/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #ifndef __SORT_H__ #define __SORT_H__ /* ================================================================================================ Contains the generic templated sort algorithms for quick-sort, heap-sort and insertion-sort. The sort algorithms do not use class operators or overloaded functions to compare objects because it is often desireable to sort the same objects in different ways based on different keys (not just ascending and descending but sometimes based on name and other times based on say priority). So instead, for each different sort a separate class is implemented with a Compare() function. This class is derived from one of the classes that implements a sort algorithm. The Compare() member function does not only define how objects are sorted, the class can also store additional data that can be used by the Compare() function. This, for instance, allows a list of indices to be sorted where the indices point to objects in an array. The base pointer of the array with objects can be stored on the class that implements the Compare() function such that the Compare() function can use keys that are stored on the objects. The Compare() function is not virtual because this would incur significant overhead. Do NOT make the Compare() function virtual on the derived class! The sort implementations also explicitely call the Compare() function of the derived class. This is to avoid various compiler bugs with using overloaded compare functions and the inability of various compilers to find the right overloaded compare function. To sort an array, an idList or an idStaticList, a new sort class, typically derived from idSort_Quick, is implemented as follows: class idSort_MySort : public idSort_Quick< idMyObject, idSort_MySort > { public: int Compare( const idMyObject & a, const idMyObject & b ) const { if ( a should come before b ) { return -1; // or any negative integer } if ( a should come after b ) { return 1; // or any positive integer } else { return 0; } } }; To sort an array: idMyObject array[100]; idSort_MySort().Sort( array, 100 ); To sort an idList: idList< idMyObject > list; list.Sort( idSort_MySort() ); The sort implementations never create temporaries of the template type. Only the 'SwapValues' template is used to move data around. This 'SwapValues' template can be specialized to implement fast swapping of data. For instance, when sorting a list with objects of some string class it is important to implement a specialized 'SwapValues' for this string class to avoid excessive re-allocation and copying of strings. ================================================================================================ */ /* ======================== SwapValues ======================== */ template< typename _type_ > ID_INLINE void SwapValues( _type_ & a, _type_ & b ) { _type_ c = a; a = b; b = c; } /* ================================================ idSort is an abstract template class for sorting an array of objects of the specified data type. The array of objects is sorted such that: Compare( array[i], array[i+1] ) <= 0 for all i ================================================ */ template< typename _type_ > class idSort { public: virtual ~idSort() {} virtual void Sort( _type_ * base, unsigned int num ) const = 0; }; /* ================================================ idSort_Quick is a sort template that implements the quick-sort algorithm on an array of objects of the specified data type. ================================================ */ template< typename _type_, typename _derived_ > class idSort_Quick : public idSort< _type_ > { public: virtual void Sort( _type_ * base, unsigned int num ) const { if ( num <= 0 ) { return; } const int64 MAX_LEVELS = 128; int64 lo[MAX_LEVELS], hi[MAX_LEVELS]; // 'lo' is the lower index, 'hi' is the upper index // of the region of the array that is being sorted. lo[0] = 0; hi[0] = num - 1; for ( int64 level = 0; level >= 0; ) { int64 i = lo[level]; int64 j = hi[level]; // Only use quick-sort when there are 4 or more elements in this region and we are below MAX_LEVELS. // Otherwise fall back to an insertion-sort. if ( ( ( j - i ) >= 4 ) && ( level < ( MAX_LEVELS - 1 ) ) ) { // Use the center element as the pivot. // The median of a multi point sample could be used // but simply taking the center works quite well. int64 pi = ( i + j ) / 2; // Move the pivot element to the end of the region. SwapValues( base[j], base[pi] ); // Get a reference to the pivot element. _type_ & pivot = base[j--]; // Partition the region. do { while( static_cast< const _derived_ * >( this )->Compare( base[i], pivot ) < 0 ) { if ( ++i >= j ) break; } while( static_cast< const _derived_ * >( this )->Compare( base[j], pivot ) > 0 ) { if ( --j <= i ) break; } if ( i >= j ) break; SwapValues( base[i], base[j] ); } while( ++i < --j ); // Without these iterations sorting of arrays with many