/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
Copyright (C) 2012-2014 Robert Beckebans
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see .
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#ifndef __TR_LOCAL_H__
#define __TR_LOCAL_H__
#include "precompiled.h"
#include "GLState.h"
#include "ScreenRect.h"
#include "ImageOpts.h"
#include "Image.h"
#include "Font.h"
#include "Framebuffer.h"
// everything that is needed by the backend needs
// to be double buffered to allow it to run in
// parallel on a dual cpu machine
const int SMP_FRAMES = 1;
// maximum texture units
const int MAX_PROG_TEXTURE_PARMS = 16;
const int FALLOFF_TEXTURE_SIZE = 64;
const float DEFAULT_FOG_DISTANCE = 500.0f;
// picky to get the bilerp correct at terminator
const int FOG_ENTER_SIZE = 64;
const float FOG_ENTER = ( FOG_ENTER_SIZE + 1.0f ) / ( FOG_ENTER_SIZE * 2 );
enum demoCommand_t
{
DC_BAD,
DC_RENDERVIEW,
DC_UPDATE_ENTITYDEF,
DC_DELETE_ENTITYDEF,
DC_UPDATE_LIGHTDEF,
DC_DELETE_LIGHTDEF,
DC_LOADMAP,
DC_CROP_RENDER,
DC_UNCROP_RENDER,
DC_CAPTURE_RENDER,
DC_END_FRAME,
DC_DEFINE_MODEL,
DC_SET_PORTAL_STATE,
DC_UPDATE_SOUNDOCCLUSION,
DC_GUI_MODEL
};
/*
==============================================================================
SURFACES
==============================================================================
*/
#include "ModelDecal.h"
#include "ModelOverlay.h"
#include "Interaction.h"
class idRenderWorldLocal;
struct viewEntity_t;
struct viewLight_t;
// drawSurf_t structures command the back end to render surfaces
// a given srfTriangles_t may be used with multiple viewEntity_t,
// as when viewed in a subview or multiple viewport render, or
// with multiple shaders when skinned, or, possibly with multiple
// lights, although currently each lighting interaction creates
// unique srfTriangles_t
// drawSurf_t are always allocated and freed every frame, they are never cached
struct drawSurf_t
{
const srfTriangles_t* frontEndGeo; // don't use on the back end, it may be updated by the front end!
int numIndexes;
vertCacheHandle_t indexCache; // triIndex_t
vertCacheHandle_t ambientCache; // idDrawVert
vertCacheHandle_t shadowCache; // idShadowVert / idShadowVertSkinned
vertCacheHandle_t jointCache; // idJointMat
const viewEntity_t* space;
const idMaterial* material; // may be NULL for shadow volumes
uint64 extraGLState; // Extra GL state |'d with material->stage[].drawStateBits
float sort; // material->sort, modified by gui / entity sort offsets
const float* shaderRegisters; // evaluated and adjusted for referenceShaders
drawSurf_t* nextOnLight; // viewLight chains
drawSurf_t** linkChain; // defer linking to lights to a serial section to avoid a mutex
idScreenRect scissorRect; // for scissor clipping, local inside renderView viewport
int renderZFail;
volatile shadowVolumeState_t shadowVolumeState;
};
// areas have references to hold all the lights and entities in them
struct areaReference_t
{
areaReference_t* areaNext; // chain in the area
areaReference_t* areaPrev;
areaReference_t* ownerNext; // chain on either the entityDef or lightDef
idRenderEntityLocal* entity; // only one of entity / light will be non-NULL
idRenderLightLocal* light; // only one of entity / light will be non-NULL
struct portalArea_s* area; // so owners can find all the areas they are in
};
// idRenderLight should become the new public interface replacing the qhandle_t to light defs in the idRenderWorld interface
class idRenderLight
{
public:
virtual ~idRenderLight() {}
virtual void FreeRenderLight() = 0;
virtual void UpdateRenderLight( const renderLight_t* re, bool forceUpdate = false ) = 0;
virtual void GetRenderLight( renderLight_t* re ) = 0;
virtual void ForceUpdate() = 0;
virtual int GetIndex() = 0;
};
// idRenderEntity should become the new public interface replacing the qhandle_t to entity defs in the idRenderWorld interface
class idRenderEntity
{
public:
virtual ~idRenderEntity() {}
virtual void FreeRenderEntity() = 0;
virtual void UpdateRenderEntity( const renderEntity_t* re, bool forceUpdate = false ) = 0;
virtual void GetRenderEntity( renderEntity_t* re ) = 0;
virtual void ForceUpdate() = 0;
virtual int GetIndex() = 0;
// overlays are extra polygons that deform with animating models for blood and damage marks
virtual void ProjectOverlay( const idPlane localTextureAxis[2], const idMaterial* material ) = 0;
virtual void RemoveDecals() = 0;
};
class idRenderLightLocal : public idRenderLight
{
public:
idRenderLightLocal();
virtual void FreeRenderLight();
virtual void UpdateRenderLight( const renderLight_t* re, bool forceUpdate = false );
virtual void GetRenderLight( renderLight_t* re );
virtual void ForceUpdate();
virtual int GetIndex();
bool LightCastsShadows() const
{
return parms.forceShadows || ( !parms.noShadows && lightShader->LightCastsShadows() );
}
renderLight_t parms; // specification
bool lightHasMoved; // the light has changed its position since it was
// first added, so the prelight model is not valid
idRenderWorldLocal* world;
int index; // in world lightdefs
int areaNum; // if not -1, we may be able to cull all the light's
// interactions if !viewDef->connectedAreas[areaNum]
int lastModifiedFrameNum; // to determine if it is constantly changing,
// and should go in the dynamic frame memory, or kept
// in the cached memory
bool archived; // for demo writing
// derived information
idPlane lightProject[4]; // old style light projection where Z and W are flipped and projected lights lightProject[3] is divided by ( zNear + zFar )
idRenderMatrix baseLightProject; // global xyz1 to projected light strq
idRenderMatrix inverseBaseLightProject;// transforms the zero-to-one cube to exactly cover the light in world space
const idMaterial* lightShader; // guaranteed to be valid, even if parms.shader isn't
idImage* falloffImage;
idVec3 globalLightOrigin; // accounting for lightCenter and parallel
idBounds globalLightBounds;
int viewCount; // if == tr.viewCount, the light is on the viewDef->viewLights list
viewLight_t* viewLight;
areaReference_t* references; // each area the light is present in will have a lightRef
idInteraction* firstInteraction; // doubly linked list
idInteraction* lastInteraction;
struct doublePortal_s* foggedPortals;
};
class idRenderEntityLocal : public idRenderEntity
{
public:
idRenderEntityLocal();
virtual void FreeRenderEntity();
virtual void UpdateRenderEntity( const renderEntity_t* re, bool forceUpdate = false );
virtual void GetRenderEntity( renderEntity_t* re );
virtual void ForceUpdate();
virtual int GetIndex();
// overlays are extra polygons that deform with animating models for blood and damage marks
virtual void ProjectOverlay( const idPlane localTextureAxis[2], const idMaterial* material );
virtual void RemoveDecals();
bool IsDirectlyVisible() const;
renderEntity_t parms;
float modelMatrix[16]; // this is just a rearrangement of parms.axis and parms.origin
