/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see .
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "Precompiled.h"
#include "globaldata.h"
#include "doomdef.h"
#include "i_system.h"
#include "z_zone.h"
#include "w_wad.h"
#include "r_local.h"
// Needs access to LFB (guess what).
#include "v_video.h"
// State.
#include "doomstat.h"
// ?
// status bar height at bottom of screen
//
// All drawing to the view buffer is accomplished in this file.
// The other refresh files only know about ccordinates,
// not the architecture of the frame buffer.
// Conveniently, the frame buffer is a linear one,
// and we need only the base address,
// and the total size == width*height*depth/8.,
//
// Color tables for different ::g->players,
// translate a limited part to another
// (color ramps used for suit colors).
//
//
// R_DrawColumn
// Source is the top of the column to scale.
//
// first pixel in a column (possibly virtual)
// just for profiling
//
// A column is a vertical slice/span from a wall texture that,
// given the DOOM style restrictions on the view orientation,
// will always have constant z depth.
// Thus a special case loop for very fast rendering can
// be used. It has also been used with Wolfenstein 3D.
//
void R_DrawColumn ( lighttable_t * dc_colormap,
byte * dc_source )
{
int count;
byte* dest;
fixed_t frac;
fixed_t fracstep;
count = ::g->dc_yh - ::g->dc_yl;
// Zero length, column does not exceed a pixel.
if (count >= 0) {
//return;
#ifdef RANGECHECK
if ((unsigned)::g->dc_x >= SCREENWIDTH
|| ::g->dc_yl < 0
|| ::g->dc_yh >= SCREENHEIGHT)
I_Error ("R_DrawColumn: %i to %i at %i", ::g->dc_yl, ::g->dc_yh, ::g->dc_x);
#endif
// Framebuffer destination address.
// Use ::g->ylookup LUT to avoid multiply with ScreenWidth.
// Use ::g->columnofs LUT for subwindows?
dest = ::g->ylookup[::g->dc_yl] + ::g->columnofs[::g->dc_x];
// Determine scaling,
// which is the only mapping to be done.
fracstep = ::g->dc_iscale;
frac = ::g->dc_texturemid + (::g->dc_yl-::g->centery)*fracstep;
// Inner loop that does the actual texture mapping,
// e.g. a DDA-lile scaling.
// This is as fast as it gets.
do
{
// Re-map color indices from wall texture column
// using a lighting/special effects LUT.
const int truncated1 = frac >> FRACBITS;
const int wrapped1 = truncated1 & 127;
*dest = dc_colormap[dc_source[wrapped1]];
frac += fracstep;
dest += SCREENWIDTH;
} while (count--);
}
}
// UNUSED.
// Loop unrolled.
#if 0
void R_DrawColumn (void)
{
int count;
byte* source;
byte* dest;
byte* colormap;
unsigned frac;
unsigned fracstep;
unsigned fracstep2;
unsigned fracstep3;
unsigned fracstep4;
count = ::g->dc_yh - ::g->dc_yl + 1;
source = ::g->dc_source;
colormap = ::g->dc_colormap;
dest = ::g->ylookup[::g->dc_yl] + ::g->columnofs[::g->dc_x];
fracstep = ::g->dc_iscale<<9;
frac = (::g->dc_texturemid + (::g->dc_yl-::g->centery)*::g->dc_iscale)<<9;
fracstep2 = fracstep+fracstep;
fracstep3 = fracstep2+fracstep;
fracstep4 = fracstep3+fracstep;
while (count >= 8)
{
dest[0] = colormap[source[frac>>25]];
dest[SCREENWIDTH] = colormap[source[(frac+fracstep)>>25]];
dest[SCREENWIDTH*2] = colormap[source[(frac+fracstep2)>>25]];
dest[SCREENWIDTH*3] = colormap[source[(frac+fracstep3)>>25]];
frac += fracstep4;
dest[SCREENWIDTH*4] = colormap[source[frac>>25]];
dest[SCREENWIDTH*5] = colormap[source[(frac+fracstep)>>25]];
dest[SCREENWIDTH*6] = colormap[source[(frac+fracstep2)>>25]];
dest[SCREENWIDTH*7] = colormap[source[(frac+fracstep3)>>25]];
frac += fracstep4;
dest += SCREENWIDTH*8;
count -= 8;
}
while (count > 0)
{
*dest = colormap[source[frac>>25]];
dest += SCREENWIDTH;
frac += fracstep;
count--;
}
}
#endif
void R_DrawColumnLow ( lighttable_t * dc_colormap,
byte * dc_source )
{
int count;
byte* dest;
byte* dest2;
fixed_t frac;
fixed_t fracstep;
count = ::g->dc_yh - ::g->dc_yl;
// Zero length.
