/* * jdhuff.c * * Copyright (C) 1991-1995, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy decoding routines. * * Much of the complexity here has to do with supporting input suspension. * If the data source module demands suspension, we want to be able to back * up to the start of the current MCU. To do this, we copy state variables * into local working storage, and update them back to the permanent * storage only upon successful completion of an MCU. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdhuff.h" /* Declarations shared with jdphuff.c */ /* * Expanded entropy decoder object for Huffman decoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ typedef struct { int last_dc_val[MAX_COMPS_IN_SCAN];/* last DC coef for each component */ } savable_state; /* This macro is to work around compilers with missing or broken * structure assignment. You'll need to fix this code if you have * such a compiler and you change MAX_COMPS_IN_SCAN. */ #ifndef NO_STRUCT_ASSIGN #define ASSIGN_STATE( dest, src ) ( ( dest ) = ( src ) ) #else #if MAX_COMPS_IN_SCAN == 4 #define ASSIGN_STATE( dest, src ) \ ( ( dest ).last_dc_val[0] = ( src ).last_dc_val[0], \ ( dest ).last_dc_val[1] = ( src ).last_dc_val[1], \ ( dest ).last_dc_val[2] = ( src ).last_dc_val[2], \ ( dest ).last_dc_val[3] = ( src ).last_dc_val[3] ) #endif #endif typedef struct { struct jpeg_entropy_decoder pub;/* public fields */ /* These fields are loaded into local variables at start of each MCU. * In case of suspension, we exit WITHOUT updating them. */ bitread_perm_state bitstate;/* Bit buffer at start of MCU */ savable_state saved; /* Other state at start of MCU */ /* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go;/* MCUs left in this restart interval */ /* Pointers to derived tables (these workspaces have image lifespan) */ d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; } huff_entropy_decoder; typedef huff_entropy_decoder * huff_entropy_ptr; /* * Initialize for a Huffman-compressed scan. */ METHODDEF void start_pass_huff_decoder( j_decompress_ptr cinfo ) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci, dctbl, actbl; jpeg_component_info * compptr; /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. * This ought to be an error condition, but we make it a warning because * there are some baseline files out there with all zeroes in these bytes. */ if ( ( cinfo->Ss != 0 ) || ( cinfo->Se != DCTSIZE2 - 1 ) || ( cinfo->Ah != 0 ) || ( cinfo->Al != 0 ) ) { WARNMS( cinfo, JWRN_NOT_SEQUENTIAL ); } for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; /* Make sure requested tables are present */ if ( ( dctbl < 0 ) || ( dctbl >= NUM_HUFF_TBLS ) || ( cinfo->dc_huff_tbl_ptrs[dctbl] == NULL ) ) { ERREXIT1( cinfo, JERR_NO_HUFF_TABLE, dctbl ); } if ( ( actbl < 0 ) || ( actbl >= NUM_HUFF_TBLS ) || ( cinfo->ac_huff_tbl_ptrs[actbl] == NULL ) ) { ERREXIT1( cinfo, JERR_NO_HUFF_TABLE, actbl ); } /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_d_derived_tbl( cinfo, cinfo->dc_huff_tbl_ptrs[dctbl], &entropy->dc_derived_tbls[dctbl] ); jpeg_make_d_derived_tbl( cinfo, cinfo->ac_huff_tbl_ptrs[actbl], &entropy->ac_derived_tbls[actbl] ); /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } /* Initialize bitread state variables */ entropy->bitstate.bits_left = 0; entropy->bitstate.get_buffer = 0;/* unnecessary, but keeps Purify quiet */ entropy->bitstate.printed_eod = FALSE; /* Initialize restart counter */ entropy->restarts_to_go = cinfo->restart_interval; } /* * Compute the derived values for a Huffman table. * Note this is also used by jdphuff.c. */ GLOBAL void jpeg_make_d_derived_tbl( j_decompress_ptr cinfo, JHUFF_TBL * htbl, d_derived_tbl ** pdtbl ) { d_derived_tbl * dtbl; int p, i, l, si; int lookbits, ctr; char huffsize[257]; unsigned int huffcode[257]; unsigned int code; /* Allocate a workspace if we haven't already done so. */ if ( *pdtbl == NULL ) { *pdtbl = (d_derived_tbl *) ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF( d_derived_tbl ) ); } dtbl = *pdtbl; dtbl->pub = htbl; /* fill in back link */ /* Figure C.1: make table of Huffman code length for each symbol */ /* Note that this is in code-length order. */ p = 0; for ( l = 1; l <= 16; l++ ) { for ( i = 1; i <= (int) htbl->bits[l]; i++ ) { huffsize[p++] = (char) l; } } huffsize[p] = 0; /* Figure C.2: generate the codes themselves */ /* Note that this is in code-length order. */ code = 0; si = huffsize[0]; p = 0; while ( huffsize[p] ) { while ( ( (int) huffsize[p] ) == si ) { huffcode[p++] = code; code++; } code <<= 1; si++; } /* Figure F.15: generate decoding tables for bit-sequential decoding */ p = 0; for ( l = 1; l <= 16; l++ ) { if ( htbl->bits[l] ) { dtbl->valptr[l] = p;/* huffval[] index of 1st symbol of code length l */ dtbl->mincode[l] = huffcode[p];/* minimum code of length l */ p += htbl->bits[l]; dtbl->maxcode[l] = huffcode[p - 1];/* maximum code of length l */ } else { dtbl->maxcode[l] = -1;/* -1 if no codes of this length */ } } dtbl->maxcode[17] = 0xFFFFFL;/* ensures jpeg_huff_decode terminates */ /* Compute lookahead tables to speed up decoding. * First we set all the table entries to 0, indicating "too long"; * then we iterate through the Huffman codes that are short enough and * fill in all the entries that correspond to bit sequences starting * with that code. */ MEMZERO( dtbl->look_nbits, SIZEOF( dtbl->look_nbits ) ); p = 0; for ( l = 1; l <= HUFF_LOOKAHEAD; l++ ) { for ( i = 1; i <= (int) htbl->bits[l]; i++, p++ ) { /* l = current code's length, p = its index in huffcode[] & huffval[]. */ /* Generate left-justified code followed by all possible bit sequences */ lookbits = huffcode[p] << ( HUFF_LOOKAHEAD - l ); for ( ctr = 1 << ( HUFF_LOOKAHEAD - l ); ctr > 0; ctr-- ) { dtbl->look_nbits[lookbits] = l; dtbl->look_sym[lookbits] = htbl->huffval[p]; lookbits++; } } } } /* * Out-of-line code for bit fetching (shared with jdphuff.c). * See jdhuff.h for info about usage. * Note: current values of get_buffer and bits_left are passed as parameters, * but are returned in the corresponding fields of the state struct. * * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width * of get_buffer to be used. (On machines with wider words, an even larger * buffer could be used.) However, on some machines 32-bit shifts are * quite slow and take time proportional to the number of places shifted. * (This is true with most PC compilers, for instance.) In this case it may * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. */ #ifdef SLOW_SHIFT_32 #define MIN_GET_BITS 15 /* minimum allowable value */ #else #define MIN_GET_BITS ( BIT_BUF_SIZE - 7 ) #endif GLOBAL boolean jpeg_fill_bit_buffer( bitread_working_state * state, register bit_buf_type get_buffer, register int bits_left, int nbits ) { /* Load up the bit buffer to a depth of at least nbits */ /* Copy heavily used state fields into locals (hopefully registers) */ register const JOCTET * next_input_byte = state->next_input_byte; register size_t bytes_in_buffer = state->bytes_in_buffer; register int c; /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ /* (It is assumed that no request will be for more than that many bits.) */ while ( bits_left < MIN_GET_BITS ) { /* Attempt to read a byte */ if ( state->unread_marker != 0 ) { goto no_more_data; } /* can't advance past a marker */ if ( bytes_in_buffer == 0 ) { if ( !( *state->cinfo->src->fill_input_buffer )( state->cinfo ) ) { return FALSE; } next_input_byte = state->cinfo->src->next_input_byte; bytes_in_buffer = state->cinfo->src->bytes_in_buffer; } bytes_in_buffer--; c = GETJOCTET( *next_input_byte++ ); /* If it's 0xFF, check and discard stuffed zero byte */ if ( c == 0xFF ) { do { if ( bytes_in_buffer == 0 ) { if ( !