idRenderMatrix modelRenderMatrix;
idRenderMatrix inverseBaseModelProject;// transforms the unit cube to exactly cover the model in world space
idRenderWorldLocal* world;
int index; // in world entityDefs
int lastModifiedFrameNum; // to determine if it is constantly changing,
// and should go in the dynamic frame memory, or kept
// in the cached memory
bool archived; // for demo writing
idRenderModel* dynamicModel; // if parms.model->IsDynamicModel(), this is the generated data
int dynamicModelFrameCount; // continuously animating dynamic models will recreate
// dynamicModel if this doesn't == tr.viewCount
idRenderModel* cachedDynamicModel;
// the local bounds used to place entityRefs, either from parms for dynamic entities, or a model bounds
idBounds localReferenceBounds;
// axis aligned bounding box in world space, derived from refernceBounds and
// modelMatrix in R_CreateEntityRefs()
idBounds globalReferenceBounds;
// a viewEntity_t is created whenever a idRenderEntityLocal is considered for inclusion
// in a given view, even if it turns out to not be visible
int viewCount; // if tr.viewCount == viewCount, viewEntity is valid,
// but the entity may still be off screen
viewEntity_t* viewEntity; // in frame temporary memory
idRenderModelDecal* decals; // decals that have been projected on this model
idRenderModelOverlay* overlays; // blood overlays on animated models
areaReference_t* entityRefs; // chain of all references
idInteraction* firstInteraction; // doubly linked list
idInteraction* lastInteraction;
bool needsPortalSky;
};
struct shadowOnlyEntity_t
{
shadowOnlyEntity_t* next;
idRenderEntityLocal* edef;
};
// viewLights are allocated on the frame temporary stack memory
// a viewLight contains everything that the back end needs out of an idRenderLightLocal,
// which the front end may be modifying simultaniously if running in SMP mode.
// a viewLight may exist even without any surfaces, and may be relevent for fogging,
// but should never exist if its volume does not intersect the view frustum
struct viewLight_t
{
viewLight_t* next;
// back end should NOT reference the lightDef, because it can change when running SMP
idRenderLightLocal* lightDef;
// for scissor clipping, local inside renderView viewport
// scissorRect.Empty() is true if the viewEntity_t was never actually
// seen through any portals
idScreenRect scissorRect;
// R_AddSingleLight() determined that the light isn't actually needed
bool removeFromList;
// R_AddSingleLight builds this list of entities that need to be added
// to the viewEntities list because they potentially cast shadows into
// the view, even though the aren't directly visible
shadowOnlyEntity_t* shadowOnlyViewEntities;
enum interactionState_t
{
INTERACTION_UNCHECKED,
INTERACTION_NO,
INTERACTION_YES
};
byte* entityInteractionState; // [numEntities]
idVec3 globalLightOrigin; // global light origin used by backend
idPlane lightProject[4]; // light project used by backend
idPlane fogPlane; // fog plane for backend fog volume rendering
// RB: added for shadow mapping
idRenderMatrix baseLightProject; // global xyz1 to projected light strq
bool pointLight; // otherwise a projection light (should probably invert the sense of this, because points are way more common)
bool parallel; // lightCenter gives the direction to the light at infinity
idVec3 lightCenter; // offset the lighting direction for shading and
int shadowLOD; // level of detail for shadowmap selection
// RB end
idRenderMatrix inverseBaseLightProject; // the matrix for deforming the 'zeroOneCubeModel' to exactly cover the light volume in world space
const idMaterial* lightShader; // light shader used by backend
const float* shaderRegisters; // shader registers used by backend
idImage* falloffImage; // falloff image used by backend
drawSurf_t* globalShadows; // shadow everything
drawSurf_t* localInteractions; // don't get local shadows
drawSurf_t* localShadows; // don't shadow local surfaces
drawSurf_t* globalInteractions; // get shadows from everything
drawSurf_t* translucentInteractions; // translucent interactions don't get shadows
// R_AddSingleLight will build a chain of parameters here to setup shadow volumes
preLightShadowVolumeParms_t* preLightShadowVolumes;
};
// a viewEntity is created whenever a idRenderEntityLocal is considered for inclusion
// in the current view, but it may still turn out to be culled.
// viewEntity are allocated on the frame temporary stack memory
// a viewEntity contains everything that the back end needs out of a idRenderEntityLocal,
// which the front end may be modifying simultaneously if running in SMP mode.
// A single entityDef can generate multiple viewEntity_t in a single frame, as when seen in a mirror
struct viewEntity_t
{
viewEntity_t* next;
// back end should NOT reference the entityDef, because it can change when running SMP
idRenderEntityLocal* entityDef;
// for scissor clipping, local inside renderView viewport
// scissorRect.Empty() is true if the viewEntity_t was never actually
// seen through any portals, but was created for shadow casting.
// a viewEntity can have a non-empty scissorRect, meaning that an area
// that it is in is visible, and still not be visible.
idScreenRect scissorRect;
bool isGuiSurface; // force two sided and vertex colors regardless of material setting
bool skipMotionBlur;
bool weaponDepthHack;
float modelDepthHack;
float modelMatrix[16]; // local coords to global coords
float modelViewMatrix[16]; // local coords to eye coords
idRenderMatrix mvp;
// parallelAddModels will build a chain of surfaces here that will need to
// be linked to the lights or added to the drawsurf list in a serial code section
drawSurf_t* drawSurfs;
// R_AddSingleModel will build a chain of parameters here to setup shadow volumes
staticShadowVolumeParms_t* staticShadowVolumes;
dynamicShadowVolumeParms_t* dynamicShadowVolumes;
};
const int MAX_CLIP_PLANES = 1; // we may expand this to six for some subview issues
// RB: added multiple subfrustums for cascaded shadow mapping
enum frustumPlanes_t
{
FRUSTUM_PLANE_LEFT,
FRUSTUM_PLANE_RIGHT,
FRUSTUM_PLANE_BOTTOM,
FRUSTUM_PLANE_TOP,
FRUSTUM_PLANE_NEAR,
FRUSTUM_PLANE_FAR,
FRUSTUM_PLANES = 6,
FRUSTUM_CLIPALL = 1 | 2 | 4 | 8 | 16 | 32
};
enum
{
FRUSTUM_PRIMARY,
FRUSTUM_CASCADE1,
FRUSTUM_CASCADE2,
FRUSTUM_CASCADE3,
FRUSTUM_CASCADE4,
FRUSTUM_CASCADE5,
MAX_FRUSTUMS,
};
typedef idPlane frustum_t[FRUSTUM_PLANES];
// RB end
// viewDefs are allocated on the frame temporary stack memory
struct viewDef_t
{
// specified in the call to DrawScene()
renderView_t renderView;
float projectionMatrix[16];
idRenderMatrix projectionRenderMatrix; // tech5 version of projectionMatrix
viewEntity_t worldSpace;
idRenderWorldLocal* renderWorld;
idVec3 initialViewAreaOrigin;
// Used to find the portalArea that view flooding will take place from.