if (count < 0)
return;
#ifdef RANGECHECK
if ((unsigned)::g->dc_x >= SCREENWIDTH
|| ::g->dc_yl < 0
|| ::g->dc_yh >= SCREENHEIGHT)
{
I_Error ("R_DrawColumn: %i to %i at %i", ::g->dc_yl, ::g->dc_yh, ::g->dc_x);
}
// ::g->dccount++;
#endif
// Blocky mode, need to multiply by 2.
::g->dc_x <<= 1;
dest = ::g->ylookup[::g->dc_yl] + ::g->columnofs[::g->dc_x];
dest2 = ::g->ylookup[::g->dc_yl] + ::g->columnofs[::g->dc_x+1];
fracstep = ::g->dc_iscale;
frac = ::g->dc_texturemid + (::g->dc_yl-::g->centery)*fracstep;
do
{
// Hack. Does not work corretly.
*dest2 = *dest = ::g->dc_colormap[::g->dc_source[(frac>>FRACBITS)&127]];
dest += SCREENWIDTH;
dest2 += SCREENWIDTH;
frac += fracstep;
} while (count--);
}
//
// Spectre/Invisibility.
//
//
// Framebuffer postprocessing.
// Creates a fuzzy image by copying pixels
// from adjacent ones to left and right.
// Used with an all black colormap, this
// could create the SHADOW effect,
// i.e. spectres and invisible ::g->players.
//
void R_DrawFuzzColumn ( lighttable_t * dc_colormap,
byte * dc_source )
{
int count;
byte* dest;
fixed_t frac;
fixed_t fracstep;
// Adjust borders. Low...
if (!::g->dc_yl)
::g->dc_yl = 1;
// .. and high.
if (::g->dc_yh == ::g->viewheight-1)
::g->dc_yh = ::g->viewheight - 2;
count = ::g->dc_yh - ::g->dc_yl;
// Zero length.
if (count < 0)
return;
#ifdef RANGECHECK
if ((unsigned)::g->dc_x >= SCREENWIDTH
|| ::g->dc_yl < 0 || ::g->dc_yh >= SCREENHEIGHT)
{
I_Error ("R_DrawFuzzColumn: %i to %i at %i",
::g->dc_yl, ::g->dc_yh, ::g->dc_x);
}
#endif
// Keep till ::g->detailshift bug in blocky mode fixed,
// or blocky mode removed.
/* WATCOM code
if (::g->detailshift)
{
if (::g->dc_x & 1)
{
outpw (GC_INDEX,GC_READMAP+(2<<8) );
outp (SC_INDEX+1,12);
}
else
{
outpw (GC_INDEX,GC_READMAP);
outp (SC_INDEX+1,3);
}
dest = destview + ::g->dc_yl*80 + (::g->dc_x>>1);
}
else
{
outpw (GC_INDEX,GC_READMAP+((::g->dc_x&3)<<8) );
outp (SC_INDEX+1,1<<(::g->dc_x&3));
dest = destview + ::g->dc_yl*80 + (::g->dc_x>>2);
}*/
// Does not work with blocky mode.
dest = ::g->ylookup[::g->dc_yl] + ::g->columnofs[::g->dc_x];
// Looks familiar.
fracstep = ::g->dc_iscale;
frac = ::g->dc_texturemid + (::g->dc_yl-::g->centery)*fracstep;
// Looks like an attempt at dithering,
// using the colormap #6 (of 0-31, a bit
// brighter than average).
do
{
// Lookup framebuffer, and retrieve
// a pixel that is either one column
// left or right of the current one.
