/* * jcdctmgr.c * * Copyright (C) 1994-1995, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains the forward-DCT management logic. * This code selects a particular DCT implementation to be used, * and it performs related housekeeping chores including coefficient * quantization. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ /* Private subobject for this module */ typedef struct { struct jpeg_forward_dct pub;/* public fields */ /* Pointer to the DCT routine actually in use */ forward_DCT_method_ptr do_dct; /* The actual post-DCT divisors --- not identical to the quant table * entries, because of scaling (especially for an unnormalized DCT). * Each table is given in normal array order; note that this must * be converted from the zigzag order of the quantization tables. */ DCTELEM * divisors[NUM_QUANT_TBLS]; #ifdef DCT_FLOAT_SUPPORTED /* Same as above for the floating-point case. */ float_DCT_method_ptr do_float_dct; FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; #endif } my_fdct_controller; typedef my_fdct_controller * my_fdct_ptr; /* * Initialize for a processing pass. * Verify that all referenced Q-tables are present, and set up * the divisor table for each one. * In the current implementation, DCT of all components is done during * the first pass, even if only some components will be output in the * first scan. Hence all components should be examined here. */ METHODDEF void start_pass_fdctmgr( j_compress_ptr cinfo ) { my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; int ci, qtblno, i; jpeg_component_info * compptr; JQUANT_TBL * qtbl; //DCTELEM * dtbl; for ( ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++ ) { qtblno = compptr->quant_tbl_no; /* Make sure specified quantization table is present */ if ( ( qtblno < 0 ) || ( qtblno >= NUM_QUANT_TBLS ) || ( cinfo->quant_tbl_ptrs[qtblno] == NULL ) ) { ERREXIT1( cinfo, JERR_NO_QUANT_TABLE, qtblno ); } qtbl = cinfo->quant_tbl_ptrs[qtblno]; /* Compute divisors for this quant table */ /* We may do this more than once for same table, but it's not a big deal */ switch ( cinfo->dct_method ) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: /* For LL&M IDCT method, divisors are equal to raw quantization * coefficients multiplied by 8 (to counteract scaling). */ if ( fdct->divisors[qtblno] == NULL ) { fdct->divisors[qtblno] = (DCTELEM *) ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE, DCTSIZE2 * SIZEOF( DCTELEM ) ); } dtbl = fdct->divisors[qtblno]; for ( i = 0; i < DCTSIZE2; i++ ) { dtbl[i] = ( (DCTELEM) qtbl->quantval[jpeg_zigzag_order[i]] ) << 3; } break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: { /* For AA&N IDCT method, divisors are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * We apply a further scale factor of 8. */ #define CONST_BITS 14 static const INT16 aanscales[DCTSIZE2] = { /* precomputed values scaled up by 14 bits: in natural order */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; SHIFT_TEMPS if ( fdct->divisors[qtblno] == NULL ) { fdct->divisors[qtblno] = (DCTELEM *) ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE, DCTSIZE2 * SIZEOF( DCTELEM ) ); } dtbl = fdct->divisors[qtblno]; for ( i = 0; i < DCTSIZE2; i++ ) { dtbl[i] = (DCTELEM) DESCALE( MULTIPLY16V16( (INT32) qtbl->quantval[jpeg_zigzag_order[i]], (INT32) aanscales[i] ), CONST_BITS - 3 ); } } break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: { /* For float AA&N IDCT method, divisors are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * We apply a further scale factor of 8. * What's actually stored is 1/divisor so that the inner loop can * use a multiplication rather than a division. */ FAST_FLOAT * fdtbl; int row, col; static const double aanscalefactor[DCTSIZE] = { 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958, 0.541196100, 0.275899379 }; if ( fdct->float_divisors[qtblno] == NULL ) { fdct->float_divisors[qtblno] = (FAST_FLOAT *) ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE, DCTSIZE2 * SIZEOF( FAST_FLOAT ) ); } fdtbl = fdct->float_divisors[qtblno]; i = 0; for ( row = 0; row < DCTSIZE; row++ ) { for ( col = 0; col < DCTSIZE; col++ ) { fdtbl[i] = (FAST_FLOAT) ( 1.0 / ( ( (double) qtbl->quantval[jpeg_zigzag_order[i]] * aanscalefactor[row] * aanscalefactor[col] * 8.0 ) ) ); i++; } } } break; #endif default: ERREXIT( cinfo, JERR_NOT_COMPILED ); break; } } } /* * Perform forward DCT on one or more blocks of a component. * * The input samples are taken from the sample_data[] array starting at * position start_row/start_col, and moving to the right for any additional * blocks. The quantized coefficients are returned in coef_blocks[]. */ METHODDEF void forward_DCT( j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks ) { /* This version is used for integer DCT implementations. */ /* This routine is heavily used, so it's worth coding it tightly. */ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; forward_DCT_method_ptr do_dct = fdct->do_dct; DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; DCTELEM workspace[DCTSIZE2];/* work area for FDCT subroutine */ JDIMENSION bi; sample_data += start_row;/* fold in the vertical offset once */ for ( bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE ) { /* Load data into workspace, applying unsigned->signed conversion */ { register DCTELEM * workspaceptr; register JSAMPROW elemptr; register int elemr; workspaceptr = workspace; for ( elemr = 0; elemr < DCTSIZE; elemr++ ) { elemptr = sample_data[elemr] + start_col; #if DCTSIZE == 8 /* unroll the inner loop */ *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE; #else { register int elemc; for ( elemc = DCTSIZE; elemc > 0; elemc-- ) { *workspaceptr++ = GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE; } } #endif } } /* Perform the DCT */ ( *do_dct )( workspace ); /* Quantize/descale the coefficients, and store into coef_blocks[] */ { register DCTELEM temp, qval; register int i; register JCOEFPTR output_ptr = coef_blocks[bi]; for ( i = 0; i < DCTSIZE2; i++ ) { qval = divisors[i]; temp = workspace[i]; /* Divide the coefficient value by qval, ensuring proper rounding. * Since C does not specify the direction of rounding for negative * quotients, we have to force the dividend positive for portability. * * In most files, at least half of the output values will be zero * (at default quantization settings, more like three-quarters...) * so we should ensure that this case is fast. On many machines, * a comparison is enough cheaper than a divide to make a special test * a win. Since both inputs will be nonnegative, we need only test * for a < b to discover whether a/b is 0. * If your machine's division is fast enough, define FAST_DIVIDE. */ #ifdef FAST_DIVIDE #define DIVIDE_BY( a, b ) a /= b #else #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 #endif if ( temp < 0 ) { temp = -temp; temp += qval >> 1;/* for rounding */ DIVIDE_BY( temp, qval ); temp = -temp; } else { temp += qval >> 1;/* for rounding */ DIVIDE_BY( temp, qval ); } output_ptr[i] = (JCOEF) temp; } } } } #ifdef DCT_FLOAT_SUPPORTED METHODDEF void forward_DCT_float( j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks ) { /* This version is used for floating-point DCT implementations. */ /* This routine is heavily used, so it's worth coding it tightly. */ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; float_DCT_method_ptr do_dct = fdct->do_float_dct; FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; FAST_FLOAT workspace[DCTSIZE2];/* work area for FDCT subroutine */ JDIMENSION bi; sample_data += start_row;/* fold in the vertical offset once */ for ( bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE ) { /* Load data into workspace, applying unsigned->signed conversion */ { register FAST_FLOAT * workspaceptr; register JSAMPROW elemptr; register int elemr; workspaceptr = workspace; for ( elemr = 0; elemr < DCTSIZE; elemr++ ) { elemptr = sample_data[elemr] + start_col; #if DCTSIZE == 8 /* unroll the inner loop */ *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE ); *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE ); *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE ); *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE ); *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE ); *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE ); *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE ); *workspaceptr++ = (FAST_FLOAT)( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE ); #else { register int elemc; for ( elemc = DCTSIZE; elemc > 0; elemc-- ) { *workspaceptr++ = (FAST_FLOAT) ( GETJSAMPLE( *elemptr++ ) - CENTERJSAMPLE ); } } #endif } } /* Perform the DCT */ ( *do_dct )( workspace ); /* Quantize/descale the coefficients, and store into coef_blocks[] */ { register FAST_FLOAT temp; register int i; register JCOEFPTR output_ptr = coef_blocks[bi]; for ( i = 0; i < DCTSIZE2; i++ ) { /* Apply the quantization and scaling factor */ temp = workspace[i] * divisors[i]; /* Round to nearest integer. * Since C does not specify the direction of rounding for negative * quotients, we have to force the dividend positive for portability. * The maximum coefficient size is +-16K (for 12-bit data), so this * code should work for either 16-bit or 32-bit ints. */ output_ptr[i] = (JCOEF) ( (int) ( temp + (FAST_FLOAT) 16384.5 ) - 16384 ); } } } } #endif /* DCT_FLOAT_SUPPORTED */ /* * Initialize FDCT manager. */ GLOBAL void jinit_forward_dct( j_compress_ptr cinfo ) { my_fdct_ptr fdct; int i; fdct = (my_fdct_ptr) ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF( my_fdct_controller ) ); cinfo->fdct = (struct jpeg_forward_dct *) fdct; fdct->pub.start_pass = start_pass_fdctmgr; switch ( cinfo->dct_method ) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: fdct->pub.forward_DCT = forward_DCT; fdct->do_dct = jpeg_fdct_islow; break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: fdct->pub.forward_DCT = forward_DCT; fdct->do_dct = jpeg_fdct_ifast; break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: fdct->pub.forward_DCT = forward_DCT_float; fdct->do_float_dct = jpeg_fdct_float; break; #endif default: ERREXIT( cinfo, JERR_NOT_COMPILED ); break; } /* Mark divisor tables unallocated */ for ( i = 0; i < NUM_QUANT_TBLS; i++ ) { fdct->divisors[i] = NULL; #ifdef DCT_FLOAT_SUPPORTED fdct->float_divisors[i] = NULL; #endif } }