/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
Copyright (C) 2013-2014 Robert Beckebans
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see .
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#pragma hdrstop
#include "precompiled.h"
#include "tr_local.h"
/*
=================================================================================
ENTITY DEFS
=================================================================================
*/
/*
=================
R_DeriveEntityData
=================
*/
void R_DeriveEntityData( idRenderEntityLocal* entity )
{
R_AxisToModelMatrix( entity->parms.axis, entity->parms.origin, entity->modelMatrix );
idRenderMatrix::CreateFromOriginAxis( entity->parms.origin, entity->parms.axis, entity->modelRenderMatrix );
// calculate the matrix that transforms the unit cube to exactly cover the model in world space
idRenderMatrix::OffsetScaleForBounds( entity->modelRenderMatrix, entity->localReferenceBounds, entity->inverseBaseModelProject );
// calculate the global model bounds by inverse projecting the unit cube with the 'inverseBaseModelProject'
idRenderMatrix::ProjectedBounds( entity->globalReferenceBounds, entity->inverseBaseModelProject, bounds_unitCube, false );
}
/*
===================
R_FreeEntityDefDerivedData
Used by both FreeEntityDef and UpdateEntityDef
Does not actually free the entityDef.
===================
*/
void R_FreeEntityDefDerivedData( idRenderEntityLocal* def, bool keepDecals, bool keepCachedDynamicModel )
{
// demo playback needs to free the joints, while normal play
// leaves them in the control of the game
if( common->ReadDemo() )
{
if( def->parms.joints )
{
Mem_Free16( def->parms.joints );
def->parms.joints = NULL;
}
if( def->parms.callbackData )
{
Mem_Free( def->parms.callbackData );
def->parms.callbackData = NULL;
}
for( int i = 0; i < MAX_RENDERENTITY_GUI; i++ )
{
if( def->parms.gui[ i ] )
{
delete def->parms.gui[ i ];
def->parms.gui[ i ] = NULL;
}
}
}
// free all the interactions
while( def->firstInteraction != NULL )
{
def->firstInteraction->UnlinkAndFree();
}
def->dynamicModelFrameCount = 0;
// clear the dynamic model if present
if( def->dynamicModel )
{
def->dynamicModel = NULL;
}
if( !keepDecals )
{
R_FreeEntityDefDecals( def );
R_FreeEntityDefOverlay( def );
}
if( !keepCachedDynamicModel )
{
delete def->cachedDynamicModel;
def->cachedDynamicModel = NULL;
}
// free the entityRefs from the areas
areaReference_t* next = NULL;
for( areaReference_t* ref = def->entityRefs; ref != NULL; ref = next )
{
next = ref->ownerNext;
// unlink from the area
ref->areaNext->areaPrev = ref->areaPrev;
ref->areaPrev->areaNext = ref->areaNext;
// put it back on the free list for reuse
def->world->areaReferenceAllocator.Free( ref );
}
def->entityRefs = NULL;
}
/*
===================
R_FreeEntityDefDecals
===================
*/
void R_FreeEntityDefDecals( idRenderEntityLocal* def )
{
def->decals = NULL;
}
/*
===================
R_FreeEntityDefFadedDecals
===================
*/
void R_FreeEntityDefFadedDecals( idRenderEntityLocal* def, int time )
{
if( def->decals != NULL )
{
def->decals->RemoveFadedDecals( time );
}
}
/*
===================
R_FreeEntityDefOverlay
===================
*/
void R_FreeEntityDefOverlay( idRenderEntityLocal* def )
{
def->overlays = NULL;
}
/*
===============
R_CreateEntityRefs
Creates all needed model references in portal areas,
chaining them to both the area and the entityDef.
Bumps tr.viewCount, which means viewCount can change many times each frame.