// Add index from colormap to index.
*dest = ::g->colormaps[6*256+dest[::g->fuzzoffset[::g->fuzzpos]]];
// Clamp table lookup index.
if (++::g->fuzzpos == FUZZTABLE)
::g->fuzzpos = 0;
dest += SCREENWIDTH;
frac += fracstep;
} while (count--);
}
//
// R_DrawTranslatedColumn
// Used to draw player ::g->sprites
// with the green colorramp mapped to others.
// Could be used with different translation
// tables, e.g. the lighter colored version
// of the BaronOfHell, the HellKnight, uses
// identical ::g->sprites, kinda brightened up.
//
void R_DrawTranslatedColumn ( lighttable_t * dc_colormap,
byte * dc_source )
{
int count;
byte* dest;
fixed_t frac;
fixed_t fracstep;
count = ::g->dc_yh - ::g->dc_yl;
if (count < 0)
return;
#ifdef RANGECHECK
if ((unsigned)::g->dc_x >= SCREENWIDTH
|| ::g->dc_yl < 0
|| ::g->dc_yh >= SCREENHEIGHT)
{
I_Error ( "R_DrawColumn: %i to %i at %i",
::g->dc_yl, ::g->dc_yh, ::g->dc_x);
}
#endif
// WATCOM VGA specific.
/* Keep for fixing.
if (::g->detailshift)
{
if (::g->dc_x & 1)
outp (SC_INDEX+1,12);
else
outp (SC_INDEX+1,3);
dest = destview + ::g->dc_yl*80 + (::g->dc_x>>1);
}
else
{
outp (SC_INDEX+1,1<<(::g->dc_x&3));
dest = destview + ::g->dc_yl*80 + (::g->dc_x>>2);
}*/
// FIXME. As above.
dest = ::g->ylookup[::g->dc_yl] + ::g->columnofs[::g->dc_x];
// Looks familiar.
fracstep = ::g->dc_iscale;
frac = ::g->dc_texturemid + (::g->dc_yl-::g->centery)*fracstep;
// Here we do an additional index re-mapping.
do
{
// Translation tables are used
// to map certain colorramps to other ones,
// used with PLAY ::g->sprites.
// Thus the "green" ramp of the player 0 sprite
// is mapped to gray, red, black/indigo.
*dest = dc_colormap[::g->dc_translation[dc_source[frac>>FRACBITS]]];
dest += SCREENWIDTH;
frac += fracstep;
} while (count--);
}
//
// R_InitTranslationTables
// Creates the translation tables to map
// the green color ramp to gray, brown, red.
// Assumes a given structure of the PLAYPAL.
// Could be read from a lump instead.
//
void R_InitTranslationTables (void)
{
int i;
::g->translationtables = (byte*)DoomLib::Z_Malloc (256*3+255, PU_STATIC, 0);
::g->translationtables = (byte *)(( (int)::g->translationtables + 255 )& ~255);
// translate just the 16 green colors
for (i=0 ; i<256 ; i++)
{
if (i >= 0x70 && i<= 0x7f)
{
// map green ramp to gray, brown, red
::g->translationtables[i] = 0x60 + (i&0xf);
::g->translationtables [i+256] = 0x40 + (i&0xf);
::g->translationtables [i+512] = 0x20 + (i&0xf);
}
else
{
// Keep all other colors as is.
::g->translationtables[i] = ::g->translationtables[i+256]
= ::g->translationtables[i+512] = i;
}
}
}
//
// R_DrawSpan
// With DOOM style restrictions on view orientation,
// the floors and ceilings consist of horizontal slices
// or spans with constant z depth.
// However, rotation around the world z axis is possible,
// thus this mapping, while simpler and faster than
// perspective correct texture mapping, has to traverse
// the texture at an angle in all but a few cases.
// In consequence, flats are not stored by column (like walls),
// and the inner loop has to step in texture space u and v.
