/* * jchuff.c * * Copyright (C) 1991-1995, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy encoding routines. * * Much of the complexity here has to do with supporting output suspension. * If the data destination module demands suspension, we want to be able to * back up to the start of the current MCU. To do this, we copy state * variables into local working storage, and update them back to the * permanent JPEG objects only upon successful completion of an MCU. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jchuff.h" /* Declarations shared with jcphuff.c */ /* Expanded entropy encoder object for Huffman encoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ typedef struct { INT32 put_buffer; /* current bit-accumulation buffer */ int put_bits; /* # of bits now in it */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state; /* This macro is to work around compilers with missing or broken * structure assignment. You'll need to fix this code if you have * such a compiler and you change MAX_COMPS_IN_SCAN. */ #ifndef NO_STRUCT_ASSIGN #define ASSIGN_STATE( dest, src ) ( ( dest ) = ( src ) ) #else #if MAX_COMPS_IN_SCAN == 4 #define ASSIGN_STATE( dest, src ) \ ( ( dest ).put_buffer = ( src ).put_buffer, \ ( dest ).put_bits = ( src ).put_bits, \ ( dest ).last_dc_val[0] = ( src ).last_dc_val[0], \ ( dest ).last_dc_val[1] = ( src ).last_dc_val[1], \ ( dest ).last_dc_val[2] = ( src ).last_dc_val[2], \ ( dest ).last_dc_val[3] = ( src ).last_dc_val[3] ) #endif #endif typedef struct { struct jpeg_entropy_encoder pub;/* public fields */ savable_state saved; /* Bit buffer & DC state at start of MCU */ /* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go;/* MCUs left in this restart interval */ int next_restart_num; /* next restart number to write (0-7) */ /* Pointers to derived tables (these workspaces have image lifespan) */ c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ long * dc_count_ptrs[NUM_HUFF_TBLS]; long * ac_count_ptrs[NUM_HUFF_TBLS]; #endif } huff_entropy_encoder; typedef huff_entropy_encoder * huff_entropy_ptr; /* Working state while writing an MCU. * This struct contains all the fields that are needed by subroutines. */ typedef struct { JOCTET * next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ savable_state cur; /* Current bit buffer & DC state */ j_compress_ptr cinfo; /* dump_buffer needs access to this */ } working_state; /* Forward declarations */ METHODDEF boolean encode_mcu_huff JPP( ( j_compress_ptr cinfo, JBLOCKROW * MCU_data ) ); METHODDEF void finish_pass_huff JPP( (j_compress_ptr cinfo) ); #ifdef ENTROPY_OPT_SUPPORTED METHODDEF boolean encode_mcu_gather JPP( ( j_compress_ptr cinfo, JBLOCKROW * MCU_data ) ); METHODDEF void finish_pass_gather JPP( (j_compress_ptr cinfo) ); #endif /* * Initialize for a Huffman-compressed scan. * If gather_statistics is TRUE, we do not output anything during the scan, * just count the Huffman symbols used and generate Huffman code tables. */ METHODDEF void start_pass_huff( j_compress_ptr cinfo, boolean gather_statistics ) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci, dctbl, actbl; jpeg_component_info * compptr; if ( gather_statistics ) { #ifdef ENTROPY_OPT_SUPPORTED entropy->pub.encode_mcu = encode_mcu_gather; entropy->pub.finish_pass = finish_pass_gather; #else ERREXIT( cinfo, JERR_NOT_COMPILED ); #endif } else { entropy->pub.encode_mcu = encode_mcu_huff; entropy->pub.finish_pass = finish_pass_huff; } for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; /* Make sure requested tables are present */ /* (In gather mode, tables need not be allocated yet) */ if ( ( dctbl < 0 ) || ( dctbl >= NUM_HUFF_TBLS ) || ( ( cinfo->dc_huff_tbl_ptrs[dctbl] == NULL ) && ( !gather_statistics ) ) ) { ERREXIT1( cinfo, JERR_NO_HUFF_TABLE, dctbl ); } if ( ( actbl < 0 ) || ( actbl >= NUM_HUFF_TBLS ) || ( ( cinfo->ac_huff_tbl_ptrs[actbl] == NULL ) && ( !gather_statistics ) ) ) { ERREXIT1( cinfo, JERR_NO_HUFF_TABLE, actbl ); } if ( gather_statistics ) { #ifdef ENTROPY_OPT_SUPPORTED /* Allocate and zero the statistics tables */ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ if ( entropy->dc_count_ptrs[dctbl] == NULL ) { entropy->dc_count_ptrs[dctbl] = (long *) ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF( long ) ); } MEMZERO( entropy->dc_count_ptrs[dctbl], 257 * SIZEOF( long ) ); if ( entropy->ac_count_ptrs[actbl] == NULL ) { entropy->ac_count_ptrs[actbl] = (long *) ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF( long ) ); } MEMZERO( entropy->ac_count_ptrs[actbl], 257 * SIZEOF( long ) ); #endif } else { /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_c_derived_tbl( cinfo, cinfo->dc_huff_tbl_ptrs[dctbl], &entropy->dc_derived_tbls[dctbl] ); jpeg_make_c_derived_tbl( cinfo, cinfo->ac_huff_tbl_ptrs[actbl], &entropy->ac_derived_tbls[actbl] ); } /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } /* Initialize bit buffer to empty */ entropy->saved.put_buffer = 0; entropy->saved.put_bits = 0; /* Initialize restart stuff */ entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num = 0; } /* * Compute the derived values for a Huffman table. * Note this is also used by jcphuff.c. */ GLOBAL void jpeg_make_c_derived_tbl( j_compress_ptr cinfo, JHUFF_TBL * htbl, c_derived_tbl ** pdtbl ) { c_derived_tbl * dtbl; int p, i, l, lastp, si; char huffsize[257]; unsigned int huffcode[257]; unsigned int code; /* Allocate a workspace if we haven't already done so. */ if ( *pdtbl == NULL ) { *pdtbl = (c_derived_tbl *) ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF( c_derived_tbl ) ); } dtbl = *pdtbl; /* Figure C.1: make table of Huffman code length for each symbol */ /* Note that this is in code-length order. */ p = 0; for ( l = 1; l <= 16; l++ ) { for ( i = 1; i <= (int) htbl->bits[l]; i++ ) { huffsize[p++] = (char) l; } } huffsize[p] = 0; lastp = p; /* Figure C.2: generate the codes themselves */ /* Note that this is in code-length order. */ code = 0; si = huffsize[0]; p = 0; while ( huffsize[p] ) { while ( ( (int) huffsize[p] ) == si ) { huffcode[p++] = code; code++; } code <<= 1; si++; } /* Figure C.3: generate encoding tables */ /* These are code and size indexed by symbol value */ /* Set any codeless symbols to have code length 0; * this allows emit_bits to detect any attempt to emit such symbols. */ MEMZERO( dtbl->ehufsi, SIZEOF( dtbl->ehufsi ) ); for ( p = 0; p < lastp; p++ ) { dtbl->ehufco[htbl->huffval[p]] = huffcode[p]; dtbl->ehufsi[htbl->huffval[p]] = huffsize[p]; } } /* Outputting bytes to the file */ /* Emit a byte, taking 'action' if must suspend. */ #define emit_byte( state, val, action ) \ { *( state )->next_output_byte++ = (JOCTET) ( val ); \ if ( -- ( state )->free_in_buffer == 0 ) { \ if ( !dump_buffer( state ) ) \ { action; } } } LOCAL boolean dump_buffer( working_state * state ) { /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ struct jpeg_destination_mgr * dest = state->cinfo->dest; if ( !