/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. Copyright (C) 2013-2024 Robert Beckebans Copyright (C) 2022 Stephen Pridham This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "precompiled.h" #pragma hdrstop #include "imgui.h" #include "RenderCommon.h" #include "SMAA/AreaTex.h" #include "SMAA/SearchTex.h" #include "Image_brdfLut.h" //#include "Image_blueNoiseVC_1M.h" // 256^2 R8 data #include "Image_blueNoiseVC_2.h" // 512^2 RGB8 data #include "Image_env_UAC_lobby_amb.h" #include "Image_env_UAC_lobby_spec.h" #define DEFAULT_SIZE 16 /* ================== idImage::MakeDefault the default image will be grey with a white box outline to allow you to see the mapping coordinates on a surface ================== */ void idImage::MakeDefault( nvrhi::ICommandList* commandList ) { int x, y; byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; if( com_developer.GetBool() ) { // grey center for( y = 0 ; y < DEFAULT_SIZE ; y++ ) { for( x = 0 ; x < DEFAULT_SIZE ; x++ ) { data[y][x][0] = 32; data[y][x][1] = 32; data[y][x][2] = 32; data[y][x][3] = 255; } } // white border for( x = 0 ; x < DEFAULT_SIZE ; x++ ) { data[0][x][0] = data[0][x][1] = data[0][x][2] = data[0][x][3] = 255; data[x][0][0] = data[x][0][1] = data[x][0][2] = data[x][0][3] = 255; data[DEFAULT_SIZE - 1][x][0] = data[DEFAULT_SIZE - 1][x][1] = data[DEFAULT_SIZE - 1][x][2] = data[DEFAULT_SIZE - 1][x][3] = 255; data[x][DEFAULT_SIZE - 1][0] = data[x][DEFAULT_SIZE - 1][1] = data[x][DEFAULT_SIZE - 1][2] = data[x][DEFAULT_SIZE - 1][3] = 255; } } else { for( y = 0 ; y < DEFAULT_SIZE ; y++ ) { for( x = 0 ; x < DEFAULT_SIZE ; x++ ) { data[y][x][0] = 0; data[y][x][1] = 0; data[y][x][2] = 0; data[y][x][3] = 0; } } } GenerateImage( ( byte* )data, DEFAULT_SIZE, DEFAULT_SIZE, TF_DEFAULT, TR_REPEAT, TD_DEFAULT, commandList ); defaulted = true; } static void R_DefaultImage( idImage* image, nvrhi::ICommandList* commandList ) { image->MakeDefault( commandList ); } static void R_WhiteImage( idImage* image, nvrhi::ICommandList* commandList ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; // solid white texture memset( data, 255, sizeof( data ) ); image->GenerateImage( ( byte* )data, DEFAULT_SIZE, DEFAULT_SIZE, TF_DEFAULT, TR_REPEAT, TD_DEFAULT, commandList ); } static void R_BlackImage( idImage* image, nvrhi::ICommandList* commandList ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; // solid black texture memset( data, 0, sizeof( data ) ); image->GenerateImage( ( byte* )data, DEFAULT_SIZE, DEFAULT_SIZE, TF_DEFAULT, TR_REPEAT, TD_DEFAULT, commandList ); } static void R_BlackDiffuseImage( idImage* image, nvrhi::ICommandList* commandList ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; // solid black texture memset( data, 0, sizeof( data ) ); image->GenerateImage( ( byte* )data, DEFAULT_SIZE, DEFAULT_SIZE, TF_DEFAULT, TR_REPEAT, TD_DIFFUSE, commandList ); } static void R_CyanImage( idImage* image, nvrhi::ICommandList* commandList ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; for( int x = 0; x < DEFAULT_SIZE; x++ ) { for( int y = 0; y < DEFAULT_SIZE; y++ ) { data[y][x][0] = byte( colorCyan.x * 255 ); data[y][x][1] = byte( colorCyan.y * 255 ); data[y][x][2] = byte( colorCyan.z * 255 ); data[y][x][3] = byte( colorCyan.w * 255 ); } } image->GenerateImage( ( byte* )data, DEFAULT_SIZE, DEFAULT_SIZE, TF_DEFAULT, TR_REPEAT, TD_DIFFUSE, commandList ); } static void R_ChromeSpecImage( idImage* image, nvrhi::ICommandList* commandList ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; for( int x = 0; x < DEFAULT_SIZE; x++ ) { for( int y = 0; y < DEFAULT_SIZE; y++ ) { data[y][x][0] = 0; data[y][x][1] = 255; data[y][x][2] = 255; data[y][x][3] = 255; } } image->GenerateImage( ( byte* )data, DEFAULT_SIZE, DEFAULT_SIZE, TF_DEFAULT, TR_REPEAT, TD_SPECULAR_PBR_RMAO, commandList ); } static void R_PlasticSpecImage( idImage* image, nvrhi::ICommandList* commandList ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; for( int x = 0; x < DEFAULT_SIZE; x++ ) { for( int y = 0; y < DEFAULT_SIZE; y++ ) { data[y][x][0] = 0; data[y][x][1] = 0; data[y][x][2] = 255; data[y][x][3] = 255; } } image->GenerateImage( ( byte* )data, DEFAULT_SIZE, DEFAULT_SIZE, TF_DEFAULT, TR_REPEAT, TD_SPECULAR_PBR_RMAO, commandList ); } static void R_RGBA8Image( idImage* image, nvrhi::ICommandList* commandList ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; memset( data, 0, sizeof( data ) ); data[0][0][0] = 16; data[0][0][1] = 32; data[0][0][2] = 48; data[0][0][3] = 96; image->GenerateImage( ( byte* )data, DEFAULT_SIZE, DEFAULT_SIZE, TF_DEFAULT, TR_REPEAT, TD_LOOKUP_TABLE_RGBA, commandList ); } static void R_RGBA8Image_RT( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( nullptr, 512, 512, TF_NEAREST, TR_CLAMP, TD_LOOKUP_TABLE_RGBA, nullptr, true, false, 1 ); } static void R_RGBA8LinearImage( idImage* image, nvrhi::ICommandList* commandList ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; memset( data, 0, sizeof( data ) ); data[0][0][0] = 16; data[0][0][1] = 32; data[0][0][2] = 48; data[0][0][3] = 96; image->GenerateImage( ( byte* )data, DEFAULT_SIZE, DEFAULT_SIZE, TF_LINEAR, TR_REPEAT, TD_LOOKUP_TABLE_RGBA, commandList ); } static void R_LdrNativeImage( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_NEAREST, TR_CLAMP, TD_LOOKUP_TABLE_RGBA, nullptr, true, false, 1 ); } static void R_DepthImage( idImage* image, nvrhi::ICommandList* commandList ) { uint sampleCount = R_GetMSAASamples(); image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_NEAREST, TR_CLAMP, TD_DEPTH_STENCIL, nullptr, true, false, sampleCount ); } // RB begin static void R_HDR_RGBA16FImage_ResNative_MSAAOpt( idImage* image, nvrhi::ICommandList* commandList ) { uint sampleCount = R_GetMSAASamples(); image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_NEAREST, TR_CLAMP, TD_RGBA16F, nullptr, true, sampleCount == 1, sampleCount ); } static void R_HDR_RG16FImage_ResNative( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_NEAREST, TR_CLAMP, TD_RG16F, nullptr, true ); } static void R_HDR_RGBA16FImage_ResNative( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_NEAREST, TR_CLAMP, TD_RGBA16F, nullptr, true ); } static void R_HDR_RGBA16FImage_ResNative_UAV( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_NEAREST, TR_CLAMP, TD_RGBA16F, nullptr, true, true ); } static void R_HDR_RGBA16SImage_ResNative_UAV( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_NEAREST, TR_CLAMP, TD_RGBA16S, nullptr, true, true ); } static void R_HDR_RGBA16FImage_ResGui( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, SCREEN_WIDTH, SCREEN_HEIGHT, TF_NEAREST, TR_CLAMP, TD_RGBA16F, nullptr, true ); } static void R_RGBA8Image_ResGui( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, SCREEN_WIDTH, SCREEN_HEIGHT, TF_DEFAULT, TR_CLAMP, TD_LOOKUP_TABLE_RGBA, nullptr, true ); } static void R_HDR_RGBA16FImage_ResNative_Linear( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_NEAREST, TR_CLAMP, TD_RGBA16F, nullptr, true ); } static void R_HDR_RGBA16FImage_ResNative_NoMSAA( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_NEAREST, TR_CLAMP, TD_RGBA16F, nullptr, true ); } static void R_HDR_RGBA16FImage_ResQuarter( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth() / 4, renderSystem->GetHeight() / 4, TF_NEAREST, TR_CLAMP, TD_RGBA16F, nullptr, true ); } static void R_HDR_RGBA16FImage_ResQuarter_Linear( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth() / 4, renderSystem->GetHeight() / 4, TF_LINEAR, TR_CLAMP, TD_LOOKUP_TABLE_RGBA, nullptr, true ); } static void R_HDR_RGBA16FImage_Res64( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, 64, 64, TF_NEAREST, TR_CLAMP, TD_RGBA16F, nullptr, true ); } static void R_EnvprobeImage_HDR( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, ENVPROBE_CAPTURE_SIZE, ENVPROBE_CAPTURE_SIZE, TF_NEAREST, TR_CLAMP, TD_RGBA16F, nullptr, true ); } static void R_EnvprobeImage_Depth( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, ENVPROBE_CAPTURE_SIZE, ENVPROBE_CAPTURE_SIZE, TF_NEAREST, TR_CLAMP, TD_DEPTH_STENCIL, nullptr, true ); } static void R_SMAAImage_ResNative( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_LINEAR, TR_CLAMP, TD_LOOKUP_TABLE_RGBA, nullptr, true ); } static void R_AmbientOcclusionImage_ResNative( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_LINEAR, TR_CLAMP, TD_R8F, nullptr, true, true ); } static void R_GeometryBufferImage_ResNative( idImage* image, nvrhi::ICommandList* commandList ) { uint sampleCount = R_GetMSAASamples(); image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_LINEAR, TR_CLAMP, TD_RGBA16F, nullptr, true, false, sampleCount ); } static void R_SSAOImage_ResHalf( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth() / 2, renderSystem->GetHeight() / 2, TF_LINEAR, TR_CLAMP, TD_LOOKUP_TABLE_RGBA, nullptr, true ); } static void R_HierarchicalZBufferImage_ResNative( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_NEAREST_MIPMAP, TR_CLAMP, TD_R32F, nullptr, true, true ); } static void R_R8Image_ResNative_Linear( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_LINEAR, TR_CLAMP, TD_LOOKUP_TABLE_MONO, nullptr, true ); } // RB end static void R_HDR_RGBA8Image_ResNative( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, renderSystem->GetWidth(), renderSystem->GetHeight(), TF_NEAREST, TR_CLAMP, TD_LOOKUP_TABLE_RGBA, commandList, true ); } static void R_AlphaNotchImage( idImage* image, nvrhi::ICommandList* commandList ) { byte data[2][4]; // this is used for alpha test clip planes data[0][0] = data[0][1] = data[0][2] = 255; data[0][3] = 0; data[1][0] = data[1][1] = data[1][2] = 255; data[1][3] = 255; image->GenerateImage( ( byte* )data, 2, 1, TF_NEAREST, TR_CLAMP, TD_LOOKUP_TABLE_ALPHA, commandList ); } static void R_FlatNormalImage( idImage* image, nvrhi::ICommandList* commandList ) { byte data[DEFAULT_SIZE][DEFAULT_SIZE][4]; // flat normal map for default bump mapping for( int i = 0; i < DEFAULT_SIZE; i++ ) { for( int j = 0; j < DEFAULT_SIZE; j++ ) { data[j][i][0] = 128; data[j][i][1] = 128; data[j][i][2] = 255; data[j][i][3] = 255; } } image->GenerateImage( ( byte* )data, 16, 16, TF_DEFAULT, TR_REPEAT, TD_BUMP, commandList ); } /* ================ R_CreateNoFalloffImage This is a solid white texture that is zero clamped. ================ */ static void R_CreateNoFalloffImage( idImage* image, nvrhi::ICommandList* commandList ) { int x, y; byte data[16][FALLOFF_TEXTURE_SIZE][4]; memset( data, 0, sizeof( data ) ); for( x = 1 ; x < FALLOFF_TEXTURE_SIZE - 1 ; x++ ) { for( y = 1 ; y < 15 ; y++ ) { data[y][x][0] = 255; data[y][x][1] = 255; data[y][x][2] = 255; data[y][x][3] = 255; } } image->GenerateImage( ( byte* )data, FALLOFF_TEXTURE_SIZE, 16, TF_DEFAULT, TR_CLAMP_TO_ZERO, TD_LOOKUP_TABLE_MONO, commandList ); } /* ================ R_FogImage We calculate distance correctly in two planes, but the third will still be projection based ================ */ const int FOG_SIZE = 128; void R_FogImage( idImage* image, nvrhi::ICommandList* commandList ) { int x, y; byte data[FOG_SIZE][FOG_SIZE][4]; int b; float step[256]; int i; float remaining = 1.0; for( i = 0 ; i < 256 ; i++ ) { step[i] = remaining; remaining *= 0.982f; } for( x = 0 ; x < FOG_SIZE ; x++ ) { for( y = 0 ; y < FOG_SIZE ; y++ ) { float d; d = idMath::Sqrt( ( x - FOG_SIZE / 2 ) * ( x - FOG_SIZE / 2 ) + ( y - FOG_SIZE / 2 ) * ( y - FOG_SIZE / 2 ) ); d /= FOG_SIZE / 2 - 1; b = ( byte )( d * 255 ); if( b <= 0 ) { b = 0; } else if( b > 255 ) { b = 255; } b = ( byte )( 255 * ( 1.0 - step[b] ) ); if( x == 0 || x == FOG_SIZE - 1 || y == 0 || y == FOG_SIZE - 1 ) { b = 255; // avoid clamping issues } data[y][x][0] = data[y][x][1] = data[y][x][2] = 255; data[y][x][3] = b; } } image->GenerateImage( ( byte* )data, FOG_SIZE, FOG_SIZE, TF_LINEAR, TR_CLAMP, TD_LOOKUP_TABLE_ALPHA, commandList ); } /* ================ FogFraction Height values below zero are inside the fog volume ================ */ static const float RAMP_RANGE = 8; static const float DEEP_RANGE = -30; static float FogFraction( float viewHeight, float targetHeight ) { float total = idMath::Fabs( targetHeight - viewHeight ); // return targetHeight >= 0 ? 0 : 1.0; // only ranges that cross the ramp range are special if( targetHeight > 0 && viewHeight > 0 ) { return 0.0; } if( targetHeight < -RAMP_RANGE && viewHeight < -RAMP_RANGE ) { return 1.0; } float above; if( targetHeight > 0 ) { above = targetHeight; } else if( viewHeight > 0 ) { above = viewHeight; } else { above = 0; } float rampTop, rampBottom; if( viewHeight > targetHeight ) { rampTop = viewHeight; rampBottom = targetHeight; } else { rampTop = targetHeight; rampBottom = viewHeight; } if( rampTop > 0 ) { rampTop = 0; } if( rampBottom < -RAMP_RANGE ) { rampBottom = -RAMP_RANGE; } float rampSlope = 1.0 / RAMP_RANGE; if( !total ) { return -viewHeight * rampSlope; } float ramp = ( 1.0 - ( rampTop * rampSlope + rampBottom * rampSlope ) * -0.5 ) * ( rampTop - rampBottom ); float frac = ( total - above - ramp ) / total; // after it gets moderately deep, always use full value float deepest = viewHeight < targetHeight ? viewHeight : targetHeight; float deepFrac = deepest / DEEP_RANGE; if( deepFrac >= 1.0 ) { return 1.0; } frac = frac * ( 1.0 - deepFrac ) + deepFrac; return frac; } /* ================ R_FogEnterImage Modulate the fog alpha density based on the distance of the start and end points to the terminator plane ================ */ void R_FogEnterImage( idImage* image, nvrhi::ICommandList* commandList ) { int x, y; byte data[FOG_ENTER_SIZE][FOG_ENTER_SIZE][4]; int b; for( x = 0 ; x < FOG_ENTER_SIZE ; x++ ) { for( y = 0 ; y < FOG_ENTER_SIZE ; y++ ) { float d; d = FogFraction( x - ( FOG_ENTER_SIZE / 2 ), y - ( FOG_ENTER_SIZE / 2 ) ); b = ( byte )( d * 255 ); if( b <= 0 ) { b = 0; } else if( b > 255 ) { b = 255; } data[y][x][0] = data[y][x][1] = data[y][x][2] = 255; data[y][x][3] = b; } } // if mipmapped, acutely viewed surfaces fade wrong image->GenerateImage( ( byte* )data, FOG_ENTER_SIZE, FOG_ENTER_SIZE, TF_LINEAR, TR_CLAMP, TD_LOOKUP_TABLE_ALPHA, commandList ); } /* ================ R_QuadraticImage ================ */ static const int QUADRATIC_WIDTH = 32; static const int QUADRATIC_HEIGHT = 4; void R_QuadraticImage( idImage* image, nvrhi::ICommandList* commandList ) { int x, y; byte data[QUADRATIC_HEIGHT][QUADRATIC_WIDTH][4]; int b; for( x = 0 ; x < QUADRATIC_WIDTH ; x++ ) { for( y = 0 ; y < QUADRATIC_HEIGHT ; y++ ) { float d; d = x - ( QUADRATIC_WIDTH / 2 - 0.5 ); d = idMath::Fabs( d ); d -= 0.5; d /= QUADRATIC_WIDTH / 2; d = 1.0 - d; d = d * d; b = ( byte )( d * 255 ); if( b <= 0 ) { b = 0; } else if( b > 255 ) { b = 255; } data[y][x][0] = data[y][x][1] = data[y][x][2] = b; data[y][x][3] = 255; } } image->GenerateImage( ( byte* )data, QUADRATIC_WIDTH, QUADRATIC_HEIGHT, TF_DEFAULT, TR_CLAMP, TD_LOOKUP_TABLE_RGB1, commandList ); } // RB begin static void R_CreateShadowMapImage_Atlas( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( NULL, r_shadowMapAtlasSize.GetInteger(), r_shadowMapAtlasSize.GetInteger(), TF_LINEAR, TR_CLAMP_TO_ZERO_ALPHA, TD_DEPTH, commandList, true ); } static void R_CreateShadowMapImage_Res0( idImage* image, nvrhi::ICommandList* commandList ) { int size = shadowMapResolutions[0]; image->GenerateShadowArray( size, size, TF_LINEAR, TR_CLAMP_TO_ZERO_ALPHA, TD_SHADOW_ARRAY, commandList ); } static void R_CreateShadowMapImage_Res1( idImage* image, nvrhi::ICommandList* commandList ) { int size = shadowMapResolutions[1]; image->GenerateShadowArray( size, size, TF_LINEAR, TR_CLAMP_TO_ZERO_ALPHA, TD_SHADOW_ARRAY, commandList ); } static void R_CreateShadowMapImage_Res2( idImage* image, nvrhi::ICommandList* commandList ) { int size = shadowMapResolutions[2]; image->GenerateShadowArray( size, size, TF_LINEAR, TR_CLAMP_TO_ZERO_ALPHA, TD_SHADOW_ARRAY, commandList ); } static void R_CreateShadowMapImage_Res3( idImage* image, nvrhi::ICommandList* commandList ) { int size = shadowMapResolutions[3]; image->GenerateShadowArray( size, size, TF_LINEAR, TR_CLAMP_TO_ZERO_ALPHA, TD_SHADOW_ARRAY, commandList ); } static void R_CreateShadowMapImage_Res4( idImage* image, nvrhi::ICommandList* commandList ) { int size = shadowMapResolutions[4]; image->GenerateShadowArray( size, size, TF_LINEAR, TR_CLAMP_TO_ZERO_ALPHA, TD_SHADOW_ARRAY, commandList ); } const static int JITTER_SIZE = 128; static void R_CreateJitterImage16( idImage* image, nvrhi::ICommandList* commandList ) { static byte data[JITTER_SIZE][JITTER_SIZE * 16][4]; for( int i = 0 ; i < JITTER_SIZE ; i++ ) { for( int s = 0 ; s < 16 ; s++ ) { int sOfs = 64 * ( s & 3 ); int tOfs = 64 * ( ( s >> 2 ) & 3 ); for( int j = 0 ; j < JITTER_SIZE ; j++ ) { data[i][s * JITTER_SIZE + j][0] = ( rand() & 63 ) | sOfs; data[i][s * JITTER_SIZE + j][1] = ( rand() & 63 ) | tOfs; data[i][s * JITTER_SIZE + j][2] = rand(); data[i][s * JITTER_SIZE + j][3] = 0; } } } image->GenerateImage( ( byte* )data, JITTER_SIZE * 16, JITTER_SIZE, TF_NEAREST, TR_REPEAT, TD_LOOKUP_TABLE_RGBA, commandList ); } static void R_CreateJitterImage4( idImage* image, nvrhi::ICommandList* commandList ) { byte data[JITTER_SIZE][JITTER_SIZE * 4][4]; for( int i = 0 ; i < JITTER_SIZE ; i++ ) { for( int s = 0 ; s < 4 ; s++ ) { int sOfs = 128 * ( s & 1 ); int tOfs = 128 * ( ( s >> 1 ) & 1 ); for( int j = 0 ; j < JITTER_SIZE ; j++ ) { data[i][s * JITTER_SIZE + j][0] = ( rand() & 127 ) | sOfs; data[i][s * JITTER_SIZE + j][1] = ( rand() & 127 ) | tOfs; data[i][s * JITTER_SIZE + j][2] = rand(); data[i][s * JITTER_SIZE + j][3] = 0; } } } image->GenerateImage( ( byte* )data, JITTER_SIZE * 4, JITTER_SIZE, TF_NEAREST, TR_REPEAT, TD_LOOKUP_TABLE_RGBA, commandList ); } static void R_CreateJitterImage1( idImage* image, nvrhi::ICommandList* commandList ) { byte data[JITTER_SIZE][JITTER_SIZE][4]; for( int i = 0 ; i < JITTER_SIZE ; i++ ) { for( int j = 0 ; j < JITTER_SIZE ; j++ ) { data[i][j][0] = rand(); data[i][j][1] = rand(); data[i][j][2] = rand(); data[i][j][3] = 0; } } image->GenerateImage( ( byte* )data, JITTER_SIZE, JITTER_SIZE, TF_NEAREST, TR_REPEAT, TD_LOOKUP_TABLE_RGBA, commandList ); } static void R_CreateRandom256Image( idImage* image, nvrhi::ICommandList* commandList ) { byte data[256][256][4]; for( int i = 0 ; i < 256 ; i++ ) { for( int j = 0 ; j < 256 ; j++ ) { data[i][j][0] = rand(); data[i][j][1] = rand(); data[i][j][2] = rand(); data[i][j][3] = rand(); } } image->GenerateImage( ( byte* )data, 256, 256, TF_NEAREST, TR_REPEAT, TD_LOOKUP_TABLE_RGBA, commandList ); } // RB static void R_CreateBlueNoise256Image( idImage* image, nvrhi::ICommandList* commandList ) { static byte data[BLUENOISE_TEX_HEIGHT][BLUENOISE_TEX_WIDTH][4]; for( int x = 0; x < BLUENOISE_TEX_WIDTH; x++ ) { for( int y = 0; y < BLUENOISE_TEX_HEIGHT; y++ ) { #if 1 data[x][y][0] = blueNoiseTexBytes[ y * BLUENOISE_TEX_PITCH + x * 3 + 0 ]; data[x][y][1] = blueNoiseTexBytes[ y * BLUENOISE_TEX_PITCH + x * 3 + 1 ]; data[x][y][2] = blueNoiseTexBytes[ y * BLUENOISE_TEX_PITCH + x * 3 + 2 ]; #else data[x][y][0] = blueNoiseTexBytes[ y * BLUENOISE_TEX_PITCH + x ]; data[x][y][1] = blueNoiseTexBytes[ y * BLUENOISE_TEX_PITCH + x ]; data[x][y][2] = blueNoiseTexBytes[ y * BLUENOISE_TEX_PITCH + x ]; #endif data[x][y][3] = 1; } } image->GenerateImage( ( byte* )data, BLUENOISE_TEX_WIDTH, BLUENOISE_TEX_HEIGHT, TF_NEAREST, TR_REPEAT, TD_LOOKUP_TABLE_RGBA, commandList ); } static void R_CreateHeatmap5ColorsImage( idImage* image, nvrhi::ICommandList* commandList ) { int x, y; byte data[16][FALLOFF_TEXTURE_SIZE][4]; const int numColors = 5; static idVec4 colors[numColors] = { colorBlue, colorCyan, colorGreen, colorYellow, colorRed }; memset( data, 0, sizeof( data ) ); for( x = 0 ; x < FALLOFF_TEXTURE_SIZE; x++ ) { int index1, index2; float value = x / ( float )FALLOFF_TEXTURE_SIZE; float lerp = 0.0f; if( value <= 0.0 ) { index1 = index2 = 0; } else if( value >= 1.0f ) { index1 = index2 = numColors - 1; } else { value = value * ( numColors - 1 ); index1 = idMath::Floor( value ); index2 = index1 + 1; lerp = value - float( index1 ); } idVec4 color( 0, 0, 0, 1 ); color.x = ( colors[index2].x - colors[index1].x ) * lerp + colors[index1].x; color.y = ( colors[index2].y - colors[index1].y ) * lerp + colors[index1].y; color.z = ( colors[index2].z - colors[index1].z ) * lerp + colors[index1].z; for( y = 0 ; y < 16 ; y++ ) { data[y][x][0] = color.x * 255; data[y][x][1] = color.y * 255; data[y][x][2] = color.z * 255; data[y][x][3] = 255; } } image->GenerateImage( ( byte* )data, FALLOFF_TEXTURE_SIZE, 16, TF_LINEAR, TR_CLAMP, TD_LOOKUP_TABLE_RGBA, commandList ); } static void R_CreateHeatmap7ColorsImage( idImage* image, nvrhi::ICommandList* commandList ) { int x, y; byte data[16][FALLOFF_TEXTURE_SIZE][4]; const int numColors = 7; static idVec4 colors[numColors] = { colorBlack, colorBlue, colorCyan, colorGreen, colorYellow, colorRed, colorWhite }; memset( data, 0, sizeof( data ) ); for( x = 0 ; x < FALLOFF_TEXTURE_SIZE; x++ ) { int index1, index2; float value = x / ( float )FALLOFF_TEXTURE_SIZE; float lerp = 0.0f; if( value <= 0.0 ) { index1 = index2 = 0; } else if( value >= 1.0f ) { index1 = index2 = numColors - 1; } else { value = value * ( numColors - 1 ); index1 = idMath::Floor( value ); index2 = index1 + 1; lerp = value - float( index1 ); } idVec4 color( 0, 0, 0, 1 ); color.x = ( colors[index2].x - colors[index1].x ) * lerp + colors[index1].x; color.y = ( colors[index2].y - colors[index1].y ) * lerp + colors[index1].y; color.z = ( colors[index2].z - colors[index1].z ) * lerp + colors[index1].z; for( y = 0 ; y < 16 ; y++ ) { data[y][x][0] = color.x * 255; data[y][x][1] = color.y * 255; data[y][x][2] = color.z * 255; data[y][x][3] = 255; } } image->GenerateImage( ( byte* )data, FALLOFF_TEXTURE_SIZE, 16, TF_LINEAR, TR_CLAMP, TD_LOOKUP_TABLE_RGBA, commandList ); } static void R_CreateGrainImage1( idImage* image, nvrhi::ICommandList* commandList ) { const static int GRAIN_SIZE = 128; static byte data[GRAIN_SIZE][GRAIN_SIZE][4]; idRandom2 random( Sys_Milliseconds() ); for( int i = 0 ; i < GRAIN_SIZE ; i++ ) { for( int j = 0 ; j < GRAIN_SIZE ; j++ ) { #if 0 //int value = 127 - 8 + ( rand() & 15 ); //random.RandomInt( 127 ); int value = 127 - 8 + random.RandomInt( 15 ); data[i][j][0] = value; data[i][j][1] = value; data[i][j][2] = value; data[i][j][3] = 0; #else data[i][j][0] = 127 - 8 + random.RandomInt( 15 ); data[i][j][1] = 127 - 8 + random.RandomInt( 15 ); data[i][j][2] = 127 - 8 + random.RandomInt( 15 ); data[i][j][3] = 0; #endif } } image->GenerateImage( ( byte* )data, GRAIN_SIZE, GRAIN_SIZE, TF_NEAREST, TR_REPEAT, TD_LOOKUP_TABLE_RGBA, commandList ); } static void R_CreateSMAAAreaImage( idImage* image, nvrhi::ICommandList* commandList ) { static byte data[AREATEX_HEIGHT][AREATEX_WIDTH][4]; for( int x = 0; x < AREATEX_WIDTH; x++ ) { for( int y = 0; y < AREATEX_HEIGHT; y++ ) { #if 0 data[AREATEX_HEIGHT - y][x][0] = areaTexBytes[ y * AREATEX_PITCH + x * 2 + 0 ]; data[AREATEX_HEIGHT - y][x][1] = areaTexBytes[ y * AREATEX_PITCH + x * 2 + 1 ]; data[AREATEX_HEIGHT - y][x][2] = 0; data[AREATEX_HEIGHT - y][x][3] = 1; #else data[y][x][0] = areaTexBytes[ y * AREATEX_PITCH + x * 2 + 0 ]; data[y][x][1] = areaTexBytes[ y * AREATEX_PITCH + x * 2 + 1 ]; data[y][x][2] = 0; data[y][x][3] = 1; #endif } } image->GenerateImage( ( byte* )data, AREATEX_WIDTH, AREATEX_HEIGHT, TF_LINEAR, TR_CLAMP, TD_LOOKUP_TABLE_RGBA, commandList ); } static void R_CreateSMAASearchImage( idImage* image, nvrhi::ICommandList* commandList ) { static byte data[SEARCHTEX_HEIGHT][SEARCHTEX_WIDTH][4]; for( int x = 0; x < SEARCHTEX_WIDTH; x++ ) { for( int y = 0; y < SEARCHTEX_HEIGHT; y++ ) { #if 0 data[SEARCHTEX_HEIGHT - y][x][0] = searchTexBytes[ y * SEARCHTEX_PITCH + x ]; data[SEARCHTEX_HEIGHT - y][x][1] = 0; data[SEARCHTEX_HEIGHT - y][x][2] = 0; data[SEARCHTEX_HEIGHT - y][x][3] = 1; #else data[y][x][0] = searchTexBytes[ y * SEARCHTEX_PITCH + x ]; data[y][x][1] = 0; data[y][x][2] = 0; data[y][x][3] = 1; #endif } } image->GenerateImage( ( byte* )data, SEARCHTEX_WIDTH, SEARCHTEX_HEIGHT, TF_LINEAR, TR_CLAMP, TD_LOOKUP_TABLE_MONO, commandList ); } static void R_CreateImGuiFontImage( idImage* image, nvrhi::ICommandList* commandList ) { ImGuiIO& io = ImGui::GetIO(); byte* pixels = NULL; int width, height; io.Fonts->GetTexDataAsRGBA32( &pixels, &width, &height ); // Load as RGBA 32-bits for OpenGL3 demo because it is more likely to be compatible with user's existing shader. image->GenerateImage( ( byte* )pixels, width, height, TF_LINEAR, TR_CLAMP, TD_LOOKUP_TABLE_RGBA, commandList ); // Store our identifier //io.Fonts->TexID = ( void* )( intptr_t )image->GetImGuiTextureID(); io.Fonts->TexID = ( void* )( intptr_t )declManager->FindMaterial( "_imguiFont" ); // Cleanup (don't clear the input data if you want to append new fonts later) //io.Fonts->ClearInputData(); //io.Fonts->ClearTexData(); } static void R_CreateBrdfLutImage( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( ( byte* )brfLutTexBytes, BRDFLUT_TEX_WIDTH, BRDFLUT_TEX_HEIGHT, TF_LINEAR, TR_CLAMP, TD_RG16F, commandList ); } static void R_CreateEnvprobeImage_UAC_lobby_irradiance( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( ( byte* )IMAGE_ENV_UAC_LOBBY_AMB_H_Bytes, IMAGE_ENV_UAC_LOBBY_AMB_H_TEX_WIDTH, IMAGE_ENV_UAC_LOBBY_AMB_H_TEX_HEIGHT, TF_DEFAULT, TR_CLAMP, TD_R11G11B10F, commandList, false, false, 1, CF_2D_PACKED_MIPCHAIN ); } static void R_CreateEnvprobeImage_UAC_lobby_radiance( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( ( byte* )IMAGE_ENV_UAC_LOBBY_SPEC_H_Bytes, IMAGE_ENV_UAC_LOBBY_SPEC_H_TEX_WIDTH, IMAGE_ENV_UAC_LOBBY_SPEC_H_TEX_HEIGHT, TF_DEFAULT, TR_CLAMP, TD_R11G11B10F, commandList, false, false, 1, CF_2D_PACKED_MIPCHAIN ); } // RB end static void R_GuiEditFunction( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( nullptr, 640, 480, TF_NEAREST, TR_CLAMP, TD_LOOKUP_TABLE_RGBA, nullptr, true, false, 1 ); } static void R_GuiEditDepthStencilFunction( idImage* image, nvrhi::ICommandList* commandList ) { image->GenerateImage( nullptr, 640, 480, TF_NEAREST, TR_CLAMP, TD_DEPTH_STENCIL, nullptr, true, false, 1 ); } /* ================ idImageManager::CreateIntrinsicImages ================ */ void idImageManager::CreateIntrinsicImages() { // create built in images defaultImage = ImageFromFunction( "_default", R_DefaultImage ); whiteImage = ImageFromFunction( "_white", R_WhiteImage ); blackImage = ImageFromFunction( "_black", R_BlackImage ); blackDiffuseImage = ImageFromFunction( "_blackDiffuse", R_BlackDiffuseImage ); cyanImage = ImageFromFunction( "_cyan", R_CyanImage ); flatNormalMap = ImageFromFunction( "_flat", R_FlatNormalImage ); alphaNotchImage = ImageFromFunction( "_alphaNotch", R_AlphaNotchImage ); fogImage = ImageFromFunction( "_fog", R_FogImage ); fogEnterImage = ImageFromFunction( "_fogEnter", R_FogEnterImage ); noFalloffImage = ImageFromFunction( "_noFalloff", R_CreateNoFalloffImage ); ImageFromFunction( "_quadratic", R_QuadraticImage ); // RB begin shadowAtlasImage = ImageFromFunction( "_shadowMapAtlas", R_CreateShadowMapImage_Atlas ); shadowImage[0] = ImageFromFunction( va( "_shadowMapArray0_%i", shadowMapResolutions[0] ), R_CreateShadowMapImage_Res0 ); shadowImage[1] = ImageFromFunction( va( "_shadowMapArray1_%i", shadowMapResolutions[1] ), R_CreateShadowMapImage_Res1 ); shadowImage[2] = ImageFromFunction( va( "_shadowMapArray2_%i", shadowMapResolutions[2] ), R_CreateShadowMapImage_Res2 ); shadowImage[3] = ImageFromFunction( va( "_shadowMapArray3_%i", shadowMapResolutions[3] ), R_CreateShadowMapImage_Res3 ); shadowImage[4] = ImageFromFunction( va( "_shadowMapArray4_%i", shadowMapResolutions[4] ), R_CreateShadowMapImage_Res4 ); jitterImage1 = globalImages->ImageFromFunction( "_jitter1", R_CreateJitterImage1 ); jitterImage4 = globalImages->ImageFromFunction( "_jitter4", R_CreateJitterImage4 ); jitterImage16 = globalImages->ImageFromFunction( "_jitter16", R_CreateJitterImage16 ); randomImage256 = globalImages->ImageFromFunction( "_random256", R_CreateRandom256Image ); blueNoiseImage256 = globalImages->ImageFromFunction( "_blueNoise256", R_CreateBlueNoise256Image ); currentRenderHDRImage = globalImages->ImageFromFunction( "_currentRenderHDR", R_HDR_RGBA16FImage_ResNative_MSAAOpt ); ldrImage = globalImages->ImageFromFunction( "_currentRenderLDR", R_LdrNativeImage ); taaMotionVectorsImage = ImageFromFunction( "_taaMotionVectors", R_HDR_RG16FImage_ResNative ); // RB: could be shared with _currentNormals.zw taaResolvedImage = ImageFromFunction( "_taaResolved", R_HDR_RGBA16FImage_ResNative_UAV ); taaFeedback1Image = ImageFromFunction( "_taaFeedback1", R_HDR_RGBA16SImage_ResNative_UAV ); taaFeedback2Image = ImageFromFunction( "_taaFeedback2", R_HDR_RGBA16SImage_ResNative_UAV ); envprobeHDRImage = globalImages->ImageFromFunction( "_envprobeHDR", R_EnvprobeImage_HDR ); envprobeDepthImage = ImageFromFunction( "_envprobeDepth", R_EnvprobeImage_Depth ); bloomRenderImage[0] = globalImages->ImageFromFunction( "_bloomRender0", R_HDR_RGBA16FImage_ResQuarter_Linear ); bloomRenderImage[1] = globalImages->ImageFromFunction( "_bloomRender1", R_HDR_RGBA16FImage_ResQuarter_Linear ); glowImage[0] = globalImages->ImageFromFunction( "_glowImage0", R_RGBA8Image_ResGui ); glowImage[1] = globalImages->ImageFromFunction( "_glowImage1", R_RGBA8Image_ResGui ); glowDepthImage[0] = globalImages->ImageFromFunction( "_glowDepthImage0", R_DepthImage ); glowDepthImage[1] = globalImages->ImageFromFunction( "_glowDepthImage1", R_DepthImage ); accumTransparencyImage = globalImages->ImageFromFunction( "_accumTransparencyImage", R_HDR_RGBA16FImage_ResNative_Linear ); revealTransparencyImage = globalImages->ImageFromFunction( "_revealTransparencyImage", R_R8Image_ResNative_Linear ); heatmap5Image = ImageFromFunction( "_heatmap5", R_CreateHeatmap5ColorsImage ); heatmap7Image = ImageFromFunction( "_heatmap7", R_CreateHeatmap7ColorsImage ); grainImage1 = globalImages->ImageFromFunction( "_grain1", R_CreateGrainImage1 ); smaaInputImage = ImageFromFunction( "_smaaInput", R_RGBA8LinearImage ); smaaAreaImage = globalImages->ImageFromFunction( "_smaaArea", R_CreateSMAAAreaImage ); smaaSearchImage = globalImages->ImageFromFunction( "_smaaSearch", R_CreateSMAASearchImage ); smaaEdgesImage = globalImages->ImageFromFunction( "_smaaEdges", R_SMAAImage_ResNative ); smaaBlendImage = globalImages->ImageFromFunction( "_smaaBlend", R_SMAAImage_ResNative ); gbufferNormalsRoughnessImage = ImageFromFunction( "_currentNormals", R_GeometryBufferImage_ResNative ); ambientOcclusionImage[0] = ImageFromFunction( "_ao0", R_AmbientOcclusionImage_ResNative ); ambientOcclusionImage[1] = ImageFromFunction( "_ao1", R_AmbientOcclusionImage_ResNative ); hierarchicalZbufferImage = ImageFromFunction( "_cszBuffer", R_HierarchicalZBufferImage_ResNative ); imguiFontImage = ImageFromFunction( "_imguiFont", R_CreateImGuiFontImage ); chromeSpecImage = ImageFromFunction( "_chromeSpec", R_ChromeSpecImage ); plasticSpecImage = ImageFromFunction( "_plasticSpec", R_PlasticSpecImage ); brdfLutImage = ImageFromFunction( "_brdfLut", R_CreateBrdfLutImage ); // RB end // scratchImage is used for screen wipes/doublevision etc.. scratchImage = ImageFromFunction( "_scratch", R_RGBA8Image ); scratchImage2 = ImageFromFunction( "_scratch2", R_RGBA8Image ); accumImage = ImageFromFunction( "_accum", R_RGBA8Image_RT ); currentRenderImage = globalImages->ImageFromFunction( "_currentRender", R_HDR_RGBA16FImage_ResNative ); //currentRenderImage = globalImages->ImageFromFunction( "_currentRender", R_LdrNativeImage ); currentDepthImage = ImageFromFunction( "_currentDepth", R_DepthImage ); // save a copy of this for material comparison, because currentRenderImage may get // reassigned during stereo rendering originalCurrentRenderImage = currentRenderImage; loadingIconImage = ImageFromFile( "textures/loadingicon2", TF_DEFAULT, TR_CLAMP, TD_DEFAULT, CF_2D ); hellLoadingIconImage = ImageFromFile( "textures/loadingicon3", TF_DEFAULT, TR_CLAMP, TD_DEFAULT, CF_2D ); // RB begin #if 0 