//
// start of a 64*64 tile image
// just for profiling
//
// Draws the actual span.
void R_DrawSpan ( fixed_t xfrac,
fixed_t yfrac,
fixed_t ds_y,
int ds_x1,
int ds_x2,
fixed_t ds_xstep,
fixed_t ds_ystep,
lighttable_t * ds_colormap,
byte * ds_source )
{
byte* dest;
int count;
int spot;
#ifdef RANGECHECK
if (::g->ds_x2 < ::g->ds_x1
|| ::g->ds_x1<0
|| ::g->ds_x2>=SCREENWIDTH
|| (unsigned)::g->ds_y>SCREENHEIGHT)
{
I_Error( "R_DrawSpan: %i to %i at %i",
::g->ds_x1,::g->ds_x2,::g->ds_y);
}
// ::g->dscount++;
#endif
dest = ::g->ylookup[::g->ds_y] + ::g->columnofs[::g->ds_x1];
// We do not check for zero spans here?
count = ds_x2 - g->ds_x1;
if ( ds_x2 < ds_x1 ) {
return; // SMF - think this is the sky
}
do
{
// Current texture index in u,v.
spot = ((yfrac>>(16-6))&(63*64)) + ((xfrac>>16)&63);
// Lookup pixel from flat texture tile,
// re-index using light/colormap.
*dest++ = ds_colormap[ds_source[spot]];
// Next step in u,v.
xfrac += ds_xstep;
yfrac += ds_ystep;
} while (count--);
}
// UNUSED.
// Loop unrolled by 4.
#if 0
void R_DrawSpan (void)
{
unsigned position, step;
byte* source;
byte* colormap;
byte* dest;
unsigned count;
usingned spot;
unsigned value;
unsigned temp;
unsigned xtemp;
unsigned ytemp;
position = ((::g->ds_xfrac<<10)&0xffff0000) | ((::g->ds_yfrac>>6)&0xffff);
step = ((::g->ds_xstep<<10)&0xffff0000) | ((::g->ds_ystep>>6)&0xffff);
source = ::g->ds_source;
colormap = ::g->ds_colormap;
dest = ::g->ylookup[::g->ds_y] + ::g->columnofs[::g->ds_x1];
count = ::g->ds_x2 - ::g->ds_x1 + 1;
while (count >= 4)
{
ytemp = position>>4;
ytemp = ytemp & 4032;
xtemp = position>>26;
spot = xtemp | ytemp;
position += step;
dest[0] = colormap[source[spot]];
ytemp = position>>4;
ytemp = ytemp & 4032;
xtemp = position>>26;
spot = xtemp | ytemp;
position += step;
dest[1] = colormap[source[spot]];
ytemp = position>>4;
ytemp = ytemp & 4032;
xtemp = position>>26;
spot = xtemp | ytemp;
position += step;
dest[2] = colormap[source[spot]];
ytemp = position>>4;
ytemp = ytemp & 4032;
xtemp = position>>26;
spot = xtemp | ytemp;
position += step;
dest[3] = colormap[source[spot]];
count -= 4;
dest += 4;
}
while (count > 0)
{
ytemp = position>>4;
ytemp = ytemp & 4032;
xtemp = position>>26;
spot = xtemp | ytemp;
position += step;
*dest++ = colormap[source[spot]];
count--;
}
}
#endif
//
// Again..
//
void R_DrawSpanLow ( fixed_t xfrac,
fixed_t yfrac,
fixed_t ds_y,
int ds_x1,
int ds_x2,
fixed_t ds_xstep,
fixed_t ds_ystep,
lighttable_t * ds_colormap,
byte * ds_source )
{
byte* dest;
int count;
int spot;
#ifdef RANGECHECK
if (::g->ds_x2 < ::g->ds_x1
|| ::g->ds_x1<0
|| ::g->ds_x2>=SCREENWIDTH
|| (unsigned)::g->ds_y>SCREENHEIGHT)
{
I_Error( "R_DrawSpan: %i to %i at %i",
::g->ds_x1,::g->ds_x2,::g->ds_y);
}
// ::g->dscount++;
#endif
// Blocky mode, need to multiply by 2.