===============
*/
void R_CreateEntityRefs( idRenderEntityLocal* entity )
{
if( entity->parms.hModel == NULL )
{
entity->parms.hModel = renderModelManager->DefaultModel();
}
// if the entity hasn't been fully specified due to expensive animation calcs
// for md5 and particles, use the provided conservative bounds.
if( entity->parms.callback != NULL )
{
entity->localReferenceBounds = entity->parms.bounds;
}
else
{
entity->localReferenceBounds = entity->parms.hModel->Bounds( &entity->parms );
}
// some models, like empty particles, may not need to be added at all
if( entity->localReferenceBounds.IsCleared() )
{
return;
}
if( r_showUpdates.GetBool() &&
( entity->localReferenceBounds[1][0] - entity->localReferenceBounds[0][0] > 1024.0f ||
entity->localReferenceBounds[1][1] - entity->localReferenceBounds[0][1] > 1024.0f ) )
{
common->Printf( "big entityRef: %f,%f\n", entity->localReferenceBounds[1][0] - entity->localReferenceBounds[0][0],
entity->localReferenceBounds[1][1] - entity->localReferenceBounds[0][1] );
}
// derive entity data
R_DeriveEntityData( entity );
// bump the view count so we can tell if an
// area already has a reference
tr.viewCount++;
// push the model frustum down the BSP tree into areas
entity->world->PushFrustumIntoTree( entity, NULL, entity->inverseBaseModelProject, bounds_unitCube );
}
/*
=================================================================================
LIGHT DEFS
=================================================================================
*/
/*
========================
R_ComputePointLightProjectionMatrix
Computes the light projection matrix for a point light.
========================
*/
static float R_ComputePointLightProjectionMatrix( idRenderLightLocal* light, idRenderMatrix& localProject )
{
assert( light->parms.pointLight );
// A point light uses a box projection.
// This projects into the 0.0 - 1.0 texture range instead of -1.0 to 1.0 clip space range.
localProject.Zero();
localProject[0][0] = 0.5f / light->parms.lightRadius[0];
localProject[1][1] = 0.5f / light->parms.lightRadius[1];
localProject[2][2] = 0.5f / light->parms.lightRadius[2];
localProject[0][3] = 0.5f;
localProject[1][3] = 0.5f;
localProject[2][3] = 0.5f;
localProject[3][3] = 1.0f; // identity perspective
return 1.0f;
}
static const float SPOT_LIGHT_MIN_Z_NEAR = 8.0f;
static const float SPOT_LIGHT_MIN_Z_FAR = 16.0f;
/*
========================
R_ComputeSpotLightProjectionMatrix
Computes the light projection matrix for a spot light.
========================
*/
static float R_ComputeSpotLightProjectionMatrix( idRenderLightLocal* light, idRenderMatrix& localProject )
{
const float targetDistSqr = light->parms.target.LengthSqr();
const float invTargetDist = idMath::InvSqrt( targetDistSqr );
const float targetDist = invTargetDist * targetDistSqr;
const idVec3 normalizedTarget = light->parms.target * invTargetDist;
const idVec3 normalizedRight = light->parms.right * ( 0.5f * targetDist / light->parms.right.LengthSqr() );
const idVec3 normalizedUp = light->parms.up * ( -0.5f * targetDist / light->parms.up.LengthSqr() );
localProject[0][0] = normalizedRight[0];
localProject[0][1] = normalizedRight[1];
localProject[0][2] = normalizedRight[2];
localProject[0][3] = 0.0f;
localProject[1][0] = normalizedUp[0];
localProject[1][1] = normalizedUp[1];
localProject[1][2] = normalizedUp[2];
localProject[1][3] = 0.0f;
localProject[3][0] = normalizedTarget[0];
localProject[3][1] = normalizedTarget[1];
localProject[3][2] = normalizedTarget[2];
localProject[3][3] = 0.0f;
// Set the falloff vector.
// This is similar to the Z calculation for depth buffering, which means that the
// mapped texture is going to be perspective distorted heavily towards the zero end.