defaultUACIrradianceCube = ImageFromFile( "env/UAC5_amb", TF_DEFAULT, TR_CLAMP, TD_R11G11B10F, CF_2D_PACKED_MIPCHAIN ); defaultUACRadianceCube = ImageFromFile( "env/UAC5_spec", TF_DEFAULT, TR_CLAMP, TD_R11G11B10F, CF_2D_PACKED_MIPCHAIN ); #else defaultUACIrradianceCube = ImageFromFunction( "_defaultUACIrradiance", R_CreateEnvprobeImage_UAC_lobby_irradiance ); defaultUACRadianceCube = ImageFromFunction( "_defaultUACRadiance", R_CreateEnvprobeImage_UAC_lobby_radiance ); #endif // RB end guiEdit = ImageFromFunction( "_guiEdit", R_GuiEditFunction ); guiEditDepthStencilImage = ImageFromFunction( "_guiEditDepthStencil", R_GuiEditDepthStencilFunction ); release_assert( loadingIconImage->referencedOutsideLevelLoad ); release_assert( hellLoadingIconImage->referencedOutsideLevelLoad ); } CONSOLE_COMMAND( makeImageHeader, "load an image and turn it into a .h file", NULL ) { byte* buffer; int width = 0, height = 0; if( args.Argc() < 2 ) { common->Printf( "USAGE: makeImageHeader filename [exportname]\n" ); return; } idStr filename = args.Argv( 1 ); R_LoadImage( filename, &buffer, &width, &height, NULL, true, NULL ); if( !buffer ) { common->Printf( "loading %s failed.\n", filename.c_str() ); return; } filename.StripFileExtension(); idStr exportname; if( args.Argc() == 3 ) { exportname.Format( "Image_%s.h", args.Argv( 2 ) ); } else { exportname.Format( "Image_%s.h", filename.c_str() ); } for( int i = 0; i < exportname.Length(); i++ ) { if( exportname[ i ] == '/' ) { exportname[ i ] = '_'; } } idFileLocal headerFile( fileSystem->OpenFileWrite( exportname, "fs_basepath" ) ); idStr uppername = exportname; uppername.ToUpper(); for( int i = 0; i < uppername.Length(); i++ ) { if( uppername[ i ] == '.' ) { uppername[ i ] = '_'; } } headerFile->Printf( "#ifndef %s_TEX_H\n", uppername.c_str() ); headerFile->Printf( "#define %s_TEX_H\n\n", uppername.c_str() ); headerFile->Printf( "#define %s_TEX_WIDTH %i\n", uppername.c_str(), width ); headerFile->Printf( "#define %s_TEX_HEIGHT %i\n\n", uppername.c_str(), height ); headerFile->Printf( "static const unsigned char %s_Bytes[] = {\n", uppername.c_str() ); int bufferSize = width * height * 4; for( int i = 0; i < bufferSize; i++ ) { byte b = buffer[i]; if( i < ( bufferSize - 1 ) ) { headerFile->Printf( "0x%02hhx, ", b ); } else { headerFile->Printf( "0x%02hhx", b ); } if( i % 12 == 0 ) { headerFile->Printf( "\n" ); } } headerFile->Printf( "\n};\n#endif\n" ); Mem_Free( buffer ); } CONSOLE_COMMAND( makePaletteHeader, "load a .pal palette, build an image from it and turn it into a .h file", NULL ) { if( args.Argc() < 2 ) { common->Printf( "USAGE: makePaletteHeader filename [exportname]\n" ); return; } idStr filename = args.Argv( 1 ); filename.DefaultFileExtension( ".pal" ); ID_TIME_T timeStamp; char* palBuffer; int palBufferLen = fileSystem->ReadFile( filename, ( void** )&palBuffer, &timeStamp ); if( palBufferLen <= 0 || palBuffer == nullptr ) { return; } // parse JASC-PAL file idLexer src; idToken token, token2; src.LoadMemory( palBuffer, palBufferLen, filename, 0 ); src.ExpectTokenString( "JASC" ); src.ExpectTokenString( "-" ); src.ExpectTokenString( "PAL" ); int palVersion = src.ParseInt(); int numColors = src.ParseInt(); //idListFreeFile( palBuffer ); filename.StripFileExtension(); // TODO build image and convert to header //byte* buffer; //int width = 0, height = 0; /* idStr exportname; if( args.Argc() == 3 ) { exportname.Format( "Image_%s.h", args.Argv( 2 ) ); } else { exportname.Format( "Image_%s.h", filename.c_str() ); } for( int i = 0; i < exportname.Length(); i++ ) { if( exportname[ i ] == '/' ) { exportname[ i ] = '_'; } } idFileLocal headerFile( fileSystem->OpenFileWrite( exportname, "fs_basepath" ) ); idStr uppername = exportname; uppername.ToUpper(); for( int i = 0; i < uppername.Length(); i++ ) { if( uppername[ i ] == '.' ) { uppername[ i ] = '_'; } } headerFile->Printf( "#ifndef %s_TEX_H\n", uppername.c_str() ); headerFile->Printf( "#define %s_TEX_H\n\n", uppername.c_str() ); headerFile->Printf( "#define %s_TEX_WIDTH %i\n", uppername.c_str(), width ); headerFile->Printf( "#define %s_TEX_HEIGHT %i\n\n", uppername.c_str(), height ); headerFile->Printf( "static const unsigned char %s_Bytes[] = {\n", uppername.c_str() ); int bufferSize = width * height * 4; for( int i = 0; i < bufferSize; i++ ) { byte b = buffer[i]; if( i < ( bufferSize - 1 ) ) { headerFile->Printf( "0x%02hhx, ", b ); } else { headerFile->Printf( "0x%02hhx", b ); } if( i % 12 == 0 ) { headerFile->Printf( "\n" ); } } headerFile->Printf( "\n};\n#endif\n" ); Mem_Free( buffer ); */ }