/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see .
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
/*
===============================================================================
Trace model vs. polygonal model collision detection.
===============================================================================
*/
#pragma hdrstop
#include "precompiled.h"
#include "CollisionModel_local.h"
/*
===============================================================================
Contents test
===============================================================================
*/
/*
================
idCollisionModelManagerLocal::TestTrmVertsInBrush
returns true if any of the trm vertices is inside the brush
================
*/
bool idCollisionModelManagerLocal::TestTrmVertsInBrush( cm_traceWork_t* tw, cm_brush_t* b )
{
int i, j, numVerts, bestPlane;
float d, bestd;
idVec3* p;
if( b->checkcount == idCollisionModelManagerLocal::checkCount )
{
return false;
}
b->checkcount = idCollisionModelManagerLocal::checkCount;
if( !( b->contents & tw->contents ) )
{
return false;
}
// if the brush bounds don't intersect the trace bounds
if( !b->bounds.IntersectsBounds( tw->bounds ) )
{
return false;
}
if( tw->pointTrace )
{
numVerts = 1;
}
else
{
numVerts = tw->numVerts;
}
for( j = 0; j < numVerts; j++ )
{
p = &tw->vertices[j].p;
// see if the point is inside the brush
bestPlane = 0;
bestd = -idMath::INFINITY;
for( i = 0; i < b->numPlanes; i++ )
{
d = b->planes[i].Distance( *p );
if( d >= 0.0f )
{
break;
}
if( d > bestd )
{
bestd = d;
bestPlane = i;
}
}
if( i >= b->numPlanes )
{
tw->trace.fraction = 0.0f;
tw->trace.c.type = CONTACT_TRMVERTEX;
tw->trace.c.normal = b->planes[bestPlane].Normal();
tw->trace.c.dist = b->planes[bestPlane].Dist();
tw->trace.c.contents = b->contents;
tw->trace.c.material = b->material;
tw->trace.c.point = *p;
tw->trace.c.modelFeature = 0;
tw->trace.c.trmFeature = j;
return true;
}
}
return false;
}
/*
================
CM_SetTrmEdgeSidedness
================
*/
#define CM_SetTrmEdgeSidedness( edge, bpl, epl, bitNum ) { \
const int mask = 1 << bitNum; \
if ( ( edge->sideSet & mask ) == 0 ) { \
const float fl = (bpl).PermutedInnerProduct( epl ); \
edge->side = ( edge->side & ~mask ) | ( ( fl < 0.0f ) ? mask : 0 ); \
edge->sideSet |= mask; \
} \
}
/*
================
CM_SetTrmPolygonSidedness
================
*/
#define CM_SetTrmPolygonSidedness( v, plane, bitNum ) { \
const int mask = 1 << bitNum; \
if ( ( (v)->sideSet & mask ) == 0 ) { \
const float fl = plane.Distance( (v)->p ); \
(v)->side = ( (v)->side & ~mask ) | ( ( fl < 0.0f ) ? mask : 0 ); \
(v)->sideSet |= mask; \
} \
}
/*
================
idCollisionModelManagerLocal::TestTrmInPolygon
returns true if the trm intersects the polygon
================
*/
bool idCollisionModelManagerLocal::TestTrmInPolygon( cm_traceWork_t* tw, cm_polygon_t* p )
{
int i, j, k, edgeNum, flip, trmEdgeNum, bitNum, bestPlane;
int sides[MAX_TRACEMODEL_VERTS];
float d, bestd;
cm_trmEdge_t* trmEdge;
cm_edge_t* edge;
cm_vertex_t* v, *v1, *v2;
// if already checked this polygon
