/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ /* =============================================================================== Trace model vs. polygonal model collision detection. =============================================================================== */ #pragma hdrstop #include "precompiled.h" #include "CollisionModel_local.h" /* =============================================================================== Collision detection for translational motion =============================================================================== */ /* ================ idCollisionModelManagerLocal::TranslateEdgeThroughEdge calculates fraction of the translation completed at which the edges collide ================ */ ID_INLINE int idCollisionModelManagerLocal::TranslateEdgeThroughEdge( idVec3& cross, idPluecker& l1, idPluecker& l2, float* fraction ) { float d, t; /* a = start of line b = end of line dir = movement direction l1 = pluecker coordinate for line l2 = pluecker coordinate for edge we might collide with a+dir = start of line after movement b+dir = end of line after movement t = scale factor solve pluecker inner product for t of line (a+t*dir : b+t*dir) and line l2 v[0] = (a[0]+t*dir[0]) * (b[1]+t*dir[1]) - (b[0]+t*dir[0]) * (a[1]+t*dir[1]); v[1] = (a[0]+t*dir[0]) * (b[2]+t*dir[2]) - (b[0]+t*dir[0]) * (a[2]+t*dir[2]); v[2] = (a[0]+t*dir[0]) - (b[0]+t*dir[0]); v[3] = (a[1]+t*dir[1]) * (b[2]+t*dir[2]) - (b[1]+t*dir[1]) * (a[2]+t*dir[2]); v[4] = (a[2]+t*dir[2]) - (b[2]+t*dir[2]); v[5] = (b[1]+t*dir[1]) - (a[1]+t*dir[1]); l2[0] * v[4] + l2[1] * v[5] + l2[2] * v[3] + l2[4] * v[0] + l2[5] * v[1] + l2[3] * v[2] = 0; solve t v[0] = (a[0]+t*dir[0]) * (b[1]+t*dir[1]) - (b[0]+t*dir[0]) * (a[1]+t*dir[1]); v[0] = (a[0]*b[1]) + a[0]*t*dir[1] + b[1]*t*dir[0] + (t*t*dir[0]*dir[1]) - ((b[0]*a[1]) + b[0]*t*dir[1] + a[1]*t*dir[0] + (t*t*dir[0]*dir[1])); v[0] = a[0]*b[1] + a[0]*t*dir[1] + b[1]*t*dir[0] - b[0]*a[1] - b[0]*t*dir[1] - a[1]*t*dir[0]; v[1] = (a[0]+t*dir[0]) * (b[2]+t*dir[2]) - (b[0]+t*dir[0]) * (a[2]+t*dir[2]); v[1] = (a[0]*b[2]) + a[0]*t*dir[2] + b[2]*t*dir[0] + (t*t*dir[0]*dir[2]) - ((b[0]*a[2]) + b[0]*t*dir[2] + a[2]*t*dir[0] + (t*t*dir[0]*dir[2])); v[1] = a[0]*b[2] + a[0]*t*dir[2] + b[2]*t*dir[0] - b[0]*a[2] - b[0]*t*dir[2] - a[2]*t*dir[0]; v[2] = (a[0]+t*dir[0]) - (b[0]+t*dir[0]); v[2] = a[0] - b[0]; v[3] = (a[1]+t*dir[1]) * (b[2]+t*dir[2]) - (b[1]+t*dir[1]) * (a[2]+t*dir[2]); v[3] = (a[1]*b[2]) + a[1]*t*dir[2] + b[2]*t*dir[1] + (t*t*dir[1]*dir[2]) - ((b[1]*a[2]) + b[1]*t*dir[2] + a[2]*t*dir[1] + (t*t*dir[1]*dir[2])); v[3] = a[1]*b[2] + a[1]*t*dir[2] + b[2]*t*dir[1] - b[1]*a[2] - b[1]*t*dir[2] - a[2]*t*dir[1]; v[4] = (a[2]+t*dir[2]) - (b[2]+t*dir[2]); v[4] = a[2] - b[2]; v[5] = (b[1]+t*dir[1]) - (a[1]+t*dir[1]); v[5] = b[1] - a[1]; v[0] = a[0]*b[1] + a[0]*t*dir[1] + b[1]*t*dir[0] - b[0]*a[1] - b[0]*t*dir[1] - a[1]*t*dir[0]; v[1] = a[0]*b[2] + a[0]*t*dir[2] + b[2]*t*dir[0] - b[0]*a[2] - b[0]*t*dir[2] - a[2]*t*dir[0]; v[2] = a[0] - b[0]; v[3] = a[1]*b[2] + a[1]*t*dir[2] + b[2]*t*dir[1] - b[1]*a[2] - b[1]*t*dir[2] - a[2]*t*dir[1]; v[4] = a[2] - b[2]; v[5] = b[1] - a[1]; v[0] = (a[0]*dir[1] + b[1]*dir[0] - b[0]*dir[1] - a[1]*dir[0]) * t + a[0]*b[1] - b[0]*a[1]; v[1] = (a[0]*dir[2] + b[2]*dir[0] - b[0]*dir[2] - a[2]*dir[0]) * t + a[0]*b[2] - b[0]*a[2]; v[2] = a[0] - b[0]; v[3] = (a[1]*dir[2] + b[2]*dir[1] - b[1]*dir[2] - a[2]*dir[1]) * t + a[1]*b[2] - b[1]*a[2]; v[4] = a[2] - b[2]; v[5] = b[1] - a[1]; l2[4] * (a[0]*dir[1] + b[1]*dir[0] - b[0]*dir[1] - a[1]*dir[0]) * t + l2[4] * (a[0]*b[1] - b[0]*a[1]) + l2[5] * (a[0]*dir[2] + b[2]*dir[0] - b[0]*dir[2] - a[2]*dir[0]) * t + l2[5] * (a[0]*b[2] - b[0]*a[2]) + l2[3] * (a[0] - b[0]) + l2[2] * (a[1]*dir[2] + b[2]*dir[1] - b[1]*dir[2] - a[2]*dir[1]) * t + l2[2] * (a[1]*b[2] - b[1]*a[2]) + l2[0] * (a[2] - b[2]) + l2[1] * (b[1] - a[1]) = 0 t = (- l2[4] * (a[0]*b[1] - b[0]*a[1]) - l2[5] * (a[0]*b[2] - b[0]*a[2]) - l2[3] * (a[0] - b[0]) - l2[2] * (a[1]*b[2] - b[1]*a[2]) - l2[0] * (a[2] - b[2]) - l2[1] * (b[1] - a[1])) / (l2[4] * (a[0]*dir[1] + b[1]*dir[0] - b[0]*dir[1] - a[1]*dir[0]) + l2[5] * (a[0]*dir[2] + b[2]*dir[0] - b[0]*dir[2] - a[2]*dir[0]) + l2[2] * (a[1]*dir[2] + b[2]*dir[1] - b[1]*dir[2] - a[2]*dir[1])); d = l2[4] * (a[0]*dir[1] + b[1]*dir[0] - b[0]*dir[1] - a[1]*dir[0]) + l2[5] * (a[0]*dir[2] + b[2]*dir[0] - b[0]*dir[2] - a[2]*dir[0]) + l2[2] * (a[1]*dir[2] + b[2]*dir[1] - b[1]*dir[2] - a[2]*dir[1]); t = - ( l2[4] * (a[0]*b[1] - b[0]*a[1]) + l2[5] * (a[0]*b[2] - b[0]*a[2]) + l2[3] * (a[0] - b[0]) + l2[2] * (a[1]*b[2] - b[1]*a[2]) + l2[0] * (a[2] - b[2]) + l2[1] * (b[1] - a[1])); t /= d; MrE pats Pluecker on the head.. good monkey edgeDir = a - b; d = l2[4] * (edgeDir[0]*dir[1] - edgeDir[1]*dir[0]) + l2[5] * (edgeDir[0]*dir[2] - edgeDir[2]*dir[0]) + l2[2] * (edgeDir[1]*dir[2] - edgeDir[2]*dir[1]); */ d = l2[4] * cross[0] + l2[5] * cross[1] + l2[2] * cross[2]; if( d == 0.0f ) { *fraction = 1.0f; // no collision ever return false; } t = -l1.PermutedInnerProduct( l2 ); // if the lines cross each other to begin with if( fabs( t ) < idMath::FLT_SMALLEST_NON_DENORMAL ) { *fraction = 0.0f; return true; } // fraction of movement at the time the lines cross each other *fraction = t / d; return true; } /* ================ CM_AddContact ================ */ ID_INLINE void CM_AddContact( cm_traceWork_t* tw ) { if( tw->numContacts >= tw->maxContacts ) { return; } // copy contact information from trace_t tw->contacts[tw->numContacts] = tw->trace.c; tw->numContacts++; // set fraction back to 1 to find all other contacts tw->trace.fraction = 1.0f; } /* ================ CM_SetVertexSidedness stores for the given model vertex at which side of one of the trm edges it passes ================ */ ID_INLINE void CM_SetVertexSidedness( cm_vertex_t* v, const idPluecker& vpl, const idPluecker& epl, const int bitNum ) { const int mask = 1 << bitNum; if( ( v->sideSet & mask ) == 0 ) { const float fl = vpl.PermutedInnerProduct( epl ); v->side = ( v->side & ~mask ) | ( ( fl < 0.0f ) ? mask : 0 ); v->sideSet |= mask; } } /* ================ CM_SetEdgeSidedness stores for the given model edge at which side one of the trm vertices ================ */ ID_INLINE void CM_SetEdgeSidedness( cm_edge_t* edge, const idPluecker& vpl, const idPluecker& epl, const int bitNum ) { const int mask = 1 << bitNum; if( ( edge->sideSet & mask ) == 0 ) { const float fl = vpl.PermutedInnerProduct( epl ); edge->side = ( edge->side & ~mask ) | ( ( fl < 0.0f ) ? mask : 0 ); edge->sideSet |= mask; } } /* ================ idCollisionModelManagerLocal::TranslateTrmEdgeThroughPolygon ================ */ void idCollisionModelManagerLocal::TranslateTrmEdgeThroughPolygon( cm_traceWork_t* tw, cm_polygon_t* poly, cm_trmEdge_t* trmEdge ) { int i, edgeNum; float f1, f2, dist, d1, d2; idVec3 start, end, normal; cm_edge_t* edge; cm_vertex_t* v1, *v2; idPluecker* pl, epsPl; // check edges for a collision for( i = 0; i < poly->numEdges; i++ ) { edgeNum = poly->edges[i]; edge = tw->model->edges + abs( edgeNum ); // if this edge is already checked if( edge->checkcount == idCollisionModelManagerLocal::checkCount ) { continue; } // can never collide with internal edges if( edge->internal ) { continue; } pl = &tw->polygonEdgePlueckerCache[i]; // get the sides at which the trm edge vertices pass the polygon edge CM_SetEdgeSidedness( edge, *pl, tw->vertices[trmEdge->vertexNum[0]].pl, trmEdge->vertexNum[0] ); CM_SetEdgeSidedness( edge, *pl, tw->vertices[trmEdge->vertexNum[1]].pl, trmEdge->vertexNum[1] ); // if the trm edge start and end vertex do not pass the polygon edge at different sides if( !( ( ( edge->side >> trmEdge->vertexNum[0] ) ^ ( edge->side >> trmEdge->vertexNum[1] ) ) & 1 ) ) { continue; } // get the sides at which the polygon edge vertices pass the trm edge v1 = tw->model->vertices + edge->vertexNum[INT32_SIGNBITSET( edgeNum )]; CM_SetVertexSidedness( v1, tw->polygonVertexPlueckerCache[i], trmEdge->pl, trmEdge->bitNum ); v2 = tw->model->vertices + edge->vertexNum[INT32_SIGNBITNOTSET( edgeNum )]; CM_SetVertexSidedness( v2, tw->polygonVertexPlueckerCache[i + 1], trmEdge->pl, trmEdge->bitNum ); // if the polygon edge start and end vertex do not pass the trm edge at different sides if( !