( *state->cinfo->src->fill_input_buffer )( state->cinfo ) ) { return FALSE; } next_input_byte = state->cinfo->src->next_input_byte; bytes_in_buffer = state->cinfo->src->bytes_in_buffer; } bytes_in_buffer--; c = GETJOCTET( *next_input_byte++ ); } while ( c == 0xFF ); if ( c == 0 ) { /* Found FF/00, which represents an FF data byte */ c = 0xFF; } else { /* Oops, it's actually a marker indicating end of compressed data. */ /* Better put it back for use later */ state->unread_marker = c; no_more_data: /* There should be enough bits still left in the data segment; */ /* if so, just break out of the outer while loop. */ if ( bits_left >= nbits ) { break; } /* Uh-oh. Report corrupted data to user and stuff zeroes into * the data stream, so that we can produce some kind of image. * Note that this code will be repeated for each byte demanded * for the rest of the segment. We use a nonvolatile flag to ensure * that only one warning message appears. */ if ( ! * ( state->printed_eod_ptr ) ) { WARNMS( state->cinfo, JWRN_HIT_MARKER ); *( state->printed_eod_ptr ) = TRUE; } c = 0;/* insert a zero byte into bit buffer */ } } /* OK, load c into get_buffer */ get_buffer = ( get_buffer << 8 ) | c; bits_left += 8; } /* Unload the local registers */ state->next_input_byte = next_input_byte; state->bytes_in_buffer = bytes_in_buffer; state->get_buffer = get_buffer; state->bits_left = bits_left; return TRUE; } /* * Out-of-line code for Huffman code decoding. * See jdhuff.h for info about usage. */ GLOBAL int jpeg_huff_decode( bitread_working_state * state, register bit_buf_type get_buffer, register int bits_left, d_derived_tbl * htbl, int min_bits ) { register int l = min_bits; register INT32 code; /* HUFF_DECODE has determined that the code is at least min_bits */ /* bits long, so fetch that many bits in one swoop. */ CHECK_BIT_BUFFER( *state, l, return -1 ); code = GET_BITS( l ); /* Collect the rest of the Huffman code one bit at a time. */ /* This is per Figure F.16 in the JPEG spec. */ while ( code > htbl->maxcode[l] ) { code <<= 1; CHECK_BIT_BUFFER( *state, 1, return -1 ); code |= GET_BITS( 1 ); l++; } /* Unload the local registers */ state->get_buffer = get_buffer; state->bits_left = bits_left; /* With garbage input we may reach the sentinel value l = 17. */ if ( l > 16 ) { WARNMS( state->cinfo, JWRN_HUFF_BAD_CODE ); return 0; /* fake a zero as the safest result */ } return htbl->pub->huffval[ htbl->valptr[l] + ( (int) ( code - htbl->mincode[l] ) ) ]; } /* * Figure F.12: extend sign bit. * On some machines, a shift and add will be faster than a table lookup. */ #ifdef AVOID_TABLES #define HUFF_EXTEND( x, s ) ( ( x ) < ( 1 << ( ( s ) - 1 ) ) ? ( x ) + ( ( ( -1 ) << ( s ) ) + 1 ) : ( x ) ) #else #define HUFF_EXTEND( x, s ) ( ( x ) < extend_test[s] ? ( x ) + extend_offset[s] : ( x ) ) static const int extend_test[16] = /* entry n is 2**(n-1) */ { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ { 0, ( ( -1 ) << 1 ) + 1, ( ( -1 ) << 2 ) + 1, ( ( -1 ) << 3 ) + 1, ( ( -1 ) << 4 ) + 1, ( ( -1 ) << 5 ) + 1, ( ( -1 ) << 6 ) + 1, ( ( -1 ) << 7 ) + 1, ( ( -1 ) << 8 ) + 1, ( ( -1 ) << 9 ) + 1, ( ( -1 ) << 10 ) + 1, ( ( -1 ) << 11 ) + 1, ( ( -1 ) << 12 ) + 1, ( ( -1 ) << 13 ) + 1, ( ( -1 ) << 14 ) + 1, ( ( -1 ) << 15 ) + 1 }; #endif /* AVOID_TABLES */ /* * Check for a restart marker & resynchronize decoder. * Returns FALSE if must suspend. */ LOCAL boolean process_restart( j_decompress_ptr cinfo ) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci; /* Throw away any unused bits remaining in bit buffer; */ /* include any full bytes in next_marker's count of discarded bytes */ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; entropy->bitstate.bits_left = 0; /* Advance past the RSTn marker */ if ( !