if( p->checkcount == idCollisionModelManagerLocal::checkCount )
{
return false;
}
p->checkcount = idCollisionModelManagerLocal::checkCount;
// if this polygon does not have the right contents behind it
if( !( p->contents & tw->contents ) )
{
return false;
}
// if the polygon bounds don't intersect the trace bounds
if( !p->bounds.IntersectsBounds( tw->bounds ) )
{
return false;
}
// bounds should cross polygon plane
switch( tw->bounds.PlaneSide( p->plane ) )
{
case PLANESIDE_CROSS:
break;
case PLANESIDE_FRONT:
if( tw->model->isConvex )
{
tw->quickExit = true;
return true;
}
default:
return false;
}
// if the trace model is convex
if( tw->isConvex )
{
// test if any polygon vertices are inside the trm
for( i = 0; i < p->numEdges; i++ )
{
edgeNum = p->edges[i];
edge = tw->model->edges + abs( edgeNum );
// if this edge is already tested
if( edge->checkcount == idCollisionModelManagerLocal::checkCount )
{
continue;
}
for( j = 0; j < 2; j++ )
{
v = &tw->model->vertices[edge->vertexNum[j]];
// if this vertex is already tested
if( v->checkcount == idCollisionModelManagerLocal::checkCount )
{
continue;
}
bestPlane = 0;
bestd = -idMath::INFINITY;
for( k = 0; k < tw->numPolys; k++ )
{
d = tw->polys[k].plane.Distance( v->p );
if( d >= 0.0f )
{
break;
}
if( d > bestd )
{
bestd = d;
bestPlane = k;
}
}
if( k >= tw->numPolys )
{
tw->trace.fraction = 0.0f;
tw->trace.c.type = CONTACT_MODELVERTEX;
tw->trace.c.normal = -tw->polys[bestPlane].plane.Normal();
tw->trace.c.dist = -tw->polys[bestPlane].plane.Dist();
tw->trace.c.contents = p->contents;
tw->trace.c.material = p->material;
tw->trace.c.point = v->p;
tw->trace.c.modelFeature = edge->vertexNum[j];
tw->trace.c.trmFeature = 0;
return true;
}
}
}
}
for( i = 0; i < p->numEdges; i++ )
{
edgeNum = p->edges[i];
edge = tw->model->edges + abs( edgeNum );
// reset sidedness cache if this is the first time we encounter this edge
if( edge->checkcount != idCollisionModelManagerLocal::checkCount )
{
edge->sideSet = 0;
}
// pluecker coordinate for edge
tw->polygonEdgePlueckerCache[i].FromLine( tw->model->vertices[edge->vertexNum[0]].p,
tw->model->vertices[edge->vertexNum[1]].p );
v = &tw->model->vertices[edge->vertexNum[INT32_SIGNBITSET( edgeNum )]];
// reset sidedness cache if this is the first time we encounter this vertex
if( v->checkcount != idCollisionModelManagerLocal::checkCount )
{
v->sideSet = 0;
}
v->checkcount = idCollisionModelManagerLocal::checkCount;
}
// get side of polygon for each trm vertex
for( i = 0; i < tw->numVerts; i++ )
{
d = p->plane.Distance( tw->vertices[i].p );
sides[i] = d < 0.0f ? -1 : 1;
}
// test if any trm edges go through the polygon
for( i = 1; i <= tw->numEdges; i++ )
{
// if the trm edge does not cross the polygon plane
if( sides[tw->edges[i].vertexNum[0]] == sides[tw->edges[i].vertexNum[1]] )
{
continue;
}
// check from which side to which side the trm edge goes
flip = INT32_SIGNBITSET( sides[tw->edges[i].vertexNum[0]] );
// test if trm edge goes through the polygon between the polygon edges
for( j = 0; j < p->numEdges; j++ )
{
edgeNum = p->edges[j];
edge = tw->model->edges + abs( edgeNum );