( ( v1->side ^ v2->side ) & ( 1 << trmEdge->bitNum ) ) ) { continue; } // if there is no possible collision between the trm edge and the polygon edge if( !idCollisionModelManagerLocal::TranslateEdgeThroughEdge( trmEdge->cross, trmEdge->pl, *pl, &f1 ) ) { continue; } // if moving away from edge if( f1 < 0.0f ) { continue; } // pluecker coordinate for epsilon expanded edge epsPl.FromLine( tw->model->vertices[edge->vertexNum[0]].p + edge->normal * CM_CLIP_EPSILON, tw->model->vertices[edge->vertexNum[1]].p + edge->normal * CM_CLIP_EPSILON ); // calculate collision fraction with epsilon expanded edge if( !idCollisionModelManagerLocal::TranslateEdgeThroughEdge( trmEdge->cross, trmEdge->pl, epsPl, &f2 ) ) { continue; } // if no collision with epsilon edge or moving away from edge if( f2 > 1.0f || f1 < f2 ) { continue; } if( f2 < 0.0f ) { f2 = 0.0f; } if( f2 < tw->trace.fraction ) { tw->trace.fraction = f2; // create plane with normal vector orthogonal to both the polygon edge and the trm edge start = tw->model->vertices[edge->vertexNum[0]].p; end = tw->model->vertices[edge->vertexNum[1]].p; tw->trace.c.normal = ( end - start ).Cross( trmEdge->end - trmEdge->start ); // FIXME: do this normalize when we know the first collision tw->trace.c.normal.Normalize(); tw->trace.c.dist = tw->trace.c.normal * start; // make sure the collision plane faces the trace model if( tw->trace.c.normal * trmEdge->start - tw->trace.c.dist < 0.0f ) { tw->trace.c.normal = -tw->trace.c.normal; tw->trace.c.dist = -tw->trace.c.dist; } tw->trace.c.contents = poly->contents; tw->trace.c.material = poly->material; tw->trace.c.type = CONTACT_EDGE; tw->trace.c.modelFeature = edgeNum; tw->trace.c.trmFeature = trmEdge - tw->edges; // calculate collision point normal[0] = trmEdge->cross[2]; normal[1] = -trmEdge->cross[1]; normal[2] = trmEdge->cross[0]; dist = normal * trmEdge->start; d1 = normal * start - dist; d2 = normal * end - dist; f1 = d1 / ( d1 - d2 ); //assert( f1 >= 0.0f && f1 <= 1.0f ); tw->trace.c.point = start + f1 * ( end - start ); // if retrieving contacts if( tw->getContacts ) { CM_AddContact( tw ); } } } } /* ================ CM_TranslationPlaneFraction ================ */ float CM_TranslationPlaneFraction( const idPlane& plane, const idVec3& start, const idVec3& end ) { const float d2 = plane.Distance( end ); // if the end point is closer to the plane than an epsilon we still take it for a collision if( d2 >= CM_CLIP_EPSILON ) { return 1.0f; } const float d1 = plane.Distance( start ); // if completely behind the polygon if( d1 <= 0.0f ) { return 1.0f; } // leaves polygon if( d1 - d2 < idMath::FLT_SMALLEST_NON_DENORMAL ) { return 1.0f; } return ( d1 - CM_CLIP_EPSILON ) / ( d1 - d2 ); } /* ================ idCollisionModelManagerLocal::TranslateTrmVertexThroughPolygon ================ */ void idCollisionModelManagerLocal::TranslateTrmVertexThroughPolygon( cm_traceWork_t* tw, cm_polygon_t* poly, cm_trmVertex_t* v, int bitNum ) { int i, edgeNum; float f; cm_edge_t* edge; f = CM_TranslationPlaneFraction( poly->plane, v->p, v->endp ); if( f < tw->trace.fraction ) { for( i = 0; i < poly->numEdges; i++ ) { edgeNum = poly->edges[i]; edge = tw->model->edges + abs( edgeNum ); CM_SetEdgeSidedness( edge, tw->polygonEdgePlueckerCache[i], v->pl, bitNum ); if( INT32_SIGNBITSET( edgeNum ) ^ ( ( edge->side >> bitNum ) & 1 ) ) { return; } } if( f < 0.0f ) { f = 0.0f; } tw->trace.fraction = f; // collision plane is the polygon plane tw->trace.c.normal = poly->plane.Normal(); tw->trace.c.dist = poly->plane.Dist(); tw->trace.c.contents = poly->contents; tw->trace.c.material = poly->material; tw->trace.c.type = CONTACT_TRMVERTEX; tw->trace.c.modelFeature = *reinterpret_cast( &poly ); tw->trace.c.trmFeature = v - tw->vertices; tw->trace.c.point = v->p + tw->trace.fraction * ( v->endp - v->p ); // if retrieving contacts if( tw->getContacts ) { CM_AddContact( tw ); // no need to store the trm vertex more than once as a contact v->used = false; } } } /* ================ idCollisionModelManagerLocal::TranslatePointThroughPolygon ================ */ void idCollisionModelManagerLocal::TranslatePointThroughPolygon( cm_traceWork_t* tw, cm_polygon_t* poly, cm_trmVertex_t* v ) { int i, edgeNum; float f; cm_edge_t* edge; idPluecker pl; f = CM_TranslationPlaneFraction( poly->plane, v->p, v->endp ); if( f < tw->trace.fraction ) { for( i = 0; i < poly->numEdges; i++ ) { edgeNum = poly->edges[i]; edge = tw->model->edges + abs( edgeNum ); // if we didn't yet calculate the sidedness for this edge if( edge->checkcount != idCollisionModelManagerLocal::checkCount ) { float fl; edge->checkcount = idCollisionModelManagerLocal::checkCount; pl.FromLine( tw->model->vertices[edge->vertexNum[0]].p, tw->model->vertices[edge->vertexNum[1]].p ); fl = v->pl.PermutedInnerProduct( pl ); edge->side = ( fl < 0.0f ); } // if the point passes the edge at the wrong side //if ( (edgeNum > 0) == edge->side ) { if( INT32_SIGNBITSET( edgeNum ) ^ edge->side ) { return; } } if( f < 0.0f ) { f = 0.0f; } tw->trace.fraction = f; // collision plane is the polygon plane tw->trace.c.normal = poly->plane.Normal(); tw->trace.c.dist = poly->plane.Dist(); tw->trace.c.contents = poly->contents; tw->trace.c.material = poly->material; tw->trace.c.type = CONTACT_TRMVERTEX; tw->trace.c.modelFeature = *reinterpret_cast( &poly ); tw->trace.c.trmFeature = v - tw->vertices; tw->trace.c.point = v->p + tw->trace.fraction * ( v->endp - v->p ); // if retrieving contacts if( tw->getContacts ) { CM_AddContact( tw ); // no need to store the trm vertex more than once as a contact v->used = false; } } } /* ================ idCollisionModelManagerLocal::TranslateVertexThroughTrmPolygon ================ */ void idCollisionModelManagerLocal::TranslateVertexThroughTrmPolygon( cm_traceWork_t* tw, cm_trmPolygon_t* trmpoly, cm_polygon_t* poly, cm_vertex_t* v, idVec3& endp, idPluecker& pl ) { int i, edgeNum; float f; cm_trmEdge_t* edge; f = CM_TranslationPlaneFraction( trmpoly->plane, v->p, endp ); if( f < tw->trace.fraction ) { for( i = 0; i < trmpoly->numEdges; i++ ) { edgeNum = trmpoly->edges[i]; edge = tw->edges + abs( edgeNum ); CM_SetVertexSidedness( v, pl, edge->pl, edge->bitNum ); if( INT32_SIGNBITSET( edgeNum ) ^ ( ( v->side >> edge->bitNum ) & 1 ) ) { return; } } if( f < 0.0f ) { f = 0.0f; } tw->trace.fraction = f; // collision plane is the inverse trm polygon plane tw->trace.c.normal = -trmpoly->plane.Normal(); tw->trace.c.dist = -trmpoly->plane.Dist(); tw->trace.c.contents = poly->contents; tw->trace.c.material = poly->material; tw->trace.c.type = CONTACT_MODELVERTEX; tw->trace.c.modelFeature = v - tw->model->vertices; tw->trace.c.trmFeature = trmpoly - tw->polys; tw->trace.c.point = v->p + tw->trace.fraction * ( endp - v->p ); // if retrieving contacts if( tw->getContacts ) { CM_AddContact( tw ); } } } /* ================ idCollisionModelManagerLocal::TranslateTrmThroughPolygon returns true if the polygon blocks the complete translation ================ */ bool idCollisionModelManagerLocal::TranslateTrmThroughPolygon( cm_traceWork_t* tw, cm_polygon_t* p ) { int i, j, k, edgeNum; float fraction, d; idVec3 endp; idPluecker* pl; cm_trmVertex_t* bv; cm_trmEdge_t* be; cm_trmPolygon_t* bp; cm_vertex_t* v; cm_edge_t* e; // if already checked this polygon if( p->checkcount == idCollisionModelManagerLocal::checkCount ) { return false; } p->checkcount = idCollisionModelManagerLocal::checkCount; // if this polygon does not have the right contents behind it if( !