/* * jccolor.c * * Copyright (C) 1991-1994, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains input colorspace conversion routines. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Private subobject */ typedef struct { struct jpeg_color_converter pub;/* public fields */ /* Private state for RGB->YCC conversion */ INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */ } my_color_converter; typedef my_color_converter * my_cconvert_ptr; /**************** RGB -> YCbCr conversion: most common case **************/ /* * YCbCr is defined per CCIR 601-1, except that Cb and Cr are * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. * The conversion equations to be implemented are therefore * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2, * rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0) * were not represented exactly. Now we sacrifice exact representation of * maximum red and maximum blue in order to get exact grayscales. * * To avoid floating-point arithmetic, we represent the fractional constants * as integers scaled up by 2^16 (about 4 digits precision); we have to divide * the products by 2^16, with appropriate rounding, to get the correct answer. * * For even more speed, we avoid doing any multiplications in the inner loop * by precalculating the constants times R,G,B for all possible values. * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); * for 12-bit samples it is still acceptable. It's not very reasonable for * 16-bit samples, but if you want lossless storage you shouldn't be changing * colorspace anyway. * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included * in the tables to save adding them separately in the inner loop. */ #define SCALEBITS 16 /* speediest right-shift on some machines */ #define CBCR_OFFSET ( (INT32) CENTERJSAMPLE << SCALEBITS ) #define ONE_HALF ( (INT32) 1 << ( SCALEBITS - 1 ) ) #define FIX( x ) ( (INT32) ( ( x ) * ( 1L << SCALEBITS ) + 0.5 ) ) /* We allocate one big table and divide it up into eight parts, instead of * doing eight alloc_small requests. This lets us use a single table base * address, which can be held in a register in the inner loops on many * machines (more than can hold all eight addresses, anyway). */ #define R_Y_OFF 0 /* offset to R => Y section */ #define G_Y_OFF ( 1 * ( MAXJSAMPLE + 1 ) ) /* offset to G => Y section */ #define B_Y_OFF ( 2 * ( MAXJSAMPLE + 1 ) ) /* etc. */ #define R_CB_OFF ( 3 * ( MAXJSAMPLE + 1 ) ) #define G_CB_OFF ( 4 * ( MAXJSAMPLE + 1 ) ) #define B_CB_OFF ( 5 * ( MAXJSAMPLE + 1 ) ) #define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */ #define G_CR_OFF ( 6 * ( MAXJSAMPLE + 1 ) ) #define B_CR_OFF ( 7 * ( MAXJSAMPLE + 1 ) ) #define TABLE_SIZE ( 8 * ( MAXJSAMPLE + 1 ) ) /* * Initialize for RGB->YCC colorspace conversion. */ METHODDEF void rgb_ycc_start( j_compress_ptr cinfo ) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; INT32 * rgb_ycc_tab; INT32 i; /* Allocate and fill in the conversion tables. */ cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *) ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE, ( TABLE_SIZE * SIZEOF( INT32 ) ) ); for ( i = 0; i <= MAXJSAMPLE; i++ ) { rgb_ycc_tab[i + R_Y_OFF] = FIX( 0.29900 ) * i; rgb_ycc_tab[i + G_Y_OFF] = FIX( 0.58700 ) * i; rgb_ycc_tab[i + B_Y_OFF] = FIX( 0.11400 ) * i + ONE_HALF; rgb_ycc_tab[i + R_CB_OFF] = ( -FIX( 0.16874 ) ) * i; rgb_ycc_tab[i + G_CB_OFF] = ( -FIX( 0.33126 ) ) * i; /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr. * This ensures that the maximum output will round to MAXJSAMPLE * not MAXJSAMPLE+1, and thus that we don't have to range-limit. */ rgb_ycc_tab[i + B_CB_OFF] = FIX( 0.50000 ) * i + CBCR_OFFSET + ONE_HALF - 1; /* B=>Cb and R=>Cr tables are the same rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; */ rgb_ycc_tab[i + G_CR_OFF] = ( -FIX( 0.41869 ) ) * i; rgb_ycc_tab[i + B_CR_OFF] = ( -FIX( 0.08131 ) ) * i; } } /* * Convert some rows of samples to the JPEG colorspace. * * Note that we change from the application's interleaved-pixel format * to our internal noninterleaved, one-plane-per-component format. * The input buffer is therefore three times as wide as the output buffer. * * A starting row offset is provided only for the output buffer. The caller * can easily adjust the passed input_buf value to accommodate any