#if 1
CM_SetTrmEdgeSidedness( edge, tw->edges[i].pl, tw->polygonEdgePlueckerCache[j], i );
if( INT32_SIGNBITSET( edgeNum ) ^ ( ( edge->side >> i ) & 1 ) ^ flip )
{
break;
}
#else
d = tw->edges[i].pl.PermutedInnerProduct( tw->polygonEdgePlueckerCache[j] );
if( flip )
{
d = -d;
}
if( edgeNum > 0 )
{
if( d <= 0.0f )
{
break;
}
}
else
{
if( d >= 0.0f )
{
break;
}
}
#endif
}
if( j >= p->numEdges )
{
tw->trace.fraction = 0.0f;
tw->trace.c.type = CONTACT_EDGE;
tw->trace.c.normal = p->plane.Normal();
tw->trace.c.dist = p->plane.Dist();
tw->trace.c.contents = p->contents;
tw->trace.c.material = p->material;
tw->trace.c.point = tw->vertices[tw->edges[i].vertexNum[ !flip ]].p;
tw->trace.c.modelFeature = *reinterpret_cast( &p );
tw->trace.c.trmFeature = i;
return true;
}
}
// test if any polygon edges go through the trm polygons
for( i = 0; i < p->numEdges; i++ )
{
edgeNum = p->edges[i];
edge = tw->model->edges + abs( edgeNum );
if( edge->checkcount == idCollisionModelManagerLocal::checkCount )
{
continue;
}
edge->checkcount = idCollisionModelManagerLocal::checkCount;
for( j = 0; j < tw->numPolys; j++ )
{
#if 1
v1 = tw->model->vertices + edge->vertexNum[0];
CM_SetTrmPolygonSidedness( v1, tw->polys[j].plane, j );
v2 = tw->model->vertices + edge->vertexNum[1];
CM_SetTrmPolygonSidedness( v2, tw->polys[j].plane, j );
// if the polygon edge does not cross the trm polygon plane
if( !( ( ( v1->side ^ v2->side ) >> j ) & 1 ) )
{
continue;
}
flip = ( v1->side >> j ) & 1;
#else
float d1, d2;
v1 = tw->model->vertices + edge->vertexNum[0];
d1 = tw->polys[j].plane.Distance( v1->p );
v2 = tw->model->vertices + edge->vertexNum[1];
d2 = tw->polys[j].plane.Distance( v2->p );
// if the polygon edge does not cross the trm polygon plane
if( ( d1 >= 0.0f && d2 >= 0.0f ) || ( d1 <= 0.0f && d2 <= 0.0f ) )
{
continue;
}
flip = false;
if( d1 < 0.0f )
{
flip = true;
}
#endif
// test if polygon edge goes through the trm polygon between the trm polygon edges
for( k = 0; k < tw->polys[j].numEdges; k++ )
{
trmEdgeNum = tw->polys[j].edges[k];
trmEdge = tw->edges + abs( trmEdgeNum );
#if 1
bitNum = abs( trmEdgeNum );
CM_SetTrmEdgeSidedness( edge, trmEdge->pl, tw->polygonEdgePlueckerCache[i], bitNum );
if( INT32_SIGNBITSET( trmEdgeNum ) ^ ( ( edge->side >> bitNum ) & 1 ) ^ flip )
{
break;
}
#else
d = trmEdge->pl.PermutedInnerProduct( tw->polygonEdgePlueckerCache[i] );
if( flip )
{
d = -d;
}
if( trmEdgeNum > 0 )
{
if( d <= 0.0f )
{
break;
}
}
else
{
if( d >= 0.0f )
{
break;
}
}
#endif
}
if( k >= tw->polys[j].numEdges )
{
tw->trace.fraction = 0.0f;
tw->trace.c.type = CONTACT_EDGE;
tw->trace.c.normal = -tw->polys[j].plane.Normal();
tw->trace.c.dist = -tw->polys[j].plane.Dist();
tw->trace.c.contents = p->contents;
tw->trace.c.material = p->material;
tw->trace.c.point = tw->model->vertices[edge->vertexNum[ !flip ]].p;
tw->trace.c.modelFeature = edgeNum;
tw->trace.c.trmFeature = j;
return true;
}
}
}
return false;
}
/*
================
idCollisionModelManagerLocal::PointNode
================
*/
cm_node_t* idCollisionModelManagerLocal::PointNode( const idVec3& p, cm_model_t* model )