( *dest->empty_output_buffer )( state->cinfo ) ) { return FALSE; } /* After a successful buffer dump, must reset buffer pointers */ state->next_output_byte = dest->next_output_byte; state->free_in_buffer = dest->free_in_buffer; return TRUE; } /* Outputting bits to the file */ /* Only the right 24 bits of put_buffer are used; the valid bits are * left-justified in this part. At most 16 bits can be passed to emit_bits * in one call, and we never retain more than 7 bits in put_buffer * between calls, so 24 bits are sufficient. */ INLINE LOCAL boolean emit_bits( working_state * state, unsigned int code, int size ) { /* Emit some bits; return TRUE if successful, FALSE if must suspend */ /* This routine is heavily used, so it's worth coding tightly. */ register INT32 put_buffer = (INT32) code; register int put_bits = state->cur.put_bits; /* if size is 0, caller used an invalid Huffman table entry */ if ( size == 0 ) { ERREXIT( state->cinfo, JERR_HUFF_MISSING_CODE ); } put_buffer &= ( ( (INT32) 1 ) << size ) - 1;/* mask off any extra bits in code */ put_bits += size; /* new number of bits in buffer */ put_buffer <<= 24 - put_bits;/* align incoming bits */ put_buffer |= state->cur.put_buffer;/* and merge with old buffer contents */ while ( put_bits >= 8 ) { int c = (int) ( ( put_buffer >> 16 ) & 0xFF ); emit_byte( state, c, return FALSE ); if ( c == 0xFF ) { /* need to stuff a zero byte? */ emit_byte( state, 0, return FALSE ); } put_buffer <<= 8; put_bits -= 8; } state->cur.put_buffer = put_buffer;/* update state variables */ state->cur.put_bits = put_bits; return TRUE; } LOCAL boolean flush_bits( working_state * state ) { if ( !emit_bits( state, 0x7F, 7 ) ) {/* fill any partial byte with ones */ return FALSE; } state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ state->cur.put_bits = 0; return TRUE; } /* Encode a single block's worth of coefficients */ LOCAL boolean encode_one_block( working_state * state, JCOEFPTR block, int last_dc_val, c_derived_tbl * dctbl, c_derived_tbl * actbl ) { register int temp, temp2; register int nbits; register int k, r, i; /* Encode the DC coefficient difference per section F.1.2.1 */ temp = temp2 = block[0] - last_dc_val; if ( temp < 0 ) { temp = -temp; /* temp is abs value of input */ /* For a negative input, want temp2 = bitwise complement of abs(input) */ /* This code assumes we are on a two's complement machine */ temp2--; } /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 0; while ( temp ) { nbits++; temp >>= 1; } /* Emit the Huffman-coded symbol for the number of bits */ if ( !emit_bits( state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits] ) ) { return FALSE; } /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if ( nbits ) { /* emit_bits rejects calls with size 0 */ if ( !emit_bits( state, (unsigned int) temp2, nbits ) ) { return FALSE; } } /* Encode the AC coefficients per section F.1.2.2 */ r = 0; /* r = run length of zeros */ for ( k = 1; k < DCTSIZE2; k++ ) { if ( ( temp = block[jpeg_natural_order[k]] ) == 0 ) { r++; } else { /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while ( r > 15 ) { if ( !emit_bits( state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0] ) ) { return FALSE; } r -= 16; } temp2 = temp; if ( temp < 0 ) { temp = -temp;/* temp is abs value of input */ /* This code assumes we are on a two's complement machine */ temp2--; } /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 1; /* there must be at least one 1 bit */ while ( ( temp >>= 1 ) ) { nbits++; } /* Emit Huffman symbol for run length / number of bits */ i = ( r << 4 ) + nbits; if ( !emit_bits( state, actbl->ehufco[i], actbl->ehufsi[i] ) ) { return FALSE; } /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if ( !emit_bits( state, (unsigned int) temp2, nbits ) ) { return FALSE; } r = 0; } } /* If the last coef(s) were zero, emit an end-of-block code */ if ( r > 0 ) { if ( !emit_bits( state, actbl->ehufco[0], actbl->ehufsi[0] ) ) { return FALSE; } } return TRUE; } /* * Emit a restart marker & resynchronize predictions. */ LOCAL boolean emit_restart( working_state * state, int restart_num ) { int ci; if ( !flush_bits( state ) ) { return FALSE; } emit_byte( state, 0xFF, return FALSE ); emit_byte( state, JPEG_RST0 + restart_num, return FALSE ); /* Re-initialize DC