// for a normal view, the initialViewOrigin will be renderView.viewOrg,
// but a mirror may put the projection origin outside
// of any valid area, or in an unconnected area of the map, so the view
// area must be based on a point just off the surface of the mirror / subview.
// It may be possible to get a failed portal pass if the plane of the
// mirror intersects a portal, and the initialViewAreaOrigin is on
// a different side than the renderView.viewOrg is.
bool isSubview; // true if this view is not the main view
bool isMirror; // the portal is a mirror, invert the face culling
bool isXraySubview;
bool isEditor;
bool is2Dgui;
int numClipPlanes; // mirrors will often use a single clip plane
idPlane clipPlanes[MAX_CLIP_PLANES]; // in world space, the positive side
// of the plane is the visible side
idScreenRect viewport; // in real pixels and proper Y flip
idScreenRect scissor;
// for scissor clipping, local inside renderView viewport
// subviews may only be rendering part of the main view
// these are real physical pixel values, possibly scaled and offset from the
// renderView x/y/width/height
viewDef_t* superView; // never go into an infinite subview loop
const drawSurf_t* subviewSurface;
// drawSurfs are the visible surfaces of the viewEntities, sorted
// by the material sort parameter
drawSurf_t** drawSurfs; // we don't use an idList for this, because
int numDrawSurfs; // it is allocated in frame temporary memory
int maxDrawSurfs; // may be resized
viewLight_t* viewLights; // chain of all viewLights effecting view
viewEntity_t* viewEntitys; // chain of all viewEntities effecting view, including off screen ones casting shadows
// we use viewEntities as a check to see if a given view consists solely
// of 2D rendering, which we can optimize in certain ways. A 2D view will
// not have any viewEntities
// RB begin
frustum_t frustums[MAX_FRUSTUMS]; // positive sides face outward, [4] is the front clip plane
float frustumSplitDistances[MAX_FRUSTUMS];
idRenderMatrix frustumMVPs[MAX_FRUSTUMS];
// RB end
int areaNum; // -1 = not in a valid area
// An array in frame temporary memory that lists if an area can be reached without
// crossing a closed door. This is used to avoid drawing interactions
// when the light is behind a closed door.
bool* connectedAreas;
};
// complex light / surface interactions are broken up into multiple passes of a
// simple interaction shader
struct drawInteraction_t
{
const drawSurf_t* surf;
idImage* bumpImage;
idImage* diffuseImage;
idImage* specularImage;
idVec4 diffuseColor; // may have a light color baked into it
idVec4 specularColor; // may have a light color baked into it
stageVertexColor_t vertexColor; // applies to both diffuse and specular
int ambientLight; // use tr.ambientNormalMap instead of normalization cube map
// these are loaded into the vertex program
idVec4 bumpMatrix[2];
idVec4 diffuseMatrix[2];
idVec4 specularMatrix[2];
};
/*
=============================================================
RENDERER BACK END COMMAND QUEUE
TR_CMDS
=============================================================
*/
enum renderCommand_t
{
RC_NOP,
RC_DRAW_VIEW_3D, // may be at a reduced resolution, will be upsampled before 2D GUIs
RC_DRAW_VIEW_GUI, // not resolution scaled
RC_SET_BUFFER,
RC_COPY_RENDER,
RC_POST_PROCESS,
};
struct emptyCommand_t
{
renderCommand_t commandId;
renderCommand_t* next;
};
struct setBufferCommand_t
{
renderCommand_t commandId;
renderCommand_t* next;
GLenum buffer;
};
struct drawSurfsCommand_t
{
renderCommand_t commandId;
renderCommand_t* next;
viewDef_t* viewDef;
};
struct copyRenderCommand_t
{
renderCommand_t commandId;
renderCommand_t* next;
int x;
int y;
int imageWidth;
int imageHeight;
idImage* image;
int cubeFace; // when copying to a cubeMap
bool clearColorAfterCopy;
};
struct postProcessCommand_t
{
renderCommand_t commandId;
renderCommand_t* next;
viewDef_t* viewDef;
};
//=======================================================================
// this is the inital allocation for max number of drawsurfs
// in a given view, but it will automatically grow if needed
const int INITIAL_DRAWSURFS = 2048;
enum frameAllocType_t
{
FRAME_ALLOC_VIEW_DEF,
FRAME_ALLOC_VIEW_ENTITY,
FRAME_ALLOC_VIEW_LIGHT,
FRAME_ALLOC_SURFACE_TRIANGLES,
FRAME_ALLOC_DRAW_SURFACE,
FRAME_ALLOC_INTERACTION_STATE,
FRAME_ALLOC_SHADOW_ONLY_ENTITY,
FRAME_ALLOC_SHADOW_VOLUME_PARMS,
FRAME_ALLOC_SHADER_REGISTER,
FRAME_ALLOC_DRAW_SURFACE_POINTER,
FRAME_ALLOC_DRAW_COMMAND,
FRAME_ALLOC_UNKNOWN,
FRAME_ALLOC_MAX
};
// all of the information needed by the back end must be
// contained in a idFrameData. This entire structure is
// duplicated so the front and back end can run in parallel
// on an SMP machine.