duplicates may // become really slow because the partitioning can be very unbalanced. // However, these iterations are unnecessary if all elements are unique. while ( static_cast< const _derived_ * >( this )->Compare( base[i], pivot ) <= 0 && i < hi[level] ) { i++; } while ( static_cast< const _derived_ * >( this )->Compare( base[j], pivot ) >= 0 && lo[level] < j ) { j--; } // Move the pivot element in place. SwapValues( pivot, base[i] ); assert( level < MAX_LEVELS - 1 ); lo[level+1] = i; hi[level+1] = hi[level]; hi[level] = j; level++; } else { // Insertion-sort of the remaining elements. for( ; i < j; j-- ) { int64 m = i; for ( int64 k = i + 1; k <= j; k++ ) { if ( static_cast< const _derived_ * >( this )->Compare( base[k], base[m] ) > 0 ) { m = k; } } SwapValues( base[m], base[j] ); } level--; } } } }; /* ================================================ Default quick-sort comparison function that can be used to sort scalars from small to large. ================================================ */ template< typename _type_ > class idSort_QuickDefault : public idSort_Quick< _type_, idSort_QuickDefault< _type_ > > { public: int Compare( const _type_ & a, const _type_ & b ) const { return a - b; } }; /* ================================================ Specialization for floating point values to avoid an float-to-int conversion for every comparison. ================================================ */ template<> class idSort_QuickDefault< float > : public idSort_Quick< float, idSort_QuickDefault< float > > { public: int Compare( const float & a, const float & b ) const { if ( a < b ) { return -1; } if ( a > b ) { return 1; } return 0; } }; /* ================================================ idSort_Heap is a sort template class that implements the heap-sort algorithm on an array of objects of the specified data type. ================================================ */ template< typename _type_, typename _derived_ > class idSort_Heap : public idSort< _type_ > { public: virtual void Sort( _type_ * base, unsigned int num ) const { // get all elements in heap order #if 1 // O( n ) for ( unsigned int i = num / 2; i > 0; i-- ) { // sift down unsigned int parent = i - 1; for ( unsigned int child = parent * 2 + 1; child < num; child = parent * 2 + 1 ) { if ( child + 1 < num && static_cast< const _derived_ * >( this )->Compare( base[child + 1], base[child] ) > 0 ) { child++; } if ( static_cast< const _derived_ * >( this )->Compare( base[child], base[parent] ) <= 0 ) { break; } SwapValues( base[parent], base[child] ); parent = child; } } #else // O(n log n) for ( unsigned int i = 1; i < num; i++ ) { // sift up for ( unsigned int child = i; child > 0; ) { unsigned int parent = ( child - 1 ) / 2; if ( static_cast< const _derived_ * >( this )->Compare( base[parent], base[child] ) > 0 ) { break; } SwapValues( base[child], base[parent] ); child = parent; } } #endif // get sorted elements while maintaining heap order for ( unsigned int i = num - 1; i > 0; i-- ) { SwapValues( base[0], base[i] ); // sift down unsigned int parent = 0; for ( unsigned int child = parent * 2 + 1; child < i; child = parent * 2 + 1 ) { if ( child + 1 < i && static_cast< const _derived_ * >( this )->Compare( base[child + 1], base[child] ) > 0 ) { child++; } if ( static_cast< const _derived_ * >( this )->Compare( base[child], base[parent] ) <= 0 ) { break; } SwapValues( base[parent], base[child] ); parent = child; } } } }; /* ================================================ Default heap-sort comparison function that can be used to sort scalars from small to large. ================================================ */ template< typename _type_ > class idSort_HeapDefault : public idSort_Heap< _type_, idSort_HeapDefault< _type_ > > { public: int Compare( const _type_ & a, const _type_ & b ) const { return a - b; } }; /* ================================================ idSort_Insertion is a sort template class that implements the insertion-sort algorithm on an array of objects of the specified data type. ================================================ */ template< typename _type_, typename _derived_ > class idSort_Insertion : public idSort< _type_ > { public: virtual void Sort( _type_ * base, unsigned int num ) const { _type_ * lo = base; _type_ * hi = base + ( num - 1 ); while( hi > lo ) { _type_ * max = lo; for ( _type_ * p = lo + 1; p <= hi; p++ ) { if ( static_cast< const _derived_ * >( this )->Compare( (*p), (*max) ) > 0 ) { max = p; } } SwapValues( *max, *hi ); hi--; } } }; /* ================================================ Default insertion-sort comparison function that can be used to sort scalars from small to large. ================================================ */ template< typename _type_ > class idSort_InsertionDefault : public idSort_Insertion< _type_, idSort_InsertionDefault< _type_ > > { public: int Compare( const _type_ & a, const _type_ & b ) const { return a - b; } }; #endif // !__SORT_H__