predictions to 0 */ for ( ci = 0; ci < state->cinfo->comps_in_scan; ci++ ) { state->cur.last_dc_val[ci] = 0; } /* The restart counter is not updated until we successfully write the MCU. */ return TRUE; } /* * Encode and output one MCU's worth of Huffman-compressed coefficients. */ METHODDEF boolean encode_mcu_huff( j_compress_ptr cinfo, JBLOCKROW * MCU_data ) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; working_state state; int blkn, ci; jpeg_component_info * compptr; /* Load up working state */ state.next_output_byte = cinfo->dest->next_output_byte; state.free_in_buffer = cinfo->dest->free_in_buffer; ASSIGN_STATE( state.cur, entropy->saved ); state.cinfo = cinfo; /* Emit restart marker if needed */ if ( cinfo->restart_interval ) { if ( entropy->restarts_to_go == 0 ) { if ( !emit_restart( &state, entropy->next_restart_num ) ) { return FALSE; } } } /* Encode the MCU data blocks */ for ( blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++ ) { ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; if ( !encode_one_block( &state, MCU_data[blkn][0], state.cur.last_dc_val[ci], entropy->dc_derived_tbls[compptr->dc_tbl_no], entropy->ac_derived_tbls[compptr->ac_tbl_no] ) ) { return FALSE; } /* Update last_dc_val */ state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; } /* Completed MCU, so update state */ cinfo->dest->next_output_byte = state.next_output_byte; cinfo->dest->free_in_buffer = state.free_in_buffer; ASSIGN_STATE( entropy->saved, state.cur ); /* Update restart-interval state too */ if ( cinfo->restart_interval ) { if ( entropy->restarts_to_go == 0 ) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * Finish up at the end of a Huffman-compressed scan. */ METHODDEF void finish_pass_huff( j_compress_ptr cinfo ) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; working_state state; /* Load up working state ... flush_bits needs it */ state.next_output_byte = cinfo->dest->next_output_byte; state.free_in_buffer = cinfo->dest->free_in_buffer; ASSIGN_STATE( state.cur, entropy->saved ); state.cinfo = cinfo; /* Flush out the last data */ if ( !flush_bits( &state ) ) { ERREXIT( cinfo, JERR_CANT_SUSPEND ); } /* Update state */ cinfo->dest->next_output_byte = state.next_output_byte; cinfo->dest->free_in_buffer = state.free_in_buffer; ASSIGN_STATE( entropy->saved, state.cur ); } /* * Huffman coding optimization. * * This actually is optimization, in the sense that we find the best possible * Huffman table(s) for the given data. We first scan the supplied data and * count the number of uses of each symbol that is to be Huffman-coded. * (This process must agree with the code above.) Then we build an * optimal Huffman coding tree for the observed counts. * * The JPEG standard requires Huffman codes to be no more than 16 bits long. * If some symbols have a very small but nonzero probability, the Huffman tree * must be adjusted to meet the code length restriction. We currently use * the adjustment method suggested in the JPEG spec. This method is *not* * optimal; it may not choose the best possible limited-length code. But * since the symbols involved are infrequently used, it's not clear that * going to extra trouble is worthwhile. */ #ifdef ENTROPY_OPT_SUPPORTED /* Process a single block's worth of coefficients */ LOCAL void htest_one_block( JCOEFPTR block, int last_dc_val, long dc_counts[], long ac_counts[] ) { register int temp; register int nbits; register int k, r; /* Encode the DC coefficient difference per section F.1.2.1 */ temp = block[0] - last_dc_val; if ( temp < 0 ) { temp = -temp; } /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 0; while ( temp ) { nbits++; temp >>= 1; } /* Count the Huffman symbol for the number of bits */ dc_counts[nbits]++; /* Encode