class idFrameData
{
public:
idSysInterlockedInteger frameMemoryAllocated;
idSysInterlockedInteger frameMemoryUsed;
byte* frameMemory;
int highWaterAllocated; // max used on any frame
int highWaterUsed;
// the currently building command list commands can be inserted
// at the front if needed, as required for dynamically generated textures
emptyCommand_t* cmdHead; // may be of other command type based on commandId
emptyCommand_t* cmdTail;
};
extern idFrameData* frameData;
//=======================================================================
void R_AddDrawViewCmd( viewDef_t* parms, bool guiOnly );
void R_AddDrawPostProcess( viewDef_t* parms );
void R_ReloadGuis_f( const idCmdArgs& args );
void R_ListGuis_f( const idCmdArgs& args );
void* R_GetCommandBuffer( int bytes );
// this allows a global override of all materials
bool R_GlobalShaderOverride( const idMaterial** shader );
// this does various checks before calling the idDeclSkin
const idMaterial* R_RemapShaderBySkin( const idMaterial* shader, const idDeclSkin* customSkin, const idMaterial* customShader );
//====================================================
/*
** performanceCounters_t
*/
struct performanceCounters_t
{
int c_box_cull_in;
int c_box_cull_out;
int c_createInteractions; // number of calls to idInteraction::CreateInteraction
int c_createShadowVolumes;
int c_generateMd5;
int c_entityDefCallbacks;
int c_alloc; // counts for R_StaticAllc/R_StaticFree
int c_free;
int c_visibleViewEntities;
int c_shadowViewEntities;
int c_viewLights;
int c_numViews; // number of total views rendered
int c_deformedSurfaces; // idMD5Mesh::GenerateSurface
int c_deformedVerts; // idMD5Mesh::GenerateSurface
int c_deformedIndexes; // idMD5Mesh::GenerateSurface
int c_tangentIndexes; // R_DeriveTangents()
int c_entityUpdates;
int c_lightUpdates;
int c_entityReferences;
int c_lightReferences;
int c_guiSurfs;
int frontEndMicroSec; // sum of time in all RE_RenderScene's in a frame
};
struct tmu_t
{
unsigned int current2DMap;
unsigned int current2DArray;
unsigned int currentCubeMap;
};
const int MAX_MULTITEXTURE_UNITS = 8;
enum vertexLayoutType_t
{
LAYOUT_UNKNOWN = 0,
LAYOUT_DRAW_VERT,
LAYOUT_DRAW_SHADOW_VERT,
LAYOUT_DRAW_SHADOW_VERT_SKINNED
};
struct glstate_t
{
tmu_t tmu[MAX_MULTITEXTURE_UNITS];
int currenttmu;
int faceCulling;
vertexLayoutType_t vertexLayout;
// RB: 64 bit fixes, changed unsigned int to uintptr_t
uintptr_t currentVertexBuffer;
uintptr_t currentIndexBuffer;
Framebuffer* currentFramebuffer;
// RB end
float polyOfsScale;
float polyOfsBias;
uint64 glStateBits;
};
struct backEndCounters_t
{
int c_surfaces;
int c_shaders;
int c_drawElements;
int c_drawIndexes;
int c_shadowElements;
int c_shadowIndexes;
int c_copyFrameBuffer;
float c_overDraw;
int totalMicroSec; // total microseconds for backend run
int shadowMicroSec;
};
// all state modified by the back end is separated
// from the front end state
struct backEndState_t
{
const viewDef_t* viewDef;
backEndCounters_t pc;
const viewEntity_t* currentSpace; // for detecting when a matrix must change
idScreenRect currentScissor; // for scissor clipping, local inside renderView viewport
glstate_t glState; // for OpenGL state deltas
bool currentRenderCopied; // true if any material has already referenced _currentRender
idRenderMatrix prevMVP[2]; // world MVP from previous frame for motion blur, per-eye
// RB begin
idRenderMatrix shadowV[6]; // shadow depth view matrix
idRenderMatrix shadowP[6]; // shadow depth projection matrix
// RB end
// surfaces used for code-based drawing
drawSurf_t unitSquareSurface;
drawSurf_t zeroOneCubeSurface;
drawSurf_t testImageSurface;
};
class idParallelJobList;
const int MAX_GUI_SURFACES = 1024; // default size of the drawSurfs list for guis, will
// be automatically expanded as needed
static const int MAX_RENDER_CROPS = 8;
/*
** Most renderer globals are defined here.
** backend functions should never modify any of these fields,
** but may read fields that aren't dynamically modified
** by the frontend.
*/
class idRenderSystemLocal : public idRenderSystem
{
public:
// external functions
virtual void Init();
virtual void Shutdown();
virtual void ResetGuiModels();
virtual void InitOpenGL();
virtual void ShutdownOpenGL();
virtual bool IsOpenGLRunning() const;
virtual bool IsFullScreen() const;
virtual stereo3DMode_t GetStereo3DMode() const;
virtual bool HasQuadBufferSupport() const;
virtual bool IsStereoScopicRenderingSupported() const;
virtual stereo3DMode_t GetStereoScopicRenderingMode() const;
virtual void EnableStereoScopicRendering( const stereo3DMode_t mode ) const;
virtual int GetWidth() const;
virtual int GetHeight() const;
virtual int GetVirtualWidth() const;
virtual int GetVirtualHeight() const;
virtual float GetPixelAspect() const;
virtual float GetPhysicalScreenWidthInCentimeters() const;
virtual idRenderWorld* AllocRenderWorld();
virtual void FreeRenderWorld( idRenderWorld* rw );
virtual void BeginLevelLoad();
virtual void EndLevelLoad();
virtual void LoadLevelImages();
virtual void Preload( const idPreloadManifest& manifest, const char* mapName );
virtual void BeginAutomaticBackgroundSwaps( autoRenderIconType_t icon = AUTORENDER_DEFAULTICON );
virtual void EndAutomaticBackgroundSwaps();
virtual bool AreAutomaticBackgroundSwapsRunning( autoRenderIconType_t* usingAlternateIcon = NULL ) const;
virtual idFont* RegisterFont( const char* fontName );
virtual void ResetFonts();
virtual void PrintMemInfo( MemInfo_t* mi );
virtual void SetColor( const idVec4& color );
virtual uint32 GetColor();
virtual void SetGLState( const uint64 glState ) ;
virtual void DrawFilled( const idVec4& color, float x, float y, float w, float h );
virtual void DrawStretchPic( float x, float y, float w, float h, float s1, float t1, float s2, float t2, const idMaterial* material );
virtual void DrawStretchPic( const idVec4& topLeft, const idVec4& topRight, const idVec4& bottomRight, const idVec4& bottomLeft, const idMaterial* material );
virtual void DrawStretchTri( const idVec2& p1, const idVec2& p2, const idVec2& p3, const idVec2& t1, const idVec2& t2, const idVec2& t3, const idMaterial* material );
virtual idDrawVert* AllocTris( int numVerts, const triIndex_t* indexes, int numIndexes, const idMaterial* material, const stereoDepthType_t stereoType = STEREO_DEPTH_TYPE_NONE );
virtual void DrawSmallChar( int x, int y, int ch );
virtual void DrawSmallStringExt( int x, int y, const char* string, const idVec4& setColor, bool forceColor );
virtual void DrawBigChar( int x, int y, int ch );
virtual void DrawBigStringExt( int x, int y, const char* string, const idVec4& setColor, bool forceColor );
virtual void WriteDemoPics();
virtual void DrawDemoPics();
virtual const emptyCommand_t* SwapCommandBuffers( uint64* frontEndMicroSec, uint64* backEndMicroSec, uint64* shadowMicroSec, uint64* gpuMicroSec );
virtual void SwapCommandBuffers_FinishRendering( uint64* frontEndMicroSec, uint64* backEndMicroSec, uint64* shadowMicroSec, uint64* gpuMicroSec );
virtual const emptyCommand_t* SwapCommandBuffers_FinishCommandBuffers();