const float zNear = Max( light->parms.start * normalizedTarget, SPOT_LIGHT_MIN_Z_NEAR );
const float zFar = Max( light->parms.end * normalizedTarget, SPOT_LIGHT_MIN_Z_FAR );
const float zScale = ( zNear + zFar ) / zFar;
localProject[2][0] = normalizedTarget[0] * zScale;
localProject[2][1] = normalizedTarget[1] * zScale;
localProject[2][2] = normalizedTarget[2] * zScale;
localProject[2][3] = - zNear * zScale;
// now offset to the 0.0 - 1.0 texture range instead of -1.0 to 1.0 clip space range
idVec4 projectedTarget;
localProject.TransformPoint( light->parms.target, projectedTarget );
const float ofs0 = 0.5f - projectedTarget[0] / projectedTarget[3];
localProject[0][0] += ofs0 * localProject[3][0];
localProject[0][1] += ofs0 * localProject[3][1];
localProject[0][2] += ofs0 * localProject[3][2];
localProject[0][3] += ofs0 * localProject[3][3];
const float ofs1 = 0.5f - projectedTarget[1] / projectedTarget[3];
localProject[1][0] += ofs1 * localProject[3][0];
localProject[1][1] += ofs1 * localProject[3][1];
localProject[1][2] += ofs1 * localProject[3][2];
localProject[1][3] += ofs1 * localProject[3][3];
return 1.0f / ( zNear + zFar );
}
/*
========================
R_ComputeParallelLightProjectionMatrix
Computes the light projection matrix for a parallel light.
========================
*/
static float R_ComputeParallelLightProjectionMatrix( idRenderLightLocal* light, idRenderMatrix& localProject )
{
assert( light->parms.parallel );
// A parallel light uses a box projection.
// This projects into the 0.0 - 1.0 texture range instead of -1.0 to 1.0 clip space range.
localProject.Zero();
localProject[0][0] = 0.5f / light->parms.lightRadius[0];
localProject[1][1] = 0.5f / light->parms.lightRadius[1];
localProject[2][2] = 0.5f / light->parms.lightRadius[2];
localProject[0][3] = 0.5f;
localProject[1][3] = 0.5f;
localProject[2][3] = 0.5f;
localProject[3][3] = 1.0f; // identity perspective
return 1.0f;
}
/*
=================
R_DeriveLightData
Fills everything in based on light->parms
=================
*/
void R_DeriveLightData( idRenderLightLocal* light )
{
// decide which light shader we are going to use
if( light->parms.shader != NULL )
{
light->lightShader = light->parms.shader;
}
else if( light->lightShader == NULL )
{
if( light->parms.pointLight )
{
light->lightShader = tr.defaultPointLight;
}
else
{
light->lightShader = tr.defaultProjectedLight;
}
}
// get the falloff image
light->falloffImage = light->lightShader->LightFalloffImage();
if( light->falloffImage == NULL )
{
// use the falloff from the default shader of the correct type
const idMaterial* defaultShader;
if( light->parms.pointLight )
{
defaultShader = tr.defaultPointLight;
// Touch the default shader. to make sure it's decl has been parsed ( it might have been purged ).
declManager->Touch( static_cast< const idDecl*>( defaultShader ) );
light->falloffImage = defaultShader->LightFalloffImage();
}
else
{
// projected lights by default don't diminish with distance
defaultShader = tr.defaultProjectedLight;
// Touch the light shader. to make sure it's decl has been parsed ( it might have been purged ).
declManager->Touch( static_cast< const idDecl*>( defaultShader ) );
light->falloffImage = defaultShader->LightFalloffImage();
}
}
// ------------------------------------
// compute the light projection matrix
// ------------------------------------
idRenderMatrix localProject;
float zScale = 1.0f;
if( light->parms.parallel )
{
zScale = R_ComputeParallelLightProjectionMatrix( light, localProject );
}
else if( light->parms.pointLight )
{
zScale = R_ComputePointLightProjectionMatrix( light, localProject );
}
else
{
zScale = R_ComputeSpotLightProjectionMatrix( light, localProject );
}
// set the old style light projection where Z and W are flipped and
// for projected lights lightProject[3] is divided by ( zNear + zFar )
light->lightProject[0][0] = localProject[0][0];
light->lightProject[0][1] = localProject[0][1];
light->lightProject[0][2] = localProject[0][2];
light->lightProject[0][3] = localProject[0][3];
light->lightProject[1][0] = localProject[1][0];
light->lightProject[1][1] = localProject[1][1];
light->lightProject[1][2] = localProject[1][2];
light->lightProject[1][3] = localProject[1][3];
light->lightProject[2][0] = localProject[3][0];
light->lightProject[2][1] = localProject[3][1];
light->lightProject[2][2] = localProject[3][2];
light->lightProject[2][3] = localProject[3][3];
light->lightProject[3][0] = localProject[2][0] * zScale;
light->lightProject[3][1] = localProject[2][1] * zScale;
light->lightProject[3][2] = localProject[2][2] * zScale;
light->lightProject[3][3] = localProject[2][3] * zScale;
// transform the lightProject
float lightTransform[16];
R_AxisToModelMatrix( light->parms.axis, light->parms.origin, lightTransform );
for( int i = 0; i < 4; i++ )
{
idPlane temp = light->lightProject[i];
R_LocalPlaneToGlobal( lightTransform, temp, light->lightProject[i] );
}
// adjust global light origin for off center projections and parallel projections
// we are just faking parallel by making it a very far off center for now
if( light->parms.parallel )
{
idVec3 dir = light->parms.lightCenter;
if( dir.Normalize() == 0.0f )
{
// make point straight up if not specified
dir[2] = 1.0f;
}
light->globalLightOrigin = light->parms.origin + dir * 100000.0f;
}
else
{
light->globalLightOrigin = light->parms.origin + light->parms.axis * light->parms.lightCenter;
}
// Rotate and translate the light projection by the light matrix.
