smax >> 0 ) & 0xFF ); outBuf[1] = byte( ( smax >> 8 ) & 0xFF ); outBuf[2] = byte( ( smin >> 0 ) & 0xFF ); outBuf[3] = byte( ( smin >> 8 ) & 0xFF ); outBuf[4] = byte( ( result >> 0 ) & 0xFF ); outBuf[5] = byte( ( result >> 8 ) & 0xFF ); outBuf[6] = byte( ( result >> 16 ) & 0xFF ); outBuf[7] = byte( ( result >> 24 ) & 0xFF ); } /* ======================== idDxtEncoder::ConvertNormalMapDXN2_DXT5 params: inBuf - normal map compressed in DXN2 format paramO: outBuf - result of compression in DXT5 format params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::ConvertNormalMapDXN2_DXT5( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte values[16] ); this->width = width; this->height = height; this->outData = outBuf; if ( width > 4 && ( width & 3 ) != 0 ) { return; } if ( height > 4 && ( height & 3 ) != 0 ) { return; } if ( width < 4 || height < 4 ) { assert( 0 ); return; } for ( int j = 0; j < height; j += 4 ) { for ( int i = 0; i < width; i += 4, inBuf += 16, outBuf += 16 ) { // decode normal Y stored as a DXT5 alpha channel DecodeDXNAlphaValues( inBuf + 0, values ); // copy normal X memcpy( outBuf + 0, inBuf + 8, 8 ); // get the min/max Y byte minNormalY = 255; byte maxNormalY = 0; for ( int i = 0; i < 16; i++ ) { if ( values[i] < minNormalY ) { minNormalY = values[i]; } if ( values[i] > maxNormalY ) { maxNormalY = values[i]; } } // encode normal Y into DXT5 color channels EncodeNormalRGBIndices( outBuf + 8, minNormalY, maxNormalY, values ); } outData += dstPadding; inBuf += srcPadding; } } /* ======================== idDxtEncoder::DecodeNormalYValues ======================== */ void idDxtEncoder::DecodeNormalYValues( const byte *inBuf, byte &min, byte &max, byte *values ) { int i; unsigned int indexes; unsigned short normal0, normal1; byte normalsY[4]; normal0 = inBuf[0] | (inBuf[1] << 8); normal1 = inBuf[2] | (inBuf[3] << 8); assert( normal0 >= normal1 ); normalsY[0] = GreenFrom565( normal0 ); normalsY[1] = GreenFrom565( normal1 ); normalsY[2] = ( 2 * normalsY[0] + 1 * normalsY[1] ) / 3; normalsY[3] = ( 1 * normalsY[0] + 2 * normalsY[1] ) / 3; indexes = (unsigned int)inBuf[4] | ((unsigned int)inBuf[5]<<8) | ((unsigned int)inBuf[6]<<16) | ((unsigned int)inBuf[7]<<24); for ( i = 0; i < 16; i++ ) { values[i] = normalsY[indexes & 3]; indexes >>= 2; } max = normalsY[0]; min = normalsY[1]; } /* ======================== idDxtEncoder::EncodeDXNAlphaValues ======================== */ void idDxtEncoder::EncodeDXNAlphaValues( byte *outBuf, const byte min, const byte max, const byte *values ) { int i; byte alphas[8]; int j; unsigned int indexes[16]; alphas[0] = max; alphas[1] = min; alphas[2] = ( 6 * alphas[0] + 1 * alphas[1] ) / 7; alphas[3] = ( 5 * alphas[0] + 2 * alphas[1] ) / 7; alphas[4] = ( 4 * alphas[0] + 3 * alphas[1] ) / 7; alphas[5] = ( 3 * alphas[0] + 4 * alphas[1] ) / 7; alphas[6] = ( 2 * alphas[0] + 5 * alphas[1] ) / 7; alphas[7] = ( 1 * alphas[0] + 6 * alphas[1] ) / 7; int error = 0; for ( i = 0; i < 16; i++ ) { int minDist = MAX_TYPE( int ); byte a = values[i]; for ( j = 0; j < 8; j++ ) { int dist = AlphaDistance( a, alphas[j] ); if ( dist < minDist ) { minDist = dist; indexes[i] = j; } } error += minDist; } outBuf[0] = max; outBuf[1] = min; outBuf[2] = byte( (indexes[ 0] >> 0) | (indexes[ 1] << 3) | (indexes[ 2] << 6) ); outBuf[3] = byte( (indexes[ 2] >> 2) | (indexes[ 3] << 1) | (indexes[ 4] << 4) | (indexes[ 5] << 7) ); outBuf[4] = byte( (indexes[ 5] >> 1) | (indexes[ 6] << 2) | (indexes[ 7] << 5) ); outBuf[5] = byte( (indexes[ 8] >> 0) | (indexes[ 9] << 3) | (indexes[10] << 6) ); outBuf[6] = byte( (indexes[10] >> 2) | (indexes[11] << 1) | (indexes[12] << 4) | (indexes[13] << 7) ); outBuf[7] = byte( (indexes[13] >> 1) | (indexes[14] << 2) | (indexes[15] << 5) ); } /* ======================== idDxtEncoder::ConvertNormalMapDXT5_DXN2 params: inBuf - image to compress paramO: outBuf - result of compression params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::ConvertNormalMapDXT5_DXN2( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte values[16] ); byte minNormalY, maxNormalY; this->width = width; this->height = height; this->outData = outBuf; if ( width > 4 && ( width & 3 ) != 0 ) { return; } if ( height > 4 && ( height & 3 ) != 0 ) { return; } if ( width < 4 || height < 4 ) { assert( 0 ); return; } for ( int j = 0; j < height; j += 4 ) { for ( int i = 0; i < width; i += 4, inBuf += 16, outBuf += 16 ) { // decode normal Y stored as a DXT5 alpha channel DecodeNormalYValues( inBuf + 8, minNormalY, maxNormalY, values ); memcpy( outBuf + 8, inBuf + 0, 8 ); // encode normal Y into DXT5 green channel EncodeDXNAlphaValues( outBuf + 0, minNormalY, maxNormalY, values ); } outData += dstPadding; inBuf += srcPadding; } } /* ======================== idDxtEncoder::ConvertImageDXN1_DXT1 params: inBuf - normal map compressed in DXN1 format paramO: outBuf - result of compression in DXT1 format params: width - width of image params: height - height of image ======================== */ void idDxtEncoder::ConvertImageDXN1_DXT1( const byte *inBuf, byte *outBuf, int width, int height ) { ALIGN16( byte values[16] ); this->width = width; this->height = height; this->outData = outBuf; if ( width > 4 && ( width & 3 ) != 0 ) { return; } if ( height > 4 && ( height & 3 ) != 0 ) { return; } if ( width < 4 || height < 4 ) { assert( 0 ); return; } for ( int j = 0; j < height; j += 4 ) { for ( int i = 0; i < width; i += 4, inBuf += 8, outBuf += 8 ) { // decode single channel stored as a DXT5 alpha channel DecodeDXNAlphaValues( inBuf + 0, values ); // get the min/max byte min = 255; byte max = 0; for ( int i = 0; i < 16; i++ ) { if ( values[i] < min ) { min = values[i]; } if ( values[i] > max ) { max = values[i]; } } // encode single channel into DXT1 EncodeNormalRGBIndices( outBuf + 0, min, max, values ); } outData += dstPadding; inBuf += srcPadding; } }