virtual void RenderCommandBuffers( const emptyCommand_t* commandBuffers );
virtual void TakeScreenshot( int width, int height, const char* fileName, int downSample, renderView_t* ref );
virtual void CropRenderSize( int width, int height );
virtual void CaptureRenderToImage( const char* imageName, bool clearColorAfterCopy = false );
virtual void CaptureRenderToFile( const char* fileName, bool fixAlpha );
virtual void UnCrop();
virtual bool UploadImage( const char* imageName, const byte* data, int width, int height );
public:
// internal functions
idRenderSystemLocal();
~idRenderSystemLocal();
void Clear();
void GetCroppedViewport( idScreenRect* viewport );
void PerformResolutionScaling( int& newWidth, int& newHeight );
int GetFrameCount() const
{
return frameCount;
};
public:
// renderer globals
bool registered; // cleared at shutdown, set at InitOpenGL
bool takingScreenshot;
int frameCount; // incremented every frame
int viewCount; // incremented every view (twice a scene if subviewed)
// and every R_MarkFragments call
float frameShaderTime; // shader time for all non-world 2D rendering
idVec4 ambientLightVector; // used for "ambient bump mapping"
idListworlds;
idRenderWorldLocal* primaryWorld;
renderView_t primaryRenderView;
viewDef_t* primaryView;
// many console commands need to know which world they should operate on
const idMaterial* whiteMaterial;
const idMaterial* charSetMaterial;
const idMaterial* defaultPointLight;
const idMaterial* defaultProjectedLight;
const idMaterial* defaultMaterial;
idImage* testImage;
idCinematic* testVideo;
int testVideoStartTime;
idImage* ambientCubeImage; // hack for testing dependent ambient lighting
viewDef_t* viewDef;
performanceCounters_t pc; // performance counters
viewEntity_t identitySpace; // can use if we don't know viewDef->worldSpace is valid
idScreenRect renderCrops[MAX_RENDER_CROPS];
int currentRenderCrop;
// GUI drawing variables for surface creation
int guiRecursionLevel; // to prevent infinite overruns
uint32 currentColorNativeBytesOrder;
uint64 currentGLState;
class idGuiModel* guiModel;
idList fonts;
unsigned short gammaTable[256]; // brightness / gamma modify this
srfTriangles_t* unitSquareTriangles;
srfTriangles_t* zeroOneCubeTriangles;
srfTriangles_t* testImageTriangles;
// these are allocated at buffer swap time, but
// the back end should only use the ones in the backEnd stucture,
// which are copied over from the frame that was just swapped.
drawSurf_t unitSquareSurface_;
drawSurf_t zeroOneCubeSurface_;
drawSurf_t testImageSurface_;
idParallelJobList* frontEndJobList;
unsigned timerQueryId; // for GL_TIME_ELAPSED_EXT queries
};
extern backEndState_t backEnd;
extern idRenderSystemLocal tr;
extern glconfig_t glConfig; // outside of TR since it shouldn't be cleared during ref re-init
//
// cvars
//
extern idCVar r_debugContext; // enable various levels of context debug
extern idCVar r_glDriver; // "opengl32", etc
extern idCVar r_skipIntelWorkarounds; // skip work arounds for Intel driver bugs
extern idCVar r_vidMode; // video mode number
extern idCVar r_displayRefresh; // optional display refresh rate option for vid mode
extern idCVar r_fullscreen; // 0 = windowed, 1 = full screen
extern idCVar r_multiSamples; // number of antialiasing samples
extern idCVar r_znear; // near Z clip plane
extern idCVar r_swapInterval; // changes wglSwapIntarval
extern idCVar r_offsetFactor; // polygon offset parameter
extern idCVar r_offsetUnits; // polygon offset parameter
extern idCVar r_singleTriangle; // only draw a single triangle per primitive
extern idCVar r_logFile; // number of frames to emit GL logs
extern idCVar r_clear; // force screen clear every frame
extern idCVar r_subviewOnly; // 1 = don't render main view, allowing subviews to be debugged
extern idCVar r_lightScale; // all light intensities are multiplied by this, which is normally 2
extern idCVar r_flareSize; // scale the flare deforms from the material def
extern idCVar r_gamma; // changes gamma tables
extern idCVar r_brightness; // changes gamma tables
extern idCVar r_checkBounds; // compare all surface bounds with precalculated ones
extern idCVar r_maxAnisotropicFiltering; // texture filtering parameter
extern idCVar r_useTrilinearFiltering; // Extra quality filtering
extern idCVar r_lodBias; // lod bias
extern idCVar r_useLightPortalFlow; // 1 = do a more precise area reference determination
extern idCVar r_useShadowSurfaceScissor; // 1 = scissor shadows by the scissor rect of the interaction surfaces
extern idCVar r_useConstantMaterials; // 1 = use pre-calculated material registers if possible
extern idCVar r_useNodeCommonChildren; // stop pushing reference bounds early when possible
extern idCVar r_useSilRemap; // 1 = consider verts with the same XYZ, but different ST the same for shadows
extern idCVar r_useLightPortalCulling; // 0 = none, 1 = box, 2 = exact clip of polyhedron faces, 3 MVP to plane culling
extern idCVar r_useLightAreaCulling; // 0 = off, 1 = on
extern idCVar r_useLightScissors; // 1 = use custom scissor rectangle for each light
extern idCVar r_useEntityPortalCulling; // 0 = none, 1 = box
extern idCVar r_skipPrelightShadows; // 1 = skip the dmap generated static shadow volumes
extern idCVar r_useCachedDynamicModels; // 1 = cache snapshots of dynamic models
extern idCVar r_useScissor; // 1 = scissor clip as portals and lights are processed
extern idCVar r_usePortals; // 1 = use portals to perform area culling, otherwise draw everything
extern idCVar r_useStateCaching; // avoid redundant state changes in GL_*() calls
extern idCVar r_useEntityCallbacks; // if 0, issue the callback immediately at update time, rather than defering
extern idCVar r_lightAllBackFaces; // light all the back faces, even when they would be shadowed
extern idCVar r_useLightDepthBounds; // use depth bounds test on lights to reduce both shadow and interaction fill
extern idCVar r_useShadowDepthBounds; // use depth bounds test on individual shadows to reduce shadow fill
// RB begin
extern idCVar r_useShadowMapping; // use shadow mapping instead of stencil shadows
extern idCVar r_useHalfLambertLighting; // use Half-Lambert lighting instead of classic Lambert
// RB end
extern idCVar r_skipStaticInteractions; // skip interactions created at level load
extern idCVar r_skipDynamicInteractions; // skip interactions created after level load
extern idCVar r_skipPostProcess; // skip all post-process renderings
extern idCVar r_skipSuppress; // ignore the per-view suppressions
extern idCVar r_skipInteractions; // skip all light/surface interaction drawing
extern idCVar r_skipFrontEnd; // bypasses all front end work, but 2D gui rendering still draws
extern idCVar r_skipBackEnd; // don't draw anything
extern idCVar r_skipCopyTexture; // do all rendering, but don't actually copyTexSubImage2D
extern idCVar r_skipRender; // skip 3D rendering, but pass 2D
extern idCVar r_skipRenderContext; // NULL the rendering context during backend 3D rendering
extern idCVar r_skipTranslucent; // skip the translucent interaction rendering