::g->ds_x1 <<= 1;
::g->ds_x2 <<= 1;
dest = ::g->ylookup[::g->ds_y] + ::g->columnofs[::g->ds_x1];
count = ::g->ds_x2 - ::g->ds_x1;
do
{
spot = ((yfrac>>(16-6))&(63*64)) + ((xfrac>>16)&63);
// Lowres/blocky mode does it twice,
// while scale is adjusted appropriately.
*dest++ = ::g->ds_colormap[::g->ds_source[spot]];
*dest++ = ::g->ds_colormap[::g->ds_source[spot]];
xfrac += ::g->ds_xstep;
yfrac += ::g->ds_ystep;
} while (count--);
}
//
// R_InitBuffer
// Creats lookup tables that avoid
// multiplies and other hazzles
// for getting the framebuffer address
// of a pixel to draw.
//
void
R_InitBuffer
( int width,
int height )
{
int i;
// Handle resize,
// e.g. smaller view windows
// with border and/or status bar.
::g->viewwindowx = (SCREENWIDTH-width) >> 1;
// Column offset. For windows.
for (i=0 ; icolumnofs[i] = ::g->viewwindowx + i;
// Samw with base row offset.
if (width == SCREENWIDTH)
::g->viewwindowy = 0;
else
::g->viewwindowy = (SCREENHEIGHT-SBARHEIGHT-height) >> 1;
// Preclaculate all row offsets.
for (i=0 ; iylookup[i] = ::g->screens[0] + (i+::g->viewwindowy)*SCREENWIDTH;
}
//
// R_FillBackScreen
// Fills the back screen with a pattern
// for variable screen sizes
// Also draws a beveled edge.
//
void R_FillBackScreen (void)
{
byte* src;
byte* dest;
int x;
int y;
int width, height, windowx, windowy;
patch_t* patch;
// DOOM border patch.
char name1[] = "FLOOR7_2";
// DOOM II border patch.
char name2[] = "GRNROCK";
char* name;
if (::g->scaledviewwidth == SCREENWIDTH)
return;
if ( ::g->gamemode == commercial)
name = name2;
else
name = name1;
src = (byte*)W_CacheLumpName (name, PU_CACHE_SHARED);
dest = ::g->screens[1];
for (y=0 ; yscaledviewwidth / GLOBAL_IMAGE_SCALER;
height = ::g->viewheight / GLOBAL_IMAGE_SCALER;
windowx = ::g->viewwindowx / GLOBAL_IMAGE_SCALER;
windowy = ::g->viewwindowy / GLOBAL_IMAGE_SCALER;
patch = (patch_t*)W_CacheLumpName ("brdr_t",PU_CACHE_SHARED);
for (x=0 ; xscreens[0]+ofs, ::g->screens[1]+ofs, count);
}
//
// R_DrawViewBorder
// Draws the border around the view
// for different size windows?
//
void
V_MarkRect
( int x,
int y,
int width,
int height );
void R_DrawViewBorder (void)
{
int top;
int side;
int ofs;
int i;
if (::g->scaledviewwidth == SCREENWIDTH)
return;
top = ((SCREENHEIGHT-SBARHEIGHT)-::g->viewheight)/2;
side = (SCREENWIDTH-::g->scaledviewwidth)/2;
// copy top and one line of left side
R_VideoErase (0, top*SCREENWIDTH+side);
// copy one line of right side and bottom
ofs = (::g->viewheight+top)*SCREENWIDTH-side;
R_VideoErase (ofs, top*SCREENWIDTH+side);
// copy ::g->sides using wraparound
ofs = top*SCREENWIDTH + SCREENWIDTH-side;
side <<= 1;
for (i=1 ; i < ::g->viewheight ; i++)
{
R_VideoErase (ofs, side);
ofs += SCREENWIDTH;
}
// ?
V_MarkRect (0,0,SCREENWIDTH, SCREENHEIGHT-SBARHEIGHT);
}