( p->contents & tw->contents ) ) { return false; } // if the the trace bounds do not intersect the polygon bounds if( !tw->bounds.IntersectsBounds( p->bounds ) ) { return false; } // only collide with the polygon if approaching at the front if( ( p->plane.Normal() * tw->dir ) > 0.0f ) { return false; } // if the polygon is too far from the first heart plane d = p->bounds.PlaneDistance( tw->heartPlane1 ); if( idMath::Fabs( d ) > tw->maxDistFromHeartPlane1 ) { return false; } // if the polygon is too far from the second heart plane d = p->bounds.PlaneDistance( tw->heartPlane2 ); if( idMath::Fabs( d ) > tw->maxDistFromHeartPlane2 ) { return false; } fraction = tw->trace.fraction; // fast point trace if( tw->pointTrace ) { idCollisionModelManagerLocal::TranslatePointThroughPolygon( tw, p, &tw->vertices[0] ); } else { // trace bounds should cross polygon plane switch( tw->bounds.PlaneSide( p->plane ) ) { case PLANESIDE_CROSS: break; case PLANESIDE_FRONT: if( tw->model->isConvex ) { tw->quickExit = true; return true; } default: return false; } // calculate pluecker coordinates for the polygon edges and polygon vertices for( i = 0; i < p->numEdges; i++ ) { edgeNum = p->edges[i]; e = tw->model->edges + abs( edgeNum ); // reset sidedness cache if this is the first time we encounter this edge during this trace if( e->checkcount != idCollisionModelManagerLocal::checkCount ) { e->sideSet = 0; } // pluecker coordinate for edge tw->polygonEdgePlueckerCache[i].FromLine( tw->model->vertices[e->vertexNum[0]].p, tw->model->vertices[e->vertexNum[1]].p ); v = &tw->model->vertices[e->vertexNum[INT32_SIGNBITSET( edgeNum )]]; // reset sidedness cache if this is the first time we encounter this vertex during this trace if( v->checkcount != idCollisionModelManagerLocal::checkCount ) { v->sideSet = 0; } // pluecker coordinate for vertex movement vector tw->polygonVertexPlueckerCache[i].FromRay( v->p, -tw->dir ); } // copy first to last so we can easily cycle through for the edges tw->polygonVertexPlueckerCache[p->numEdges] = tw->polygonVertexPlueckerCache[0]; // trace trm vertices through polygon for( i = 0; i < tw->numVerts; i++ ) { bv = tw->vertices + i; if( bv->used ) { idCollisionModelManagerLocal::TranslateTrmVertexThroughPolygon( tw, p, bv, i ); } } // trace trm edges through polygon for( i = 1; i <= tw->numEdges; i++ ) { be = tw->edges + i; if( be->used ) { idCollisionModelManagerLocal::TranslateTrmEdgeThroughPolygon( tw, p, be ); } } // trace all polygon vertices through the trm for( i = 0; i < p->numEdges; i++ ) { edgeNum = p->edges[i]; e = tw->model->edges + abs( edgeNum ); if( e->checkcount == idCollisionModelManagerLocal::checkCount ) { continue; } // set edge check count e->checkcount = idCollisionModelManagerLocal::checkCount; // can never collide with internal edges if( e->internal ) { continue; } // got to check both vertices because we skip internal edges for( k = 0; k < 2; k++ ) { v = tw->model->vertices + e->vertexNum[k ^ INT32_SIGNBITSET( edgeNum )]; // if this vertex is already checked if( v->checkcount == idCollisionModelManagerLocal::checkCount ) { continue; } // set vertex check count v->checkcount = idCollisionModelManagerLocal::checkCount; // if the vertex is outside the trace bounds if( !tw->bounds.ContainsPoint( v->p ) ) { continue; } // vertex end point after movement endp = v->p - tw->dir; // pluecker coordinate for vertex movement vector pl = &tw->polygonVertexPlueckerCache[i + k]; for( j = 0; j < tw->numPolys; j++ ) { bp = tw->polys + j; if( bp->used ) { idCollisionModelManagerLocal::TranslateVertexThroughTrmPolygon( tw, bp, p, v, endp, *pl ); } } } } } // if there was a collision with this polygon and we are not retrieving contacts if( tw->trace.fraction < fraction && !tw->getContacts ) { fraction = tw->trace.fraction; endp = tw->start + fraction * tw->dir; // decrease bounds for( i = 0; i < 3; i++ ) { if( tw->start[i] < endp[i] ) { tw->bounds[0][i] = tw->start[i] + tw->size[0][i] - CM_BOX_EPSILON; tw->bounds[1][i] = endp[i] + tw->size[1][i] + CM_BOX_EPSILON; } else { tw->bounds[0][i] = endp[i] + tw->size[0][i] - CM_BOX_EPSILON; tw->bounds[1][i] = tw->start[i] + tw->size[1][i] + CM_BOX_EPSILON; } } } return ( tw->trace.fraction == 0.0f ); } /* ================ idCollisionModelManagerLocal::SetupTrm ================ */ void idCollisionModelManagerLocal::SetupTrm( cm_traceWork_t* tw, const idTraceModel* trm ) { int i, j; // vertices tw->numVerts = trm->numVerts; for( i = 0; i < trm->numVerts; i++ ) { tw->vertices[i].p = trm->verts[i]; tw->vertices[i].used = false; } // edges tw->numEdges = trm->numEdges; for( i = 1; i <= trm->numEdges; i++ ) { tw->edges[i].vertexNum[0] = trm->edges[i].v[0]; tw->edges[i].vertexNum[1] = trm->edges[i].v[1]; tw->edges[i].used = false; } // polygons tw->numPolys = trm->numPolys; for( i = 0; i < trm->numPolys; i++ ) { tw->polys[i].numEdges = trm->polys[i].numEdges; for( j = 0; j < trm->polys[i].numEdges; j++ ) { tw->polys[i].edges[j] = trm->polys[i].edges[j]; } tw->polys[i].plane.SetNormal( trm->polys[i].normal ); tw->polys[i].used = false; } // is the trace model convex or not tw->isConvex = trm->isConvex; } /* ================ idCollisionModelManagerLocal::SetupTranslationHeartPlanes ================ */ void idCollisionModelManagerLocal::SetupTranslationHeartPlanes( cm_traceWork_t* tw ) { idVec3 dir, normal1, normal2; // calculate trace heart planes dir = tw->dir; dir.Normalize(); dir.NormalVectors( normal1, normal2 ); tw->heartPlane1.SetNormal( normal1 ); tw->heartPlane1.FitThroughPoint( tw->start ); tw->heartPlane2.SetNormal( normal2 ); tw->heartPlane2.FitThroughPoint( tw->start ); } /* ================ idCollisionModelManagerLocal::Translation ================ */ #ifdef _DEBUG static int entered = 0; #endif void idCollisionModelManagerLocal::Translation( trace_t* results, const idVec3& start, const idVec3& end, const idTraceModel* trm, const idMat3& trmAxis, int contentMask, cmHandle_t model, const idVec3& modelOrigin, const idMat3& modelAxis ) { int i, j; float dist; bool model_rotated, trm_rotated; idVec3 dir1, dir2, dir; idMat3 invModelAxis, tmpAxis; cm_trmPolygon_t* poly; cm_trmEdge_t* edge; cm_trmVertex_t* vert; ALIGN16( static cm_traceWork_t tw ); assert( ( ( byte* )&start ) < ( ( byte* )results ) || ( ( byte* )&start ) >= ( ( ( byte* )results ) + sizeof( trace_t ) ) ); assert( ( ( byte* )&end ) < ( ( byte* )results ) || ( ( byte* )&end ) >= ( ( ( byte* )results ) + sizeof( trace_t ) ) ); assert( ( ( byte* )&trmAxis ) < ( ( byte* )results ) || ( ( byte* )&trmAxis ) >= ( ( ( byte* )results ) + sizeof( trace_t ) ) ); memset( results, 0, sizeof( *results ) ); if( model < 0 || model > MAX_SUBMODELS || model > idCollisionModelManagerLocal::maxModels ) { common->Printf( "idCollisionModelManagerLocal::Translation: invalid model handle\n" ); return; } if( !idCollisionModelManagerLocal::models[model] ) { common->Printf( "idCollisionModelManagerLocal::Translation: invalid model\n" ); return; } // if case special position test if( start[0] == end[0] && start[1] == end[1] && start[2] == end[2] ) { idCollisionModelManagerLocal::ContentsTrm( results, start, trm, trmAxis, contentMask, model, modelOrigin, modelAxis ); return; } #ifdef _DEBUG bool startsolid = false; // test whether or not stuck to begin with if( cm_debugCollision.GetBool() ) { if( !entered && !idCollisionModelManagerLocal::getContacts ) { entered = 1; // if already messed up to begin with if( idCollisionModelManagerLocal::Contents( start, trm, trmAxis, -1, model, modelOrigin, modelAxis ) & contentMask ) { startsolid = true; } entered = 0; } } #endif idCollisionModelManagerLocal::checkCount++; tw.trace.fraction = 1.0f; tw.trace.c.contents = 0; tw.trace.c.type = CONTACT_NONE; tw.contents = contentMask; tw.isConvex = true; tw.rotation = false; tw.positionTest = false; tw.quickExit = false; tw.getContacts = idCollisionModelManagerLocal::getContacts; tw.contacts = idCollisionModelManagerLocal::contacts; tw.maxContacts = idCollisionModelManagerLocal::maxContacts; tw.numContacts = 0; tw.model = idCollisionModelManagerLocal::models[model]; tw.start = start - modelOrigin; tw.end = end - modelOrigin; tw.dir = end - start; model_rotated = modelAxis.IsRotated(); if( model_rotated ) { invModelAxis = modelAxis.Transpose(); } // if optimized point trace if( !trm || ( trm->bounds[1][0] - trm->bounds[0][0] <= 0.0f && trm->bounds[1][1] - trm->bounds[0][1] <= 0.0f && trm->bounds[1][2] - trm->bounds[0][2] <= 0.0f ) ) { if( model_rotated ) { // rotate trace instead of model tw.start *= invModelAxis; tw.end *= invModelAxis; tw.dir *= invModelAxis; } // trace bounds for( i = 0; i < 3; i++ ) { if( tw.start[i] < tw.end[i] ) { tw.bounds[0][i] = tw.start[i] - CM_BOX_EPSILON; tw.bounds[1][i] = tw.end[i] + CM_BOX_EPSILON; } else { tw.bounds[0][i] = tw.end[i] - CM_BOX_EPSILON; tw.bounds[1][i] = tw.start[i] + CM_BOX_EPSILON; } } tw.extents[0] = tw.extents[1] = tw.extents[2] = CM_BOX_EPSILON; tw.size.Zero(); // setup trace heart planes idCollisionModelManagerLocal::SetupTranslationHeartPlanes( &tw ); tw.maxDistFromHeartPlane1 = CM_BOX_EPSILON; tw.maxDistFromHeartPlane2 = CM_BOX_EPSILON; // collision with single point tw.numVerts = 1; tw.vertices[0].p = tw.start; tw.vertices[0].endp = tw.vertices[0].p + tw.dir; tw.vertices[0].pl.FromRay( tw.vertices[0].p, tw.dir ); tw.numEdges = tw.numPolys = 0; tw.pointTrace = true; // trace through the model idCollisionModelManagerLocal::TraceThroughModel( &tw ); // store results *results = tw.trace; results->endpos = start + results->fraction * ( end - start ); results->endAxis = mat3_identity; if( results->fraction < 1.0f ) { // rotate trace plane normal if there was a collision with a rotated model if( model_rotated ) { results->c.normal *= modelAxis; results->c.point *= modelAxis; } results->c.point += modelOrigin; results->c.dist += modelOrigin * results->c.normal; } idCollisionModelManagerLocal::numContacts = tw.numContacts; return; } // the trace fraction is too inaccurate to describe translations over huge distances if( tw.dir.LengthSqr() > Square( CM_MAX_TRACE_DIST ) ) { results->fraction = 0.0f; results->endpos = start; results->endAxis = trmAxis; results->c.normal = vec3_origin; results->c.material = NULL; results->c.point = start; if( common->RW() ) { common->RW()->DebugArrow( colorRed, start, end, 1 ); } common->Printf( "idCollisionModelManagerLocal::Translation: huge translation\n" ); return; } tw.pointTrace = false; tw.size.Clear(); // setup trm structure idCollisionModelManagerLocal::SetupTrm( &tw, trm ); trm_rotated = trmAxis.IsRotated(); // calculate vertex positions if( trm_rotated ) { for( i = 0; i < tw.numVerts; i++ ) { // rotate trm around the start position tw.vertices[i].p *= trmAxis; } } for( i = 0; i < tw.numVerts; i++ ) { // set trm at start position tw.vertices[i].p += tw.start; } if( model_rotated ) { for( i = 0; i < tw.numVerts; i++ ) { // rotate trm around model instead of rotating the model tw.vertices[i].p *= invModelAxis; } } // add offset to start point if( trm_rotated ) { dir = trm->offset * trmAxis; tw.start += dir; tw.end += dir; } else { tw.start += trm->offset; tw.end += trm->offset; } if( model_rotated ) { // rotate trace instead of model tw.start *= invModelAxis; tw.end *= invModelAxis; tw.dir *= invModelAxis; } // rotate trm polygon planes if( trm_rotated & model_rotated ) { tmpAxis = trmAxis * invModelAxis; for( poly = tw.polys, i = 0; i < tw.numPolys; i++, poly++ ) { poly->plane *= tmpAxis; } } else if( trm_rotated ) { for( poly = tw.polys, i = 0; i < tw.numPolys; i++, poly++ ) { poly->plane *= trmAxis; } } else if( model_rotated ) { for( poly = tw.polys, i = 0; i < tw.numPolys; i++, poly++ ) { poly->plane *= invModelAxis; } } // setup trm polygons for( poly = tw.polys, i = 0; i < tw.numPolys; i++, poly++ ) { // if the trm poly plane is facing in the movement direction dist = poly->plane.Normal() * tw.dir; if( dist > 0.0f || ( !trm->isConvex && dist == 0.0f ) ) { // this trm poly and it's edges and vertices need to be used for collision poly->used = true; for( j = 0; j < poly->numEdges; j++ ) { edge = &tw.edges[abs( poly->edges[j] )]; edge->used = true; tw.vertices[edge->vertexNum[0]].used = true; tw.vertices[edge->vertexNum[1]].used = true; } } } // setup trm vertices for( vert = tw.vertices, i = 0; i < tw.numVerts; i++, vert++ ) { if( !vert->used ) { continue; } // get axial trm size after rotations tw.size.AddPoint( vert->p - tw.start ); // calculate the end position of each vertex for a full trace vert->endp = vert->p + tw.dir; // pluecker coordinate for vertex movement line vert->pl.FromRay( vert->p, tw.dir ); } // setup trm edges for( edge = tw.edges + 1, i = 1; i <= tw.numEdges; i++, edge++ ) { if( !edge->used ) { continue; } // edge start, end and pluecker coordinate edge->start = tw.vertices[edge->vertexNum[0]].p; edge->end = tw.vertices[edge->vertexNum[1]].p; edge->pl.FromLine( edge->start, edge->end ); // calculate normal of plane through movement plane created by the edge dir = edge->start - edge->end; edge->cross[0] = dir[0] * tw.dir[1] - dir[1] * tw.dir[0]; edge->cross[1] = dir[0] * tw.dir[2] - dir[2] * tw.dir[0]; edge->cross[2] = dir[1] * tw.dir[2] - dir[2] * tw.dir[1]; // bit for vertex sidedness bit cache edge->bitNum = i; } // set trm plane distances for( poly = tw.polys, i = 0; i < tw.numPolys; i++, poly++ ) { if( poly->used ) { poly->plane.FitThroughPoint( tw.edges[abs( poly->edges[0] )].start ); } } // bounds for full trace, a little bit larger for epsilons for( i = 0; i < 3; i++ ) { if( tw.start[i] < tw.end[i] ) { tw.bounds[0][i] = tw.start[i] + tw.size[0][i] - CM_BOX_EPSILON; tw.bounds[1][i] = tw.end[i] + tw.size[1][i] + CM_BOX_EPSILON; } else { tw.bounds[0][i] = tw.end[i] + tw.size[0][i] - CM_BOX_EPSILON; tw.bounds[1][i] = tw.start[i] + tw.size[1][i] + CM_BOX_EPSILON; } if( idMath::Fabs( tw.size[0][i] ) > idMath::Fabs( tw.size[1][i] ) ) { tw.extents[i] = idMath::Fabs( tw.size[0][i] ) + CM_BOX_EPSILON; } else { tw.extents[i] = idMath::Fabs( tw.size[1][i] ) + CM_BOX_EPSILON; } } // setup trace heart planes idCollisionModelManagerLocal::SetupTranslationHeartPlanes( &tw ); tw.maxDistFromHeartPlane1 = 0; tw.maxDistFromHeartPlane2 = 0; // calculate maximum trm vertex distance from both heart planes for( vert = tw.vertices, i = 0; i < tw.numVerts; i++, vert++ ) { if( !vert->used ) { continue; } dist = idMath::Fabs( tw.heartPlane1.Distance( vert->p ) ); if( dist > tw.maxDistFromHeartPlane1 ) { tw.maxDistFromHeartPlane1 = dist; } dist = idMath::Fabs( tw.heartPlane2.Distance( vert->p ) ); if( dist > tw.maxDistFromHeartPlane2 ) { tw.maxDistFromHeartPlane2 = dist; } } // for epsilons tw.maxDistFromHeartPlane1 += CM_BOX_EPSILON; tw.maxDistFromHeartPlane2 += CM_BOX_EPSILON; // trace through the model idCollisionModelManagerLocal::TraceThroughModel( &tw ); // if we're getting contacts if( tw.getContacts ) { // move all contacts to world space if( model_rotated ) { for( i = 0; i < tw.numContacts; i++ ) { tw.contacts[i].normal *= modelAxis; tw.contacts[i].point *= modelAxis; } } if( modelOrigin != vec3_origin ) { for( i = 0; i < tw.numContacts; i++ ) { tw.contacts[i].point += modelOrigin; tw.contacts[i].dist += modelOrigin * tw.contacts[i].normal; } } idCollisionModelManagerLocal::numContacts = tw.numContacts; } else { // store results *results = tw.trace; results->endpos = start + results->fraction * ( end - start ); results->endAxis = trmAxis; if( results->fraction < 1.0f ) { // if the fraction is tiny the actual movement could end up zero if( results->fraction > 0.0f && results->endpos.Compare( start ) ) { results->fraction = 0.0f; } // rotate trace plane normal if there was a collision with a rotated model if( model_rotated ) { results->c.normal *= modelAxis; results->c.point *= modelAxis; } results->c.point += modelOrigin; results->c.dist += modelOrigin * results->c.normal; } } #ifdef _DEBUG // test for missed collisions if( cm_debugCollision.GetBool() ) { if( !entered && !idCollisionModelManagerLocal::getContacts ) { entered = 1; // if the trm is stuck in the model if( idCollisionModelManagerLocal::Contents( results->endpos, trm, trmAxis, -1, model, modelOrigin, modelAxis ) & contentMask ) { trace_t tr; // test where the trm is stuck in the model idCollisionModelManagerLocal::Contents( results->endpos, trm, trmAxis, -1, model, modelOrigin, modelAxis ); // re-run collision detection to find out where it failed idCollisionModelManagerLocal::Translation( &tr, start, end, trm, trmAxis, contentMask, model, modelOrigin, modelAxis ); } entered = 0; } } #endif }