extern idCVar r_skipAmbient; // bypasses all non-interaction drawing
extern idCVar r_skipNewAmbient; // bypasses all vertex/fragment program ambients
extern idCVar r_skipBlendLights; // skip all blend lights
extern idCVar r_skipFogLights; // skip all fog lights
extern idCVar r_skipSubviews; // 1 = don't render any mirrors / cameras / etc
extern idCVar r_skipGuiShaders; // 1 = don't render any gui elements on surfaces
extern idCVar r_skipParticles; // 1 = don't render any particles
extern idCVar r_skipUpdates; // 1 = don't accept any entity or light updates, making everything static
extern idCVar r_skipDeforms; // leave all deform materials in their original state
extern idCVar r_skipDynamicTextures; // don't dynamically create textures
extern idCVar r_skipBump; // uses a flat surface instead of the bump map
extern idCVar r_skipSpecular; // use black for specular
extern idCVar r_skipDiffuse; // use black for diffuse
extern idCVar r_skipDecals; // skip decal surfaces
extern idCVar r_skipOverlays; // skip overlay surfaces
extern idCVar r_skipShadows; // disable shadows
extern idCVar r_ignoreGLErrors;
extern idCVar r_screenFraction; // for testing fill rate, the resolution of the entire screen can be changed
extern idCVar r_showUnsmoothedTangents; // highlight geometry rendered with unsmoothed tangents
extern idCVar r_showSilhouette; // highlight edges that are casting shadow planes
extern idCVar r_showVertexColor; // draws all triangles with the solid vertex color
extern idCVar r_showUpdates; // report entity and light updates and ref counts
extern idCVar r_showDemo; // report reads and writes to the demo file
extern idCVar r_showDynamic; // report stats on dynamic surface generation
extern idCVar r_showIntensity; // draw the screen colors based on intensity, red = 0, green = 128, blue = 255
extern idCVar r_showTrace; // show the intersection of an eye trace with the world
extern idCVar r_showDepth; // display the contents of the depth buffer and the depth range
extern idCVar r_showTris; // enables wireframe rendering of the world
extern idCVar r_showSurfaceInfo; // show surface material name under crosshair
extern idCVar r_showNormals; // draws wireframe normals
extern idCVar r_showEdges; // draw the sil edges
extern idCVar r_showViewEntitys; // displays the bounding boxes of all view models and optionally the index
extern idCVar r_showTexturePolarity; // shade triangles by texture area polarity
extern idCVar r_showTangentSpace; // shade triangles by tangent space
extern idCVar r_showDominantTri; // draw lines from vertexes to center of dominant triangles
extern idCVar r_showTextureVectors; // draw each triangles texture (tangent) vectors
extern idCVar r_showLights; // 1 = print light info, 2 = also draw volumes
extern idCVar r_showLightCount; // colors surfaces based on light count
extern idCVar r_showShadows; // visualize the stencil shadow volumes
extern idCVar r_showLightScissors; // show light scissor rectangles
extern idCVar r_showMemory; // print frame memory utilization
extern idCVar r_showCull; // report sphere and box culling stats
extern idCVar r_showAddModel; // report stats from tr_addModel
extern idCVar r_showSurfaces; // report surface/light/shadow counts
extern idCVar r_showPrimitives; // report vertex/index/draw counts
extern idCVar r_showPortals; // draw portal outlines in color based on passed / not passed
extern idCVar r_showSkel; // draw the skeleton when model animates
extern idCVar r_showOverDraw; // show overdraw
// RB begin
extern idCVar r_showShadowMaps;
extern idCVar r_showShadowMapLODs;
// RB end
extern idCVar r_jointNameScale; // size of joint names when r_showskel is set to 1
extern idCVar r_jointNameOffset; // offset of joint names when r_showskel is set to 1
extern idCVar r_testGamma; // draw a grid pattern to test gamma levels
extern idCVar r_testGammaBias; // draw a grid pattern to test gamma levels
extern idCVar r_singleLight; // suppress all but one light
extern idCVar r_singleEntity; // suppress all but one entity
extern idCVar r_singleArea; // only draw the portal area the view is actually in
extern idCVar r_singleSurface; // suppress all but one surface on each entity
extern idCVar r_shadowPolygonOffset; // bias value added to depth test for stencil shadow drawing
extern idCVar r_shadowPolygonFactor; // scale value for stencil shadow drawing
extern idCVar r_jitter; // randomly subpixel jitter the projection matrix
extern idCVar r_orderIndexes; // perform index reorganization to optimize vertex use
extern idCVar r_debugLineDepthTest; // perform depth test on debug lines
extern idCVar r_debugLineWidth; // width of debug lines
extern idCVar r_debugArrowStep; // step size of arrow cone line rotation in degrees
extern idCVar r_debugPolygonFilled;
extern idCVar r_materialOverride; // override all materials
extern idCVar r_debugRenderToTexture;
extern idCVar stereoRender_deGhost; // subtract from opposite eye to reduce ghosting
extern idCVar r_useGPUSkinning;
// RB begin
extern idCVar r_shadowMapFrustumFOV;
extern idCVar r_shadowMapSingleSide;
extern idCVar r_shadowMapImageSize;
extern idCVar r_shadowMapJitterScale;
extern idCVar r_shadowMapBiasScale;
extern idCVar r_shadowMapRandomizeJitter;
extern idCVar r_shadowMapSamples;
extern idCVar r_shadowMapSplits;
extern idCVar r_shadowMapSplitWeight;
extern idCVar r_shadowMapLodScale;
extern idCVar r_shadowMapLodBias;
extern idCVar r_shadowMapPolygonFactor;
extern idCVar r_shadowMapPolygonOffset;
extern idCVar r_shadowMapOccluderFacing;
// RB end
/*
====================================================================
INITIALIZATION
====================================================================
*/
void R_Init();
void R_InitOpenGL();
void R_SetColorMappings();
void R_ScreenShot_f( const idCmdArgs& args );
void R_StencilShot();
/*
====================================================================
IMPLEMENTATION SPECIFIC FUNCTIONS
====================================================================
*/
struct vidMode_t
{
int width;
int height;
int displayHz;
// RB begin
vidMode_t()
{
width = 640;
height = 480;
displayHz = 60;
}
vidMode_t( int width, int height, int displayHz ) :
width( width ), height( height ), displayHz( displayHz ) {}
// RB end
bool operator==( const vidMode_t& a )
{
return a.width == width && a.height == height && a.displayHz == displayHz;
}
};
// the number of displays can be found by itterating this until it returns false
// displayNum is the 0 based value passed to EnumDisplayDevices(), you must add
// 1 to this to get an r_fullScreen value.
bool R_GetModeListForDisplay( const int displayNum, idList& modeList );
struct glimpParms_t
{
int x; // ignored in fullscreen
int y; // ignored in fullscreen
int width;
int height;
int fullScreen; // 0 = windowed, otherwise 1 based monitor number to go full screen on
// -1 = borderless window for spanning multiple displays
bool stereo;
int displayHz;
int multiSamples;
};
// DG: R_GetModeListForDisplay is called before GLimp_Init(), but SDL needs SDL_Init() first.
