/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see .
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#ifndef __MATH_EXTRAPOLATE_H__
#define __MATH_EXTRAPOLATE_H__
/*
==============================================================================================
Extrapolation
==============================================================================================
*/
typedef enum {
EXTRAPOLATION_NONE = 0x01, // no extrapolation, covered distance = duration * 0.001 * ( baseSpeed )
EXTRAPOLATION_LINEAR = 0x02, // linear extrapolation, covered distance = duration * 0.001 * ( baseSpeed + speed )
EXTRAPOLATION_ACCELLINEAR = 0x04, // linear acceleration, covered distance = duration * 0.001 * ( baseSpeed + 0.5 * speed )
EXTRAPOLATION_DECELLINEAR = 0x08, // linear deceleration, covered distance = duration * 0.001 * ( baseSpeed + 0.5 * speed )
EXTRAPOLATION_ACCELSINE = 0x10, // sinusoidal acceleration, covered distance = duration * 0.001 * ( baseSpeed + sqrt( 0.5 ) * speed )
EXTRAPOLATION_DECELSINE = 0x20, // sinusoidal deceleration, covered distance = duration * 0.001 * ( baseSpeed + sqrt( 0.5 ) * speed )
EXTRAPOLATION_NOSTOP = 0x40 // do not stop at startTime + duration
} extrapolation_t;
template< class type >
class idExtrapolate {
public:
idExtrapolate();
void Init( const int startTime, const int duration, const type &startValue, const type &baseSpeed, const type &speed, const extrapolation_t extrapolationType );
type GetCurrentValue( int time ) const;
type GetCurrentSpeed( int time ) const;
bool IsDone( int time ) const { return ( !( extrapolationType & EXTRAPOLATION_NOSTOP ) && time >= startTime + duration ); }
void SetStartTime( int time ) { startTime = time; }
int GetStartTime() const { return startTime; }
int GetEndTime() const { return ( !( extrapolationType & EXTRAPOLATION_NOSTOP ) && duration > 0 ) ? startTime + duration : 0; }
int GetDuration() const { return duration; }
void SetStartValue( const type &value ) { startValue = value; }
const type & GetStartValue() const { return startValue; }
const type & GetBaseSpeed() const { return baseSpeed; }
const type & GetSpeed() const { return speed; }
extrapolation_t GetExtrapolationType() const { return extrapolationType; }
private:
extrapolation_t extrapolationType;
int startTime;
int duration;
type startValue;
type baseSpeed;
type speed;
};
/*
====================
idExtrapolate::idExtrapolate
====================
*/
template< class type >
ID_INLINE idExtrapolate::idExtrapolate() {
extrapolationType = EXTRAPOLATION_NONE;
startTime = duration = 0.0f;
memset( &startValue, 0, sizeof( startValue ) );
memset( &baseSpeed, 0, sizeof( baseSpeed ) );
memset( &speed, 0, sizeof( speed ) );
}
/*
====================
idExtrapolate::Init
====================
*/
template< class type >
ID_INLINE void idExtrapolate::Init( const int startTime, const int duration, const type &startValue, const type &baseSpeed, const type &speed, const extrapolation_t extrapolationType ) {
this->extrapolationType = extrapolationType;
this->startTime = startTime;
this->duration = duration;
this->startValue = startValue;
this->baseSpeed = baseSpeed;
this->speed = speed;
}
/*
====================
idExtrapolate::GetCurrentValue
====================
*/
template< class type >
ID_INLINE type idExtrapolate::GetCurrentValue( int time ) const {
if ( time < startTime ) {
return startValue;
}
if ( !( extrapolationType & EXTRAPOLATION_NOSTOP ) && ( time > startTime + duration ) ) {
time = startTime + duration;
}
switch ( extrapolationType & ~EXTRAPOLATION_NOSTOP ) {
case EXTRAPOLATION_NONE: {
const float deltaTime = ( time - startTime ) * 0.001f;
return startValue + deltaTime * baseSpeed;
}
case EXTRAPOLATION_LINEAR: {
const float deltaTime = ( time - startTime ) * 0.001f;
return startValue + deltaTime * ( baseSpeed + speed );
}
case EXTRAPOLATION_ACCELLINEAR: {
if ( duration == 0 ) {
return startValue;
} else {
const float deltaTime = ( time - startTime ) / (float)duration;
const float s = ( 0.5f * deltaTime * deltaTime ) * ( (float)duration * 0.001f );
return startValue + deltaTime * baseSpeed + s * speed;
}
}
case EXTRAPOLATION_DECELLINEAR: {
if ( duration == 0 ) {
return startValue;
} else {
const float deltaTime = ( time - startTime ) / (float)duration;
const float s = ( deltaTime - ( 0.5f * deltaTime * deltaTime ) ) * ( (float)duration * 0.001f );
return startValue + deltaTime * baseSpeed + s * speed;
}
}
case EXTRAPOLATION_ACCELSINE: {
if ( duration == 0 ) {
return startValue;
} else {
const float deltaTime = ( time - startTime ) / (float)duration;
const float s = ( 1.0f - idMath::Cos( deltaTime * idMath::HALF_PI ) ) * (float)duration * 0.001f * idMath::SQRT_1OVER2;
return startValue + deltaTime * baseSpeed + s * speed;
}
}
case EXTRAPOLATION_DECELSINE: {
if ( duration == 0 ) {
return startValue;
} else {
const float deltaTime = ( time - startTime ) / (float)duration;
const float s = idMath::Sin( deltaTime * idMath::HALF_PI ) * (float)duration * 0.001f * idMath::SQRT_1OVER2;
return startValue + deltaTime * baseSpeed + s * speed;
}
}
}
return startValue;
}
/*
====================
idExtrapolate::GetCurrentSpeed
====================
*/
template< class type >
ID_INLINE type idExtrapolate::GetCurrentSpeed( int time ) const {
if ( time < startTime || duration == 0 ) {
return ( startValue - startValue ); //-V501
}
if ( !( extrapolationType & EXTRAPOLATION_NOSTOP ) && ( time > startTime + duration ) ) {
return ( startValue - startValue ); //-V501
}
switch( extrapolationType & ~EXTRAPOLATION_NOSTOP ) {
case EXTRAPOLATION_NONE: {
return baseSpeed;
}
case EXTRAPOLATION_LINEAR: {
return baseSpeed + speed;
}
case EXTRAPOLATION_ACCELLINEAR: {
const float deltaTime = ( time - startTime ) / (float)duration;
const float s = deltaTime;
return baseSpeed + s * speed;
}
case EXTRAPOLATION_DECELLINEAR: {
const float deltaTime = ( time - startTime ) / (float)duration;
const float s = 1.0f - deltaTime;
return baseSpeed + s * speed;
}
case EXTRAPOLATION_ACCELSINE: {
const float deltaTime = ( time - startTime ) / (float)duration;
const float s = idMath::Sin( deltaTime * idMath::HALF_PI );
return baseSpeed + s * speed;
}
case EXTRAPOLATION_DECELSINE: {
const float deltaTime = ( time - startTime ) / (float)duration;
const float s = idMath::Cos( deltaTime * idMath::HALF_PI );
return baseSpeed + s * speed;
}
default: {
return baseSpeed;
}
}
}
#endif /* !__MATH_EXTRAPOLATE_H__ */