row * offset required on that side. */ METHODDEF void rgb_ycc_convert( j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows ) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int r, g, b; register INT32 * ctab = cconvert->rgb_ycc_tab; register JSAMPROW inptr; register JSAMPROW outptr0, outptr1, outptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; while ( --num_rows >= 0 ) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; output_row++; for ( col = 0; col < num_cols; col++ ) { r = GETJSAMPLE( inptr[RGB_RED] ); g = GETJSAMPLE( inptr[RGB_GREEN] ); b = GETJSAMPLE( inptr[RGB_BLUE] ); inptr += RGB_PIXELSIZE; /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations * must be too; we do not need an explicit range-limiting operation. * Hence the value being shifted is never negative, and we don't * need the general RIGHT_SHIFT macro. */ /* Y */ outptr0[col] = (JSAMPLE) ( ( ctab[r + R_Y_OFF] + ctab[g + G_Y_OFF] + ctab[b + B_Y_OFF] ) >> SCALEBITS ); /* Cb */ outptr1[col] = (JSAMPLE) ( ( ctab[r + R_CB_OFF] + ctab[g + G_CB_OFF] + ctab[b + B_CB_OFF] ) >> SCALEBITS ); /* Cr */ outptr2[col] = (JSAMPLE) ( ( ctab[r + R_CR_OFF] + ctab[g + G_CR_OFF] + ctab[b + B_CR_OFF] ) >> SCALEBITS ); } } } /**************** Cases other than RGB -> YCbCr **************/ /* * Convert some rows of samples to the JPEG colorspace. * This version handles RGB->grayscale conversion, which is the same * as the RGB->Y portion of RGB->YCbCr. * We assume rgb_ycc_start has been called (we only use the Y tables). */ METHODDEF void rgb_gray_convert( j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows ) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int r, g, b; register INT32 * ctab = cconvert->rgb_ycc_tab; register JSAMPROW inptr; register JSAMPROW outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; while ( --num_rows >= 0 ) { inptr = *input_buf++; outptr = output_buf[0][output_row]; output_row++; for ( col = 0; col < num_cols; col++ ) { r = GETJSAMPLE( inptr[RGB_RED] ); g = GETJSAMPLE( inptr[RGB_GREEN] ); b = GETJSAMPLE( inptr[RGB_BLUE] ); inptr += RGB_PIXELSIZE; /* Y */ outptr[col] = (JSAMPLE) ( ( ctab[r + R_Y_OFF] + ctab[g + G_Y_OFF] + ctab[b + B_Y_OFF] ) >> SCALEBITS ); } } } /* * Convert some rows of samples to the JPEG colorspace. * This version handles Adobe-style CMYK->YCCK conversion, * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same * conversion as above, while passing K (black) unchanged. * We assume rgb_ycc_start has been called. */ METHODDEF void cmyk_ycck_convert( j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows ) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int r, g, b; register INT32 * ctab = cconvert->rgb_ycc_tab; register JSAMPROW inptr; register JSAMPROW outptr0, outptr1, outptr2, outptr3; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; while ( --num_rows >= 0 ) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; outptr3 = output_buf[3][output_row]; output_row++; for ( col = 0; col < num_cols; col++ ) { r = MAXJSAMPLE - GETJSAMPLE( inptr[0] ); g = MAXJSAMPLE - GETJSAMPLE( inptr[1] ); b = MAXJSAMPLE - GETJSAMPLE( inptr[2] ); /* K passes through as-is */ outptr3[col] = inptr[3];/* don't need GETJSAMPLE here */ inptr += 4; /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations * must be too; we do not need an explicit range-limiting operation. * Hence the value being shifted is never negative, and we don't * need the general RIGHT_SHIFT macro. */ /* Y */ outptr0[col] = (JSAMPLE) ( ( ctab[r + R_Y_OFF] + ctab[g + G_Y_OFF] + ctab[b + B_Y_OFF] ) >> SCALEBITS ); /* Cb */ outptr1[col] = (JSAMPLE) ( ( ctab[r + R_CB_OFF] + ctab[g + G_CB_OFF] + ctab[b + B_CB_OFF] ) >> SCALEBITS ); /* Cr */ outptr2[col] = (JSAMPLE) ( ( ctab[r + R_CR_OFF] + ctab[g + G_CR_OFF] + ctab[b + B_CR_OFF] ) >> SCALEBITS ); } } } /* * Convert some rows of samples to the JPEG colorspace. * This version handles grayscale output with no conversion. * The source can be either plain grayscale or YCbCr (since Y == gray). */ METHODDEF void grayscale_convert( j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows ) { register JSAMPROW inptr; register JSAMPROW outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; int instride = cinfo->input_components; while ( --num_rows >= 0 ) { inptr = *input_buf++; outptr = output_buf[0][output_row]; output_row++; for ( col = 0; col < num_cols; col++ ) { outptr[col] = inptr[0];/* don't need GETJSAMPLE() here */ inptr += instride; } } } /* * Convert some rows of samples to the JPEG colorspace. * This version handles multi-component colorspaces without conversion. * We assume input_components == num_components. */ METHODDEF void null_convert( j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows ) { register JSAMPROW inptr; register JSAMPROW outptr; register JDIMENSION col; register int ci; int nc = cinfo->num_components; JDIMENSION num_cols = cinfo->image_width; while ( --num_rows >= 0 ) { /* It seems fastest to make a separate pass for each component. */ for ( ci = 0; ci < nc; ci++ ) { inptr = *input_buf; outptr = output_buf[ci][output_row]; for ( col = 0; col < num_cols; col++ ) { outptr[col] = inptr[ci];/* don't need GETJSAMPLE() here */ inptr += nc; } } input_buf++; output_row++; } } /* * Empty method for start_pass. */ METHODDEF void null_method( j_compress_ptr cinfo ) { /* no work needed */ } /* * Module initialization routine for input colorspace conversion. */ GLOBAL void jinit_color_converter( j_compress_ptr cinfo ) { my_cconvert_ptr cconvert; cconvert = (my_cconvert_ptr) ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF( my_color_converter ) ); cinfo->cconvert = (struct jpeg_color_converter *) cconvert; /* set start_pass to null method until we find out differently */ cconvert->pub.start_pass = null_method; /* Make sure input_components agrees with in_color_space */ switch ( cinfo->in_color_space ) { case JCS_GRAYSCALE: if ( cinfo->input_components != 1 ) { ERREXIT( cinfo, JERR_BAD_IN_COLORSPACE ); } break; case JCS_RGB: #if RGB_PIXELSIZE != 3 if ( cinfo->input_components != RGB_PIXELSIZE ) { ERREXIT( cinfo, JERR_BAD_IN_COLORSPACE ); } break; #endif /* else share code with YCbCr */ case JCS_YCbCr: if ( cinfo->input_components != 3 ) { ERREXIT( cinfo, JERR_BAD_IN_COLORSPACE ); } break; case JCS_CMYK: case JCS_YCCK: if ( cinfo->input_components != 4 ) { ERREXIT( cinfo, JERR_BAD_IN_COLORSPACE ); } break; default: /* JCS_UNKNOWN can be anything */ if ( cinfo->input_components < 1 ) { ERREXIT( cinfo, JERR_BAD_IN_COLORSPACE ); } break; } /* Check num_components, set conversion method based on requested space */ switch ( cinfo->jpeg_color_space ) { case JCS_GRAYSCALE: if ( cinfo->num_components != 1 ) { ERREXIT( cinfo, JERR_BAD_J_COLORSPACE ); } if ( cinfo->in_color_space == JCS_GRAYSCALE ) { cconvert->pub.color_convert = grayscale_convert; } else if ( cinfo->in_color_space == JCS_RGB ) { cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = rgb_gray_convert; } else if ( cinfo->in_color_space == JCS_YCbCr ) { cconvert->pub.color_convert = grayscale_convert; } else { ERREXIT( cinfo, JERR_CONVERSION_NOTIMPL ); } break; case JCS_RGB: if ( cinfo->num_components != 3 ) { ERREXIT( cinfo, JERR_BAD_J_COLORSPACE ); } if ( ( cinfo->in_color_space == JCS_RGB ) && ( RGB_PIXELSIZE == 3 ) ) { cconvert->pub.color_convert = null_convert; } else { ERREXIT( cinfo, JERR_CONVERSION_NOTIMPL ); } break; case JCS_YCbCr: if ( cinfo->num_components != 3 ) { ERREXIT( cinfo, JERR_BAD_J_COLORSPACE ); } if ( cinfo->in_color_space == JCS_RGB ) { cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = rgb_ycc_convert; } else if ( cinfo->in_color_space == JCS_YCbCr ) { cconvert->pub.color_convert = null_convert; } else { ERREXIT( cinfo, JERR_CONVERSION_NOTIMPL ); } break; case JCS_CMYK: if ( cinfo->num_components != 4 ) { ERREXIT( cinfo, JERR_BAD_J_COLORSPACE ); } if ( cinfo->in_color_space == JCS_CMYK ) { cconvert->pub.color_convert = null_convert; } else { ERREXIT( cinfo, JERR_CONVERSION_NOTIMPL ); } break; case JCS_YCCK: if ( cinfo->num_components != 4 ) { ERREXIT( cinfo, JERR_BAD_J_COLORSPACE ); } if ( cinfo->in_color_space == JCS_CMYK ) { cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = cmyk_ycck_convert; } else if ( cinfo->in_color_space == JCS_YCCK ) { cconvert->pub.color_convert = null_convert; } else { ERREXIT( cinfo, JERR_CONVERSION_NOTIMPL ); } break; default: /* allow null conversion of JCS_UNKNOWN */ if ( ( cinfo->jpeg_color_space != cinfo->in_color_space ) || ( cinfo->num_components != cinfo->input_components ) ) { ERREXIT( cinfo, JERR_CONVERSION_NOTIMPL ); } cconvert->pub.color_convert = null_convert; break; } }