// So add PreInit for platforms that need it, others can just stub it.
void GLimp_PreInit();
// If the desired mode can't be set satisfactorily, false will be returned.
// If succesful, sets glConfig.nativeScreenWidth, glConfig.nativeScreenHeight, and glConfig.pixelAspect
// The renderer will then reset the glimpParms to "safe mode" of 640x480
// fullscreen and try again. If that also fails, the error will be fatal.
bool GLimp_Init( glimpParms_t parms );
// will set up gl up with the new parms
bool GLimp_SetScreenParms( glimpParms_t parms );
// Destroys the rendering context, closes the window, resets the resolution,
// and resets the gamma ramps.
void GLimp_Shutdown();
// Sets the hardware gamma ramps for gamma and brightness adjustment.
// These are now taken as 16 bit values, so we can take full advantage
// of dacs with >8 bits of precision
void GLimp_SetGamma( unsigned short red[256],
unsigned short green[256],
unsigned short blue[256] );
/*
============================================================
RENDERWORLD_DEFS
============================================================
*/
void R_DeriveEntityData( idRenderEntityLocal* def );
void R_CreateEntityRefs( idRenderEntityLocal* def );
void R_FreeEntityDefDerivedData( idRenderEntityLocal* def, bool keepDecals, bool keepCachedDynamicModel );
void R_FreeEntityDefCachedDynamicModel( idRenderEntityLocal* def );
void R_FreeEntityDefDecals( idRenderEntityLocal* def );
void R_FreeEntityDefOverlay( idRenderEntityLocal* def );
void R_FreeEntityDefFadedDecals( idRenderEntityLocal* def, int time );
// RB: for dmap
void R_DeriveLightData( idRenderLightLocal* light );
// Called by the editor and dmap to operate on light volumes
void R_RenderLightFrustum( const renderLight_t& renderLight, idPlane lightFrustum[6] );
srfTriangles_t* R_PolytopeSurface( int numPlanes, const idPlane* planes, idWinding** windings );
// RB end
void R_CreateLightRefs( idRenderLightLocal* light );
void R_FreeLightDefDerivedData( idRenderLightLocal* light );
void R_FreeDerivedData();
void R_ReCreateWorldReferences();
void R_CheckForEntityDefsUsingModel( idRenderModel* model );
void R_ModulateLights_f( const idCmdArgs& args );
/*
============================================================
RENDERWORLD_PORTALS
============================================================
*/
viewEntity_t* R_SetEntityDefViewEntity( idRenderEntityLocal* def );
viewLight_t* R_SetLightDefViewLight( idRenderLightLocal* def );
/*
====================================================================
TR_FRONTEND_MAIN
====================================================================
*/
void R_InitFrameData();
void R_ShutdownFrameData();
void R_ToggleSmpFrame();
void* R_FrameAlloc( int bytes, frameAllocType_t type = FRAME_ALLOC_UNKNOWN );
void* R_ClearedFrameAlloc( int bytes, frameAllocType_t type = FRAME_ALLOC_UNKNOWN );
void* R_StaticAlloc( int bytes, const memTag_t tag = TAG_RENDER_STATIC ); // just malloc with error checking
void* R_ClearedStaticAlloc( int bytes ); // with memset
void R_StaticFree( void* data );
void R_RenderView( viewDef_t* parms );
void R_RenderPostProcess( viewDef_t* parms );
/*
============================================================
TR_FRONTEND_ADDLIGHTS
============================================================
*/
void R_ShadowBounds( const idBounds& modelBounds, const idBounds& lightBounds, const idVec3& lightOrigin, idBounds& shadowBounds );
ID_INLINE bool R_CullModelBoundsToLight( const idRenderLightLocal* light, const idBounds& localBounds, const idRenderMatrix& modelRenderMatrix )
{
idRenderMatrix modelLightProject;
idRenderMatrix::Multiply( light->baseLightProject, modelRenderMatrix, modelLightProject );
return idRenderMatrix::CullBoundsToMVP( modelLightProject, localBounds, true );
}
void R_AddLights();
void R_OptimizeViewLightsList();
/*
============================================================
TR_FRONTEND_ADDMODELS
============================================================
*/
bool R_IssueEntityDefCallback( idRenderEntityLocal* def );
idRenderModel* R_EntityDefDynamicModel( idRenderEntityLocal* def );
void R_ClearEntityDefDynamicModel( idRenderEntityLocal* def );
void R_SetupDrawSurfShader( drawSurf_t* drawSurf, const idMaterial* shader, const renderEntity_t* renderEntity );
void R_SetupDrawSurfJoints( drawSurf_t* drawSurf, const srfTriangles_t* tri, const idMaterial* shader );
void R_LinkDrawSurfToView( drawSurf_t* drawSurf, viewDef_t* viewDef );
void R_AddModels();
/*
=============================================================
TR_FRONTEND_DEFORM
=============================================================
*/
drawSurf_t* R_DeformDrawSurf( drawSurf_t* drawSurf );
/*
=============================================================
TR_FRONTEND_GUISURF
=============================================================
*/
void R_SurfaceToTextureAxis( const srfTriangles_t* tri, idVec3& origin, idVec3 axis[3] );
void R_AddInGameGuis( const drawSurf_t* const drawSurfs[], const int numDrawSurfs );
/*
============================================================
TR_FRONTEND_SUBVIEW
============================================================
*/
bool R_PreciseCullSurface( const drawSurf_t* drawSurf, idBounds& ndcBounds );
bool R_GenerateSubViews( const drawSurf_t* const drawSurfs[], const int numDrawSurfs );
/*
============================================================
TR_TRISURF
============================================================
*/
srfTriangles_t* R_AllocStaticTriSurf();
void R_AllocStaticTriSurfVerts( srfTriangles_t* tri, int numVerts );
void R_AllocStaticTriSurfIndexes( srfTriangles_t* tri, int numIndexes );
void R_AllocStaticTriSurfPreLightShadowVerts( srfTriangles_t* tri, int numVerts );
void R_AllocStaticTriSurfSilIndexes( srfTriangles_t* tri, int numIndexes );
void R_AllocStaticTriSurfDominantTris( srfTriangles_t* tri, int numVerts );
void R_AllocStaticTriSurfSilEdges( srfTriangles_t* tri, int numSilEdges );
void R_AllocStaticTriSurfMirroredVerts( srfTriangles_t* tri, int numMirroredVerts );
void R_AllocStaticTriSurfDupVerts( srfTriangles_t* tri, int numDupVerts );
srfTriangles_t* R_CopyStaticTriSurf( const srfTriangles_t* tri );
void R_ResizeStaticTriSurfVerts( srfTriangles_t* tri, int numVerts );
void R_ResizeStaticTriSurfIndexes( srfTriangles_t* tri, int numIndexes );
void R_ReferenceStaticTriSurfVerts( srfTriangles_t* tri, const srfTriangles_t* reference );
void R_ReferenceStaticTriSurfIndexes( srfTriangles_t* tri, const srfTriangles_t* reference );
void R_FreeStaticTriSurfSilIndexes( srfTriangles_t* tri );
void R_FreeStaticTriSurf( srfTriangles_t* tri );
void R_FreeStaticTriSurfVerts( srfTriangles_t* tri );
void R_FreeStaticTriSurfVertexCaches( srfTriangles_t* tri );
int R_TriSurfMemory( const srfTriangles_t* tri );
void R_BoundTriSurf( srfTriangles_t* tri );
void R_RemoveDuplicatedTriangles( srfTriangles_t* tri );
void R_CreateSilIndexes( srfTriangles_t* tri );
void R_RemoveDegenerateTriangles( srfTriangles_t* tri );
void R_RemoveUnusedVerts( srfTriangles_t* tri );
void R_RangeCheckIndexes( const srfTriangles_t* tri );
void R_CreateVertexNormals( srfTriangles_t* tri ); // also called by dmap
void R_CleanupTriangles( srfTriangles_t* tri, bool createNormals, bool identifySilEdges, bool useUnsmoothedTangents );
void R_ReverseTriangles( srfTriangles_t* tri );
// Only deals with vertexes and indexes, not silhouettes, planes, etc.
