/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "Precompiled.h" #include "globaldata.h" #include #include #include "doomdef.h" #include "d_net.h" #include "m_bbox.h" #include "r_local.h" #include "r_sky.h" #include "i_system.h" // Fineangles in the SCREENWIDTH wide window. // increment every time a check is made // just for profiling purposes // 0 = high, 1 = low // // precalculated math tables // // The ::g->viewangletox[::g->viewangle + FINEANGLES/4] lookup // maps the visible view angles to screen X coordinates, // flattening the arc to a flat ::g->projection plane. // There will be many angles mapped to the same X. // The xtoviewangleangle[] table maps a screen pixel // to the lowest ::g->viewangle that maps back to x ranges // from ::g->clipangle to -::g->clipangle. // UNUSED. // The finetangentgent[angle+FINEANGLES/4] table // holds the fixed_t tangent values for view angles, // ranging from MININT to 0 to MAXINT. // fixed_t finetangent[FINEANGLES/2]; // fixed_t finesine[5*FINEANGLES/4]; const fixed_t* finecosine = &finesine[FINEANGLES/4]; // bumped light from gun blasts void (*colfunc) (lighttable_t * dc_colormap, byte * dc_source); void (*basecolfunc) (lighttable_t * dc_colormap, byte * dc_source); void (*fuzzcolfunc) (lighttable_t * dc_colormap, byte * dc_source); void (*transcolfunc) (lighttable_t * dc_colormap, byte * dc_source); void (*spanfunc) (fixed_t xfrac, fixed_t yfrac, fixed_t ds_y, int ds_x1, int ds_x2, fixed_t ds_xstep, fixed_t ds_ystep, lighttable_t * ds_colormap, byte * ds_source); // // R_AddPointToBox // Expand a given bbox // so that it encloses a given point. // void R_AddPointToBox ( int x, int y, fixed_t* box ) { if (x< box[BOXLEFT]) box[BOXLEFT] = x; if (x> box[BOXRIGHT]) box[BOXRIGHT] = x; if (y< box[BOXBOTTOM]) box[BOXBOTTOM] = y; if (y> box[BOXTOP]) box[BOXTOP] = y; } // // R_PointOnSide // Traverse BSP (sub) tree, // check point against partition plane. // Returns side 0 (front) or 1 (back). // int R_PointOnSide ( fixed_t x, fixed_t y, node_t* node ) { fixed_t dx; fixed_t dy; fixed_t left; fixed_t right; if (!node->dx) { if (x <= node->x) return node->dy > 0; return node->dy < 0; } if (!node->dy) { if (y <= node->y) return node->dx < 0; return node->dx > 0; } dx = (x - node->x); dy = (y - node->y); // Try to quickly decide by looking at sign bits. if ( (node->dy ^ node->dx ^ dx ^ dy)&0x80000000 ) { if ( (node->dy ^ dx) & 0x80000000 ) { // (left is negative) return 1; } return 0; } left = FixedMul ( node->dy>>FRACBITS , dx ); right = FixedMul ( dy , node->dx>>FRACBITS ); if (right < left) { // front side return 0; } // back side return 1; } int R_PointOnSegSide ( fixed_t x, fixed_t y, seg_t* line ) { fixed_t lx; fixed_t ly; fixed_t ldx; fixed_t ldy; fixed_t dx; fixed_t dy; fixed_t left; fixed_t right; lx = line->v1->x; ly = line->v1->y; ldx = line->v2->x - lx; ldy = line->v2->y - ly; if (!ldx) { if (x <= lx) return ldy > 0; return ldy < 0; } if (!ldy) { if (y <= ly) return ldx < 0; return ldx > 0; } dx = (x - lx); dy = (y - ly); // Try to quickly decide by looking at sign bits. if ( (ldy ^ ldx ^ dx ^ dy)&0x80000000 ) { if ( (ldy ^ dx) & 0x80000000 ) { // (left is negative) return 1; } return 0; } left = FixedMul ( ldy>>FRACBITS , dx ); right = FixedMul ( dy , ldx>>FRACBITS ); if (right < left) { // front side return 0; } // back side return 1; } // // R_PointToAngle // To get a global angle from cartesian coordinates, // the coordinates are flipped until they are in // the first octant of the coordinate system, then // the y (<=x) is scaled and divided by x to get a // tangent (slope) value which is looked up in the // tantoangle[] table. // angle_t R_PointToAngle ( fixed_t x, fixed_t y ) { extern fixed_t GetViewX(); extern fixed_t GetViewY(); x -= GetViewX(); y -= GetViewY(); if ( (!x) && (!y) ) return 0; if (x>= 0) { // x >=0 if (y>= 0) { // y>= 0 if (x>y) { // octant 0 return tantoangle[ SlopeDiv(y,x)]; } else { // octant 1 return ANG90-1-tantoangle[ SlopeDiv(x,y)]; } } else { // y<0 y = -y; if (x>y) { // octant 8 return -tantoangle[SlopeDiv(y,x)]; // // ALANHACK UNSIGNED } else { // octant 7 return ANG270+tantoangle[ SlopeDiv(x,y)]; } } } else { // x<0 x = -x; if (y>= 0) { // y>= 0 if (x>y) { // octant 3 return ANG180-1-tantoangle[ SlopeDiv(y,x)]; } else { // octant 2 return ANG90+ tantoangle[ SlopeDiv(x,y)]; } } else { // y<0 y = -y; if (x>y) { // octant 4 return ANG180+tantoangle[ SlopeDiv(y,x)]; } else { // octant 5 return ANG270-1-tantoangle[ SlopeDiv(x,y)]; } } } return 0; } angle_t R_PointToAngle2 ( fixed_t x1, fixed_t y1, fixed_t x2, fixed_t y2 ) { extern void SetViewX( fixed_t ); extern void SetViewY( fixed_t ); SetViewX( x1 ); SetViewY( y1 ); return R_PointToAngle (x2, y2); } fixed_t R_PointToDist ( fixed_t x, fixed_t y ) { int angle; fixed_t dx; fixed_t dy; fixed_t temp; fixed_t dist; extern fixed_t GetViewX(); extern fixed_t GetViewY(); dx = abs(x - GetViewX()); dy = abs(y - GetViewY()); if (dy>dx) { temp = dx; dx = dy; dy = temp; } angle = (tantoangle[ FixedDiv(dy,dx)>>DBITS ]+ANG90) >> ANGLETOFINESHIFT; // use as cosine dist = FixedDiv (dx, finesine[angle] ); return dist; } // // R_InitPointToAngle // void R_InitPointToAngle (void) { // UNUSED - now getting from tables.c #if 0 int i; long t; float f; // // slope (tangent) to angle lookup // for (i=0 ; i<=SLOPERANGE ; i++) { f = atan( (float)i/SLOPERANGE )/(3.141592657*2); t = 0xffffffff*f; tantoangle[i] = t; } #endif } // // R_ScaleFromGlobalAngle // Returns the texture mapping scale // for the current line (horizontal span) // at the given angle. // ::g->rw_distance must be calculated first. // fixed_t R_ScaleFromGlobalAngle (angle_t visangle) { fixed_t scale; //int anglea; //int angleb; angle_t anglea; angle_t angleb; int sinea; int sineb; fixed_t num; int den; // UNUSED #if 0 { fixed_t dist; fixed_t z; fixed_t sinv; fixed_t cosv; sinv = finesine[(visangle-::g->rw_normalangle)>>ANGLETOFINESHIFT]; dist = FixedDiv (::g->rw_distance, sinv); cosv = finecosine[(::g->viewangle-visangle)>>ANGLETOFINESHIFT]; z = abs(FixedMul (dist, cosv)); scale = FixedDiv(::g->projection, z); return scale; } #endif extern angle_t GetViewAngle(); anglea = ANG90 + (visangle-GetViewAngle()); angleb = ANG90 + (visangle-::g->rw_normalangle); // both sines are allways positive sinea = finesine[anglea>>ANGLETOFINESHIFT]; sineb = finesine[angleb>>ANGLETOFINESHIFT]; num = FixedMul(::g->projection,sineb) << ::g->detailshift; den = FixedMul(::g->rw_distance,sinea); // DHM - Nerve :: If the den is pretty much 0, don't try the divide if (den>>8 > 0 && den > num>>16) { scale = FixedDiv (num, den); if (scale > 64*FRACUNIT) scale = 64*FRACUNIT; else if (scale < 256) scale = 256; } else scale = 64*FRACUNIT; return scale; } // // R_InitTables // void R_InitTables (void) { // UNUSED: now getting from tables.c #if 0 int i; float a; float fv; int t; // ::g->viewangle tangent table for (i=0 ; iviewangletox will give the next greatest x // after the view angle. // // Calc focallength // so FIELDOFVIEW angles covers SCREENWIDTH. focallength = FixedDiv (::g->centerxfrac, finetangent[FINEANGLES/4+FIELDOFVIEW/2] ); for (i=0 ; i FRACUNIT*2) t = -1; else if (finetangent[i] < -FRACUNIT*2) t = ::g->viewwidth+1; else { t = FixedMul (finetangent[i], focallength); t = (::g->centerxfrac - t+FRACUNIT-1)>>FRACBITS; if (t < -1) t = -1; else if (t>::g->viewwidth+1) t = ::g->viewwidth+1; } ::g->viewangletox[i] = t; } // Scan ::g->viewangletox[] to generate ::g->xtoviewangle[]: // ::g->xtoviewangle will give the smallest view angle // that maps to x. for (x=0;x<=::g->viewwidth;x++) { i = 0; while (::g->viewangletox[i]>x) i++; ::g->xtoviewangle[x] = (i<viewangletox. for (i=0 ; icenterx - t; if (::g->viewangletox[i] == -1) ::g->viewangletox[i] = 0; else if (::g->viewangletox[i] == ::g->viewwidth+1) ::g->viewangletox[i] = ::g->viewwidth; } ::g->clipangle = ::g->xtoviewangle[0]; } // // R_InitLightTables // Only inits the ::g->zlight table, // because the ::g->scalelight table changes with view size. // void R_InitLightTables (void) { int i; int j; int level; int nocollide_startmap; int scale; // Calculate the light levels to use // for each level / distance combination. for (i=0 ; i< LIGHTLEVELS ; i++) { nocollide_startmap = ((LIGHTLEVELS-1-i)*2)*NUMCOLORMAPS/LIGHTLEVELS; for (j=0 ; j>= LIGHTSCALESHIFT; level = nocollide_startmap - scale/DISTMAP; if (level < 0) level = 0; if (level >= NUMCOLORMAPS) level = NUMCOLORMAPS-1; ::g->zlight[i][j] = ::g->colormaps + level*256; } } } // // R_SetViewSize // Do not really change anything here, // because it might be in the middle of a refresh. // The change will take effect next refresh. // void R_SetViewSize ( int blocks, int detail ) { ::g->setsizeneeded = true; ::g->setblocks = blocks; ::g->setdetail = detail; } // // R_ExecuteSetViewSize // void R_ExecuteSetViewSize (void) { fixed_t cosadj; fixed_t dy; int i; int j; int level; int nocollide_startmap; ::g->setsizeneeded = false; if (::g->setblocks == 11) { ::g->scaledviewwidth = ORIGINAL_WIDTH; ::g->viewheight = ORIGINAL_HEIGHT; } else { ::g->scaledviewwidth = ::g->setblocks*32; ::g->viewheight = (::g->setblocks*168/10)&~7; } // SMF - temp ::g->scaledviewwidth *= GLOBAL_IMAGE_SCALER; ::g->viewheight *= GLOBAL_IMAGE_SCALER; ::g->detailshift = ::g->setdetail; ::g->viewwidth = ::g->scaledviewwidth>>::g->detailshift; ::g->centery = ::g->viewheight/2; ::g->centerx = ::g->viewwidth/2; ::g->centerxfrac = ::g->centerx<centeryfrac = ::g->centery<projection = ::g->centerxfrac; if (!::g->detailshift) { colfunc = basecolfunc = R_DrawColumn; fuzzcolfunc = R_DrawFuzzColumn; transcolfunc = R_DrawTranslatedColumn; spanfunc = R_DrawSpan; } else { colfunc = basecolfunc = R_DrawColumnLow; fuzzcolfunc = R_DrawFuzzColumn; transcolfunc = R_DrawTranslatedColumn; spanfunc = R_DrawSpanLow; } R_InitBuffer (::g->scaledviewwidth, ::g->viewheight); R_InitTextureMapping (); // psprite scales ::g->pspritescale = FRACUNIT*::g->viewwidth/ORIGINAL_WIDTH; ::g->pspriteiscale = FRACUNIT*ORIGINAL_WIDTH/::g->viewwidth; // thing clipping for (i=0 ; i < ::g->viewwidth ; i++) ::g->screenheightarray[i] = ::g->viewheight; // planes for (i=0 ; i < ::g->viewheight ; i++) { dy = ((i-::g->viewheight/2)<yslope[i] = FixedDiv ( (::g->viewwidth << ::g->detailshift)/2*FRACUNIT, dy); } for (i=0 ; i < ::g->viewwidth ; i++) { cosadj = abs(finecosine[::g->xtoviewangle[i]>>ANGLETOFINESHIFT]); ::g->distscale[i] = FixedDiv (FRACUNIT,cosadj); } // Calculate the light levels to use // for each level / scale combination. for (i=0 ; i< LIGHTLEVELS ; i++) { nocollide_startmap = ((LIGHTLEVELS-1-i)*2)*NUMCOLORMAPS/LIGHTLEVELS; for (j=0 ; jviewwidth << ::g->detailshift)/DISTMAP; if (level < 0) level = 0; if (level >= NUMCOLORMAPS) level = NUMCOLORMAPS-1; ::g->scalelight[i][j] = ::g->colormaps + level*256; } } } // // R_Init // void R_Init (void) { R_InitData (); I_Printf ("\nR_InitData"); R_InitPointToAngle (); I_Printf ("\nR_InitPointToAngle"); R_InitTables (); // ::g->viewwidth / ::g->viewheight / ::g->detailLevel are set by the defaults I_Printf ("\nR_InitTables"); R_SetViewSize (::g->screenblocks, ::g->detailLevel); R_InitPlanes (); I_Printf ("\nR_InitPlanes"); R_InitLightTables (); I_Printf ("\nR_InitLightTables"); R_InitSkyMap (); I_Printf ("\nR_InitSkyMap"); R_InitTranslationTables (); I_Printf ("\nR_InitTranslationsTables"); ::g->framecount = 0; } // // R_PointInSubsector // subsector_t* R_PointInSubsector ( fixed_t x, fixed_t y ) { node_t* node; int side; int nodenum; // single subsector is a special case if (!::g->numnodes) return ::g->subsectors; nodenum = ::g->numnodes-1; while (! (nodenum & NF_SUBSECTOR) ) { node = &::g->nodes[nodenum]; side = R_PointOnSide (x, y, node); nodenum = node->children[side]; } return &::g->subsectors[nodenum & ~NF_SUBSECTOR]; } // // R_SetupFrame // void R_SetupFrame (player_t* player) { int i; ::g->viewplayer = player; extern void SetViewX( fixed_t ); extern void SetViewY( fixed_t ); extern void SetViewAngle( angle_t ); SetViewX( player->mo->x ); SetViewY( player->mo->y ); SetViewAngle( player->mo->angle + ::g->viewangleoffset ); ::g->extralight = player->extralight; ::g->viewz = player->viewz; extern angle_t GetViewAngle(); ::g->viewsin = finesine[GetViewAngle()>>ANGLETOFINESHIFT]; ::g->viewcos = finecosine[GetViewAngle()>>ANGLETOFINESHIFT]; ::g->sscount = 0; if (player->fixedcolormap) { ::g->fixedcolormap = ::g->colormaps + player->fixedcolormap*256*sizeof(lighttable_t); ::g->walllights = ::g->scalelightfixed; for (i=0 ; iscalelightfixed[i] = ::g->fixedcolormap; } else ::g->fixedcolormap = 0; ::g->framecount++; ::g->validcount++; } // // R_RenderView // void R_RenderPlayerView (player_t* player) { if ( player->mo == NULL ) { return; } R_SetupFrame (player); // Clear buffers. R_ClearClipSegs (); R_ClearDrawSegs (); R_ClearPlanes (); R_ClearSprites (); // check for new console commands. NetUpdate ( NULL ); // The head node is the last node output. R_RenderBSPNode (::g->numnodes-1); // Check for new console commands. NetUpdate ( NULL ); R_DrawPlanes (); // Check for new console commands. NetUpdate ( NULL ); R_DrawMasked (); // Check for new console commands. NetUpdate ( NULL ); }