{
cm_node_t* node;
node = model->node;
while( node->planeType != -1 )
{
if( p[node->planeType] > node->planeDist )
{
node = node->children[0];
}
else
{
node = node->children[1];
}
assert( node != NULL );
}
return node;
}
/*
================
idCollisionModelManagerLocal::PointContents
================
*/
int idCollisionModelManagerLocal::PointContents( const idVec3 p, cmHandle_t model )
{
int i;
float d;
cm_node_t* node;
cm_brushRef_t* bref;
cm_brush_t* b;
idPlane* plane;
node = idCollisionModelManagerLocal::PointNode( p, idCollisionModelManagerLocal::models[model] );
for( bref = node->brushes; bref; bref = bref->next )
{
b = bref->b;
// test if the point is within the brush bounds
for( i = 0; i < 3; i++ )
{
if( p[i] < b->bounds[0][i] )
{
break;
}
if( p[i] > b->bounds[1][i] )
{
break;
}
}
if( i < 3 )
{
continue;
}
// test if the point is inside the brush
plane = b->planes;
for( i = 0; i < b->numPlanes; i++, plane++ )
{
d = plane->Distance( p );
if( d >= 0.0f )
{
break;
}
}
if( i >= b->numPlanes )
{
return b->contents;
}
}
return 0;
}
/*
==================
idCollisionModelManagerLocal::TransformedPointContents
==================
*/
int idCollisionModelManagerLocal::TransformedPointContents( const idVec3& p, cmHandle_t model, const idVec3& origin, const idMat3& modelAxis )
{
idVec3 p_l;
// subtract origin offset
p_l = p - origin;
if( modelAxis.IsRotated() )
{
p_l *= modelAxis;
}
return idCollisionModelManagerLocal::PointContents( p_l, model );
}
/*
==================
idCollisionModelManagerLocal::ContentsTrm
==================
*/
int idCollisionModelManagerLocal::ContentsTrm( trace_t* results, const idVec3& start,
const idTraceModel* trm, const idMat3& trmAxis, int contentMask,
cmHandle_t model, const idVec3& modelOrigin, const idMat3& modelAxis )
{
int i;
bool model_rotated, trm_rotated;
idMat3 invModelAxis, tmpAxis;
idVec3 dir;
ALIGN16( cm_traceWork_t tw );
// fast point case
if( !trm || ( trm->bounds[1][0] - trm->bounds[0][0] <= 0.0f &&
trm->bounds[1][1] - trm->bounds[0][1] <= 0.0f &&
trm->bounds[1][2] - trm->bounds[0][2] <= 0.0f ) )
{
results->c.contents = idCollisionModelManagerLocal::TransformedPointContents( start, model, modelOrigin, modelAxis );
results->fraction = ( results->c.contents == 0 );
results->endpos = start;
results->endAxis = trmAxis;
return results->c.contents;
}
idCollisionModelManagerLocal::checkCount++;
tw.trace.fraction = 1.0f;
tw.trace.c.contents = 0;
tw.trace.c.type = CONTACT_NONE;
tw.contents = contentMask;
tw.isConvex = true;
tw.rotation = false;
tw.positionTest = true;
tw.pointTrace = false;
tw.quickExit = false;
tw.numContacts = 0;
tw.model = idCollisionModelManagerLocal::models[model];
tw.start = start - modelOrigin;
tw.end = tw.start;
model_rotated = modelAxis.IsRotated();
if( model_rotated )
{
invModelAxis = modelAxis.Transpose();
}
// setup trm structure
idCollisionModelManagerLocal::SetupTrm( &tw, trm );
trm_rotated = trmAxis.IsRotated();
// calculate vertex positions
if( trm_rotated )
{
for( i = 0; i < tw.numVerts; i++ )
{
// rotate trm around the start position