// Does NOT perform a cleanup triangles, so there may be duplicated verts in the result.
srfTriangles_t* R_MergeSurfaceList( const srfTriangles_t** surfaces, int numSurfaces );
srfTriangles_t* R_MergeTriangles( const srfTriangles_t* tri1, const srfTriangles_t* tri2 );
// if the deformed verts have significant enough texture coordinate changes to reverse the texture
// polarity of a triangle, the tangents will be incorrect
void R_DeriveTangents( srfTriangles_t* tri );
// copy data from a front-end srfTriangles_t to a back-end drawSurf_t
void R_InitDrawSurfFromTri( drawSurf_t& ds, srfTriangles_t& tri );
// For static surfaces, the indexes, ambient, and shadow buffers can be pre-created at load
// time, rather than being re-created each frame in the frame temporary buffers.
void R_CreateStaticBuffersForTri( srfTriangles_t& tri );
// deformable meshes precalculate as much as possible from a base frame, then generate
// complete srfTriangles_t from just a new set of vertexes
struct deformInfo_t
{
int numSourceVerts;
// numOutputVerts may be smaller if the input had duplicated or degenerate triangles
// it will often be larger if the input had mirrored texture seams that needed
// to be busted for proper tangent spaces
int numOutputVerts;
idDrawVert* verts;
int numIndexes;
triIndex_t* indexes;
triIndex_t* silIndexes; // indexes changed to be the first vertex with same XYZ, ignoring normal and texcoords
int numMirroredVerts; // this many verts at the end of the vert list are tangent mirrors
int* mirroredVerts; // tri->mirroredVerts[0] is the mirror of tri->numVerts - tri->numMirroredVerts + 0
int numDupVerts; // number of duplicate vertexes
int* dupVerts; // pairs of the number of the first vertex and the number of the duplicate vertex
int numSilEdges; // number of silhouette edges
silEdge_t* silEdges; // silhouette edges
vertCacheHandle_t staticIndexCache; // GL_INDEX_TYPE
vertCacheHandle_t staticAmbientCache; // idDrawVert
vertCacheHandle_t staticShadowCache; // idShadowCacheSkinned
};
// if outputVertexes is not NULL, it will point to a newly allocated set of verts that includes the mirrored ones
deformInfo_t* R_BuildDeformInfo( int numVerts, const idDrawVert* verts, int numIndexes, const int* indexes,
bool useUnsmoothedTangents );
void R_FreeDeformInfo( deformInfo_t* deformInfo );
int R_DeformInfoMemoryUsed( deformInfo_t* deformInfo );
/*
=============================================================
TR_TRACE
=============================================================
*/
struct localTrace_t
{
float fraction;
// only valid if fraction < 1.0
idVec3 point;
idVec3 normal;
int indexes[3];
};
localTrace_t R_LocalTrace( const idVec3& start, const idVec3& end, const float radius, const srfTriangles_t* tri );
void RB_ShowTrace( drawSurf_t** drawSurfs, int numDrawSurfs );
/*
=============================================================
BACKEND
=============================================================
*/
void RB_ExecuteBackEndCommands( const emptyCommand_t* cmds );
/*
============================================================
TR_BACKEND_DRAW
============================================================
*/
void RB_SetMVP( const idRenderMatrix& mvp );
void RB_DrawElementsWithCounters( const drawSurf_t* surf );
void RB_DrawViewInternal( const viewDef_t* viewDef, const int stereoEye );
void RB_DrawView( const void* data, const int stereoEye );
void RB_CopyRender( const void* data );
void RB_PostProcess( const void* data );
/*
=============================================================
TR_BACKEND_RENDERTOOLS
=============================================================
*/
float RB_DrawTextLength( const char* text, float scale, int len );
void RB_AddDebugText( const char* text, const idVec3& origin, float scale, const idVec4& color, const idMat3& viewAxis, const int align, const int lifetime, const bool depthTest );
void RB_ClearDebugText( int time );
void RB_AddDebugLine( const idVec4& color, const idVec3& start, const idVec3& end, const int lifeTime, const bool depthTest );
void RB_ClearDebugLines( int time );
void RB_AddDebugPolygon( const idVec4& color, const idWinding& winding, const int lifeTime, const bool depthTest );
void RB_ClearDebugPolygons( int time );
void RB_DrawBounds( const idBounds& bounds );
void RB_ShowLights( drawSurf_t** drawSurfs, int numDrawSurfs );
void RB_ShowLightCount( drawSurf_t** drawSurfs, int numDrawSurfs );
void RB_PolygonClear();
void RB_ScanStencilBuffer();
void RB_ShowDestinationAlpha();
void RB_ShowOverdraw();
void RB_RenderDebugTools( drawSurf_t** drawSurfs, int numDrawSurfs );
void RB_ShutdownDebugTools();
//=============================================
#include "ResolutionScale.h"
#include "RenderLog.h"
//#include "AutoRender.h"
//#include "AutoRenderBink.h"
#include "jobs/ShadowShared.h"
#include "jobs/prelightshadowvolume/PreLightShadowVolume.h"
#include "jobs/staticshadowvolume/StaticShadowVolume.h"
#include "jobs/dynamicshadowvolume/DynamicShadowVolume.h"
#include "GraphicsAPIWrapper.h"
#include "GLMatrix.h"
#include "BufferObject.h"
#include "RenderProgs.h"
#include "RenderWorld_local.h"
#include "GuiModel.h"
#include "VertexCache.h"
#endif /* !__TR_LOCAL_H__ */