// 99% of lights remain axis aligned in world space.
idRenderMatrix lightMatrix;
idRenderMatrix::CreateFromOriginAxis( light->parms.origin, light->parms.axis, lightMatrix );
idRenderMatrix inverseLightMatrix;
if( !idRenderMatrix::Inverse( lightMatrix, inverseLightMatrix ) )
{
idLib::Warning( "lightMatrix invert failed" );
}
// 'baseLightProject' goes from global space -> light local space -> light projective space
idRenderMatrix::Multiply( localProject, inverseLightMatrix, light->baseLightProject );
// Invert the light projection so we can deform zero-to-one cubes into
// the light model and calculate global bounds.
if( !idRenderMatrix::Inverse( light->baseLightProject, light->inverseBaseLightProject ) )
{
idLib::Warning( "baseLightProject invert failed" );
}
// calculate the global light bounds by inverse projecting the zero to one cube with the 'inverseBaseLightProject'
idRenderMatrix::ProjectedBounds( light->globalLightBounds, light->inverseBaseLightProject, bounds_zeroOneCube, false );
}
/*
====================
R_FreeLightDefDerivedData
Frees all references and lit surfaces from the light
====================
*/
void R_FreeLightDefDerivedData( idRenderLightLocal* ldef )
{
// remove any portal fog references
for( doublePortal_t* dp = ldef->foggedPortals; dp != NULL; dp = dp->nextFoggedPortal )
{
dp->fogLight = NULL;
}
// free all the interactions
while( ldef->firstInteraction != NULL )
{
ldef->firstInteraction->UnlinkAndFree();
}
// free all the references to the light
areaReference_t* nextRef = NULL;
for( areaReference_t* lref = ldef->references; lref != NULL; lref = nextRef )
{
nextRef = lref->ownerNext;
// unlink from the area
lref->areaNext->areaPrev = lref->areaPrev;
lref->areaPrev->areaNext = lref->areaNext;
// put it back on the free list for reuse
ldef->world->areaReferenceAllocator.Free( lref );
}
ldef->references = NULL;
}
// RB begin
void R_RenderLightFrustum( const renderLight_t& renderLight, idPlane lightFrustum[6] )
{
idRenderLightLocal fakeLight;
memset( &fakeLight, 0, sizeof( fakeLight ) );
fakeLight.parms = renderLight;
R_DeriveLightData( &fakeLight );
idRenderMatrix::GetFrustumPlanes( lightFrustum, fakeLight.baseLightProject, true, true );
// the DOOM 3 frustum planes point outside the frustum
for( int i = 0; i < 6; i++ )
{
lightFrustum[i] = -lightFrustum[i];
}
}
/*
=====================
R_PolytopeSurface
Generate vertexes and indexes for a polytope, and optionally returns the polygon windings.
The positive sides of the planes will be visible.