tw.vertices[i].p *= trmAxis;
}
}
for( i = 0; i < tw.numVerts; i++ )
{
// set trm at start position
tw.vertices[i].p += tw.start;
}
if( model_rotated )
{
for( i = 0; i < tw.numVerts; i++ )
{
// rotate trm around model instead of rotating the model
tw.vertices[i].p *= invModelAxis;
}
}
// add offset to start point
if( trm_rotated )
{
dir = trm->offset * trmAxis;
tw.start += dir;
tw.end += dir;
}
else
{
tw.start += trm->offset;
tw.end += trm->offset;
}
if( model_rotated )
{
// rotate trace instead of model
tw.start *= invModelAxis;
tw.end *= invModelAxis;
}
// setup trm vertices
tw.size.Clear();
for( i = 0; i < tw.numVerts; i++ )
{
// get axial trm size after rotations
tw.size.AddPoint( tw.vertices[i].p - tw.start );
}
// setup trm edges
for( i = 1; i <= tw.numEdges; i++ )
{
// edge start, end and pluecker coordinate
tw.edges[i].start = tw.vertices[tw.edges[i].vertexNum[0]].p;
tw.edges[i].end = tw.vertices[tw.edges[i].vertexNum[1]].p;
tw.edges[i].pl.FromLine( tw.edges[i].start, tw.edges[i].end );
}
// setup trm polygons
if( trm_rotated & model_rotated )
{
tmpAxis = trmAxis * invModelAxis;
for( i = 0; i < tw.numPolys; i++ )
{
tw.polys[i].plane *= tmpAxis;
}
}
else if( trm_rotated )
{
for( i = 0; i < tw.numPolys; i++ )
{
tw.polys[i].plane *= trmAxis;
}
}
else if( model_rotated )
{
for( i = 0; i < tw.numPolys; i++ )
{
tw.polys[i].plane *= invModelAxis;
}
}
for( i = 0; i < tw.numPolys; i++ )
{
tw.polys[i].plane.FitThroughPoint( tw.edges[abs( tw.polys[i].edges[0] )].start );
}
// bounds for full trace, a little bit larger for epsilons
for( i = 0; i < 3; i++ )
{
if( tw.start[i] < tw.end[i] )
{
tw.bounds[0][i] = tw.start[i] + tw.size[0][i] - CM_BOX_EPSILON;
tw.bounds[1][i] = tw.end[i] + tw.size[1][i] + CM_BOX_EPSILON;
}
else
{
tw.bounds[0][i] = tw.end[i] + tw.size[0][i] - CM_BOX_EPSILON;
tw.bounds[1][i] = tw.start[i] + tw.size[1][i] + CM_BOX_EPSILON;
}
if( idMath::Fabs( tw.size[0][i] ) > idMath::Fabs( tw.size[1][i] ) )
{
tw.extents[i] = idMath::Fabs( tw.size[0][i] ) + CM_BOX_EPSILON;
}
else
{
tw.extents[i] = idMath::Fabs( tw.size[1][i] ) + CM_BOX_EPSILON;
}
}
// trace through the model
idCollisionModelManagerLocal::TraceThroughModel( &tw );
*results = tw.trace;
results->fraction = ( results->c.contents == 0 );
results->endpos = start;
results->endAxis = trmAxis;
return results->c.contents;
}
/*
==================
idCollisionModelManagerLocal::Contents
==================
*/
int idCollisionModelManagerLocal::Contents( const idVec3& start,
const idTraceModel* trm, const idMat3& trmAxis, int contentMask,
cmHandle_t model, const idVec3& modelOrigin, const idMat3& modelAxis )
{
trace_t results;
if( model < 0 || model > idCollisionModelManagerLocal::maxModels || model > MAX_SUBMODELS )
{
common->Printf( "idCollisionModelManagerLocal::Contents: invalid model handle\n" );
return 0;
}
if( !idCollisionModelManagerLocal::models || !idCollisionModelManagerLocal::models[model] )
{
common->Printf( "idCollisionModelManagerLocal::Contents: invalid model\n" );
return 0;
}
return ContentsTrm( &results, start, trm, trmAxis, contentMask, model, modelOrigin, modelAxis );
}