( *cinfo->marker->read_restart_marker )( cinfo ) ) { return FALSE; } /* Re-initialize DC predictions to 0 */ for ( ci = 0; ci < cinfo->comps_in_scan; ci++ ) { entropy->saved.last_dc_val[ci] = 0; } /* Reset restart counter */ entropy->restarts_to_go = cinfo->restart_interval; /* Next segment can get another out-of-data warning */ entropy->bitstate.printed_eod = FALSE; return TRUE; } /* * Decode and return one MCU's worth of Huffman-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. * (Wholesale zeroing is usually a little faster than retail...) * * Returns FALSE if data source requested suspension. In that case no * changes have been made to permanent state. (Exception: some output * coefficients may already have been assigned. This is harmless for * this module, since we'll just re-assign them on the next call.) */ METHODDEF boolean decode_mcu( j_decompress_ptr cinfo, JBLOCKROW * MCU_data ) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; register int s, k, r; int blkn, ci; JBLOCKROW block; BITREAD_STATE_VARS; savable_state state; d_derived_tbl * dctbl; d_derived_tbl * actbl; jpeg_component_info * compptr; /* Process restart marker if needed; may have to suspend */ if ( cinfo->restart_interval ) { if ( entropy->restarts_to_go == 0 ) { if ( !process_restart( cinfo ) ) { return FALSE; } } } /* Load up working state */ BITREAD_LOAD_STATE( cinfo, entropy->bitstate ); ASSIGN_STATE( state, entropy->saved ); /* Outer loop handles each block in the MCU */ for ( blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++ ) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no]; actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no]; /* Decode a single block's worth of coefficients */ /* Section F.2.2.1: decode the DC coefficient difference */ HUFF_DECODE( s, br_state, dctbl, return FALSE, label1 ); if ( s ) { CHECK_BIT_BUFFER( br_state, s, return FALSE ); r = GET_BITS( s ); s = HUFF_EXTEND( r, s ); } /* Shortcut if component's values are not interesting */ if ( !compptr->component_needed ) { goto skip_ACs; } /* Convert DC difference to actual value, update last_dc_val */ s += state.last_dc_val[ci]; state.last_dc_val[ci] = s; /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ ( *block )[0] = (JCOEF) s; /* Do we need to decode the AC coefficients for this component? */ if ( compptr->DCT_scaled_size > 1 ) { /* Section F.2.2.2: decode the AC coefficients */ /* Since zeroes are skipped, output area must be cleared beforehand */ for ( k = 1; k < DCTSIZE2; k++ ) { HUFF_DECODE( s, br_state, actbl, return FALSE, label2 ); r = s >> 4; s &= 15; if ( s ) { k += r; CHECK_BIT_BUFFER( br_state, s, return FALSE ); r = GET_BITS( s ); s = HUFF_EXTEND( r, s ); /* Output coefficient in natural (dezigzagged) order. * Note: the extra entries in jpeg_natural_order[] will save us * if k >= DCTSIZE2, which could happen if the data is corrupted. */ ( *block )[jpeg_natural_order[k]] = (JCOEF) s; } else { if ( r != 15 ) { break; } k += 15; } } } else { skip_ACs: /* Section F.2.2.2: decode the AC coefficients */ /* In this path we just discard the values */ for ( k = 1; k < DCTSIZE2; k++ ) { HUFF_DECODE( s, br_state, actbl, return FALSE, label3 ); r = s >> 4; s &= 15; if ( s ) { k += r; CHECK_BIT_BUFFER( br_state, s, return FALSE ); DROP_BITS( s ); } else { if ( r != 15 ) { break; } k += 15; } } } } /* Completed MCU, so update state */ BITREAD_SAVE_STATE( cinfo, entropy->bitstate ); ASSIGN_STATE( entropy->saved, state ); /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; } /* * Module initialization routine for Huffman entropy decoding. */ GLOBAL void jinit_huff_decoder( j_decompress_ptr cinfo ) { huff_entropy_ptr entropy; int i; entropy = (huff_entropy_ptr) ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF( huff_entropy_decoder ) ); cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; entropy->pub.start_pass = start_pass_huff_decoder; entropy->pub.decode_mcu = decode_mcu; /* Mark tables unallocated */ for ( i = 0; i < NUM_HUFF_TBLS; i++ ) { entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; } }