=====================
*/
srfTriangles_t* R_PolytopeSurface( int numPlanes, const idPlane* planes, idWinding** windings )
{
int i, j;
srfTriangles_t* tri;
const int MAX_POLYTOPE_PLANES = 6;
idFixedWinding planeWindings[MAX_POLYTOPE_PLANES];
int numVerts, numIndexes;
if( numPlanes > MAX_POLYTOPE_PLANES )
{
common->Error( "R_PolytopeSurface: more than %d planes", MAX_POLYTOPE_PLANES );
}
numVerts = 0;
numIndexes = 0;
for( i = 0; i < numPlanes; i++ )
{
const idPlane& plane = planes[i];
idFixedWinding& w = planeWindings[i];
w.BaseForPlane( plane );
for( j = 0; j < numPlanes; j++ )
{
const idPlane& plane2 = planes[j];
if( j == i )
{
continue;
}
if( !w.ClipInPlace( -plane2, ON_EPSILON ) )
{
break;
}
}
if( w.GetNumPoints() <= 2 )
{
continue;
}
numVerts += w.GetNumPoints();
numIndexes += ( w.GetNumPoints() - 2 ) * 3;
}
// allocate the surface
tri = R_AllocStaticTriSurf();
R_AllocStaticTriSurfVerts( tri, numVerts );
R_AllocStaticTriSurfIndexes( tri, numIndexes );
// copy the data from the windings
for( i = 0; i < numPlanes; i++ )
{
idFixedWinding& w = planeWindings[i];
if( !w.GetNumPoints() )
{
continue;
}
for( j = 0 ; j < w.GetNumPoints() ; j++ )
{
tri->verts[tri->numVerts + j ].Clear();
tri->verts[tri->numVerts + j ].xyz = w[j].ToVec3();
}
for( j = 1 ; j < w.GetNumPoints() - 1 ; j++ )
{
tri->indexes[ tri->numIndexes + 0 ] = tri->numVerts;
tri->indexes[ tri->numIndexes + 1 ] = tri->numVerts + j;
tri->indexes[ tri->numIndexes + 2 ] = tri->numVerts + j + 1;
tri->numIndexes += 3;
}
tri->numVerts += w.GetNumPoints();
// optionally save the winding
if( windings )
{
windings[i] = new idWinding( w.GetNumPoints() );
*windings[i] = w;
}
}
R_BoundTriSurf( tri );
return tri;
}
// RB end
/*
===============
WindingCompletelyInsideLight
===============
*/
static bool WindingCompletelyInsideLight( const idWinding* w, const idRenderLightLocal* ldef )
{
for( int i = 0; i < w->GetNumPoints(); i++ )
{
if( idRenderMatrix::CullPointToMVP( ldef->baseLightProject, ( *w )[i].ToVec3(), true ) )
{
return false;
}
}
return true;
}
/*
======================
R_CreateLightDefFogPortals
When a fog light is created or moved, see if it completely
encloses any portals, which may allow them to be fogged closed.
======================
*/
static void R_CreateLightDefFogPortals( idRenderLightLocal* ldef )
{
ldef->foggedPortals = NULL;
if( !ldef->lightShader->IsFogLight() )
{
return;
}
// some fog lights will explicitly disallow portal fogging
if( ldef->lightShader->TestMaterialFlag( MF_NOPORTALFOG ) )
{
return;
}
for( areaReference_t* lref = ldef->references; lref != NULL; lref = lref->ownerNext )
{
// check all the models in this area
portalArea_t* area = lref->area;
for( portal_t* prt = area->portals; prt != NULL; prt = prt->next )
{
doublePortal_t* dp = prt->doublePortal;
// we only handle a single fog volume covering a portal
// this will never cause incorrect drawing, but it may
// fail to cull a portal
if( dp->fogLight )
{
continue;
}
if( WindingCompletelyInsideLight( prt->w, ldef ) )
{
dp->fogLight = ldef;
dp->nextFoggedPortal = ldef->foggedPortals;
ldef->foggedPortals = dp;
}
}
}
}
/*
=================
R_CreateLightRefs
=================
*/
void R_CreateLightRefs( idRenderLightLocal* light )
{
// derive light data
R_DeriveLightData( light );
// determine the areaNum for the light origin, which may let us
// cull the light if it is behind a closed door
// it is debatable if we want to use the entity origin or the center offset origin,
// but we definitely don't want to use a parallel offset origin
light->areaNum = light->world->PointInArea( light->globalLightOrigin );
if( light->areaNum == -1 )
{
light->areaNum = light->world->PointInArea( light->parms.origin );
}
// bump the view count so we can tell if an
// area already has a reference
tr.viewCount++;
// if we have a prelight model that includes all the shadows for the major world occluders,
// we can limit the area references to those visible through the portals from the light center.