the AC coefficients per section F.1.2.2 */ r = 0; /* r = run length of zeros */ for ( k = 1; k < DCTSIZE2; k++ ) { if ( ( temp = block[jpeg_natural_order[k]] ) == 0 ) { r++; } else { /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while ( r > 15 ) { ac_counts[0xF0]++; r -= 16; } /* Find the number of bits needed for the magnitude of the coefficient */ if ( temp < 0 ) { temp = -temp; } /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 1; /* there must be at least one 1 bit */ while ( ( temp >>= 1 ) ) { nbits++; } /* Count Huffman symbol for run length / number of bits */ ac_counts[( r << 4 ) + nbits]++; r = 0; } } /* If the last coef(s) were zero, emit an end-of-block code */ if ( r > 0 ) { ac_counts[0]++; } } /* * Trial-encode one MCU's worth of Huffman-compressed coefficients. * No data is actually output, so no suspension return is possible. */ METHODDEF boolean encode_mcu_gather( j_compress_ptr cinfo, JBLOCKROW * MCU_data ) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int blkn, ci; jpeg_component_info * compptr; /* Take care of restart intervals if needed */ if ( cinfo->restart_interval ) { if ( entropy->restarts_to_go == 0 ) { /* Re-initialize DC predictions to 0 */ for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) { entropy->saved.last_dc_val[ci] = 0; } /* Update restart state */ entropy->restarts_to_go = cinfo->restart_interval; } entropy->restarts_to_go--; } for ( blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++ ) { ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; htest_one_block( MCU_data[blkn][0], entropy->saved.last_dc_val[ci], entropy->dc_count_ptrs[compptr->dc_tbl_no], entropy->ac_count_ptrs[compptr->ac_tbl_no] ); entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; } return TRUE; } /* * Generate the optimal coding for the given counts, fill htbl. * Note this is also used by jcphuff.c. */ GLOBAL void jpeg_gen_optimal_table( j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[] ) { #define MAX_CLEN 32 /* assumed maximum initial code length */ UINT8 bits[MAX_CLEN + 1];/* bits[k] = # of symbols with code length k */ int codesize[257]; /* codesize[k] = code length of symbol k */ int others[257]; /* next symbol in current branch of tree */ int c1, c2; int p, i, j; long v; /* This algorithm is explained in section K.2 of the JPEG standard */ MEMZERO( bits, SIZEOF( bits ) ); MEMZERO( codesize, SIZEOF( codesize ) ); for ( i = 0; i < 257; i++ ) { others[i] = -1; } /* init links to empty */ freq[256] = 1; /* make sure there is a nonzero count */ /* Including the pseudo-symbol 256 in the Huffman procedure guarantees * that no real symbol is given code-value of all ones, because 256 * will be placed in the largest codeword category. */ /* Huffman's basic algorithm to assign optimal code lengths to symbols */ for (;; ) { /* Find the smallest nonzero frequency, set c1 = its symbol */ /* In case of ties, take the larger symbol number */ c1 = -1; v = 1000000000L; for ( i = 0; i <= 256; i++ ) { if ( ( freq[i] ) && ( freq[i] <= v ) ) { v = freq[i]; c1 = i; } } /* Find the next smallest nonzero frequency, set c2 = its symbol */ /* In case of ties, take the larger symbol number */ c2 = -1; v = 1000000000L; for ( i = 0; i <= 256; i++ ) { if ( ( freq[i] ) && ( freq[i] <= v ) && ( i != c1 ) ) { v = freq[i]; c2 = i; } } /* Done if we've merged everything into one frequency */ if ( c2 < 0 ) { break; } /* Else merge the two counts/trees */ freq[c1] += freq[c2]; freq[c2] = 0; /* Increment the codesize of everything in c1's tree branch */ codesize[c1]++; while ( others[c1] >= 0 ) { c1 = others[c1]; codesize[c1]++; } others[c1] = c2; /* chain c2 onto c1's tree branch */ /* Increment the codesize of everything in c2's tree branch */ codesize[c2]++; while ( others[c2] >= 0 ) { c2 = others[c2]; codesize[c2]++; } } /* Now count the number of symbols of each code length */ for ( i = 0; i <= 256; i++ ) { if ( codesize[i] ) { /* The JPEG standard seems to think that this can't happen, */ /* but I'm paranoid... */ if ( codesize[i] > MAX_CLEN ) { ERREXIT( cinfo, JERR_HUFF_CLEN_OVERFLOW ); } bits[codesize[i]]++; } } /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure * Huffman procedure assigned any such lengths, we must adjust the coding. * Here is what the JPEG spec says about how this next bit works: * Since symbols are paired for the longest Huffman code, the symbols are * removed from this length category two at a time. The prefix for the pair * (which is one bit shorter) is allocated to one of the pair; then, * skipping the BITS entry for that prefix length, a code word from the next * shortest nonzero BITS entry is converted into a prefix for two code words * one bit longer. */ for ( i = MAX_CLEN; i > 16; i-- ) { while ( bits[i] > 0 ) { j = i - 2; /* find length of new prefix to be used */ while ( bits[j] == 0 ) { j--; } bits[i] -= 2;/* remove two symbols */ bits[i - 1]++;/* one goes in this length */ bits[j + 1] += 2;/* two new symbols in this length */ bits[j]--; /* symbol of this length is now a prefix */ } } /* Remove the count for the pseudo-symbol 256 from the largest codelength */ while ( bits[i] == 0 ) {/* find largest codelength still in use */ i--; } bits[i]--; /* Return final symbol counts (only for lengths 0..16) */ MEMCOPY( htbl->bits, bits, SIZEOF( htbl->bits ) ); /* Return a list of the symbols sorted by code length */ /* It's not real clear to me why we don't need to consider the codelength * changes made above, but the JPEG spec seems to think this works. */ p = 0; for ( i = 1; i <= MAX_CLEN; i++ ) { for ( j = 0; j <= 255; j++ ) { if ( codesize[j] == i ) { htbl->huffval[p] = (UINT8) j; p++; } } } /* Set sent_table FALSE so updated table will be written to JPEG file. */ htbl->sent_table = FALSE; } /* * Finish up a statistics-gathering pass and create the new Huffman tables. */ METHODDEF void finish_pass_gather( j_compress_ptr cinfo ) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci, dctbl, actbl; jpeg_component_info * compptr; JHUFF_TBL ** htblptr; boolean did_dc[NUM_HUFF_TBLS]; boolean did_ac[NUM_HUFF_TBLS]; /* It's important not to apply jpeg_gen_optimal_table more than once * per table, because it clobbers the input frequency counts! */ MEMZERO( did_dc, SIZEOF( did_dc ) ); MEMZERO( did_ac, SIZEOF( did_ac ) ); for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; if ( !did_dc[dctbl] ) { htblptr = &cinfo->dc_huff_tbl_ptrs[dctbl]; if ( *htblptr == NULL ) { *htblptr = jpeg_alloc_huff_table( (j_common_ptr) cinfo ); } jpeg_gen_optimal_table( cinfo, *htblptr, entropy->dc_count_ptrs[dctbl] ); did_dc[dctbl] = TRUE; } if ( !did_ac[actbl] ) { htblptr = &cinfo->ac_huff_tbl_ptrs[actbl]; if ( *htblptr == NULL ) { *htblptr = jpeg_alloc_huff_table( (j_common_ptr) cinfo ); } jpeg_gen_optimal_table( cinfo, *htblptr, entropy->ac_count_ptrs[actbl] ); did_ac[actbl] = TRUE; } } } #endif /* ENTROPY_OPT_SUPPORTED */ /* * Module initialization routine for Huffman entropy encoding. */ GLOBAL void jinit_huff_encoder( j_compress_ptr cinfo ) { huff_entropy_ptr entropy; int i; entropy = (huff_entropy_ptr) ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF( huff_entropy_encoder ) ); cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; entropy->pub.start_pass = start_pass_huff; /* Mark tables unallocated */ for ( i = 0; i < NUM_HUFF_TBLS; i++ ) { entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; #ifdef ENTROPY_OPT_SUPPORTED entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; #endif } }