// We can't do this in the normal case, because shadows are cast from back facing triangles, which
// may be in areas not directly visible to the light projection center.
if( light->parms.prelightModel != NULL && r_useLightPortalFlow.GetBool() && light->lightShader->LightCastsShadows() )
{
light->world->FlowLightThroughPortals( light );
}
else
{
// push the light frustum down the BSP tree into areas
light->world->PushFrustumIntoTree( NULL, light, light->inverseBaseLightProject, bounds_zeroOneCube );
}
R_CreateLightDefFogPortals( light );
}
/*
=================================================================================
WORLD MODEL & LIGHT DEFS
=================================================================================
*/
/*
===================
R_FreeDerivedData
ReloadModels and RegenerateWorld call this
===================
*/
void R_FreeDerivedData()
{
for( int j = 0; j < tr.worlds.Num(); j++ )
{
idRenderWorldLocal* rw = tr.worlds[j];
for( int i = 0; i < rw->entityDefs.Num(); i++ )
{
idRenderEntityLocal* def = rw->entityDefs[i];
if( def == NULL )
{
continue;
}
R_FreeEntityDefDerivedData( def, false, false );
}
for( int i = 0; i < rw->lightDefs.Num(); i++ )
{
idRenderLightLocal* light = rw->lightDefs[i];
if( light == NULL )
{
continue;
}
R_FreeLightDefDerivedData( light );
}
}
}
/*
===================
R_CheckForEntityDefsUsingModel
===================
*/
void R_CheckForEntityDefsUsingModel( idRenderModel* model )
{
for( int j = 0; j < tr.worlds.Num(); j++ )
{
idRenderWorldLocal* rw = tr.worlds[j];
for( int i = 0; i < rw->entityDefs.Num(); i++ )
{
idRenderEntityLocal* def = rw->entityDefs[i];
if( !def )
{
continue;
}
if( def->parms.hModel == model )
{
//assert( 0 );
// this should never happen but Radiant messes it up all the time so just free the derived data
R_FreeEntityDefDerivedData( def, false, false );
}
}
}
}
/*
===================
R_ReCreateWorldReferences
ReloadModels and RegenerateWorld call this
===================
*/
void R_ReCreateWorldReferences()
{
// let the interaction generation code know this
// shouldn't be optimized for a particular view
tr.viewDef = NULL;
for( int j = 0; j < tr.worlds.Num(); j++ )
{
idRenderWorldLocal* rw = tr.worlds[j];
for( int i = 0; i < rw->entityDefs.Num(); i++ )
{
idRenderEntityLocal* def = rw->entityDefs[i];
if( def == NULL )
{
continue;
}
// the world model entities are put specifically in a single
// area, instead of just pushing their bounds into the tree
if( i < rw->numPortalAreas )
{
rw->AddEntityRefToArea( def, &rw->portalAreas[i] );
}
else
{
R_CreateEntityRefs( def );
}
}
for( int i = 0; i < rw->lightDefs.Num(); i++ )
{
idRenderLightLocal* light = rw->lightDefs[i];
if( light == NULL )
{
continue;
}
renderLight_t parms = light->parms;
light->world->FreeLightDef( i );
rw->UpdateLightDef( i, &parms );
}
}
}
/*
====================
R_ModulateLights_f
Modifies the shaderParms on all the lights so the level
designers can easily test different color schemes
====================
*/
void R_ModulateLights_f( const idCmdArgs& args )
{
if( !tr.primaryWorld )
{
return;
}
if( args.Argc() != 4 )
{
common->Printf( "usage: modulateLights \n" );
return;
}
float modulate[3];
for( int i = 0; i < 3; i++ )
{
modulate[i] = atof( args.Argv( i + 1 ) );
}
int count = 0;
for( int i = 0; i < tr.primaryWorld->lightDefs.Num(); i++ )
{
idRenderLightLocal* light = tr.primaryWorld->lightDefs[i];
if( light != NULL )
{
count++;
for( int j = 0; j < 3; j++ )
{
light->parms.shaderParms[j] *= modulate[j];
}
}
}
common->Printf( "modulated %i lights\n", count );
}