/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ /* =============================================================================== Trace model vs. polygonal model collision detection. =============================================================================== */ #pragma hdrstop #include "precompiled.h" #include "CollisionModel_local.h" /* =============================================================================== Collision detection for rotational motion =============================================================================== */ // epsilon for round-off errors in epsilon calculations #define CM_PL_RANGE_EPSILON 1e-4f // if the collision point is this close to the rotation axis it is not considered a collision #define ROTATION_AXIS_EPSILON (CM_CLIP_EPSILON*0.25f) /* ================ CM_RotatePoint rotates a point about an arbitrary axis using the tangent of half the rotation angle ================ */ void CM_RotatePoint( idVec3& point, const idVec3& origin, const idVec3& axis, const float tanHalfAngle ) { double d, t, s, c; idVec3 proj, v1, v2; point -= origin; proj = axis * ( point * axis ); v1 = point - proj; v2 = axis.Cross( v1 ); // r = tan( a / 2 ); // sin(a) = 2*r/(1+r*r); // cos(a) = (1-r*r)/(1+r*r); t = tanHalfAngle * tanHalfAngle; d = 1.0f / ( 1.0f + t ); s = 2.0f * tanHalfAngle * d; c = ( 1.0f - t ) * d; point = v1 * c - v2 * s + proj + origin; } /* ================ CM_RotateEdge rotates an edge about an arbitrary axis using the tangent of half the rotation angle ================ */ void CM_RotateEdge( idVec3& start, idVec3& end, const idVec3& origin, const idVec3& axis, const float tanHalfAngle ) { double d, t, s, c; idVec3 proj, v1, v2; // r = tan( a / 2 ); // sin(a) = 2*r/(1+r*r); // cos(a) = (1-r*r)/(1+r*r); t = tanHalfAngle * tanHalfAngle; d = 1.0f / ( 1.0f + t ); s = 2.0f * tanHalfAngle * d; c = ( 1.0f - t ) * d; start -= origin; proj = axis * ( start * axis ); v1 = start - proj; v2 = axis.Cross( v1 ); start = v1 * c - v2 * s + proj + origin; end -= origin; proj = axis * ( end * axis ); v1 = end - proj; v2 = axis.Cross( v1 ); end = v1 * c - v2 * s + proj + origin; } /* ================ idCollisionModelManagerLocal::CollisionBetweenEdgeBounds verifies if the collision of two edges occurs between the edge bounds also calculates the collision point and collision plane normal if the collision occurs between the bounds ================ */ int idCollisionModelManagerLocal::CollisionBetweenEdgeBounds( cm_traceWork_t* tw, const idVec3& va, const idVec3& vb, const idVec3& vc, const idVec3& vd, float tanHalfAngle, idVec3& collisionPoint, idVec3& collisionNormal ) { float d1, d2, d; idVec3 at, bt, dir, dir1, dir2; idPluecker pl1, pl2; at = va; bt = vb; if( tanHalfAngle != 0.0f ) { CM_RotateEdge( at, bt, tw->origin, tw->axis, tanHalfAngle ); } dir1 = ( at - tw->origin ).Cross( tw->axis ); dir2 = ( bt - tw->origin ).Cross( tw->axis ); if( dir1 * dir1 > dir2 * dir2 ) { dir = dir1; } else { dir = dir2; } if( tw->angle < 0.0f ) { dir = -dir; } pl1.FromLine( at, bt ); pl2.FromRay( vc, dir ); d1 = pl1.PermutedInnerProduct( pl2 ); pl2.FromRay( vd, dir ); d2 = pl1.PermutedInnerProduct( pl2 ); if( ( d1 > 0.0f && d2 > 0.0f ) || ( d1 < 0.0f && d2 < 0.0f ) ) { return false; } pl1.FromLine( vc, vd ); pl2.FromRay( at, dir ); d1 = pl1.PermutedInnerProduct( pl2 ); pl2.FromRay( bt, dir ); d2 = pl1.PermutedInnerProduct( pl2 ); if( ( d1 > 0.0f && d2 > 0.0f ) || ( d1 < 0.0f && d2 < 0.0f ) ) { return false; } // collision point on the edge at-bt dir1 = ( vd - vc ).Cross( dir ); d = dir1 * vc; d1 = dir1 * at - d; d2 = dir1 * bt - d; if( d1 == d2 ) { return false; } collisionPoint = at + ( d1 / ( d1 - d2 ) ) * ( bt - at ); // normal is cross product of the rotated edge va-vb and the edge vc-vd collisionNormal.Cross( bt - at, vd - vc ); return true; } /* ================ idCollisionModelManagerLocal::RotateEdgeThroughEdge calculates the tangent of half the rotation angle at which the edges collide ================ */ int idCollisionModelManagerLocal::RotateEdgeThroughEdge( cm_traceWork_t* tw, const idPluecker& pl1, const idVec3& vc, const idVec3& vd, const float minTan, float& tanHalfAngle ) { double v0, v1, v2, a, b, c, d, sqrtd, q, frac1, frac2; idVec3 ct, dt; idPluecker pl2; /* a = start of line being rotated b = end of line being rotated pl1 = pluecker coordinate for line (a - b) pl2 = pluecker coordinate for edge we might collide with (c - d) t = rotation angle around the z-axis solve pluecker inner product for t of rotating line a-b and line l2 // start point of rotated line during rotation an[0] = a[0] * cos(t) + a[1] * sin(t) an[1] = a[0] * -sin(t) + a[1] * cos(t) an[2] = a[2]; // end point of rotated line during rotation bn[0] = b[0] * cos(t) + b[1] * sin(t) bn[1] = b[0] * -sin(t) + b[1] * cos(t) bn[2] = b[2]; pl1[0] = a[0] * b[1] - b[0] * a[1]; pl1[1] = a[0] * b[2] - b[0] * a[2]; pl1[2] = a[0] - b[0]; pl1[3] = a[1] * b[2] - b[1] * a[2]; pl1[4] = a[2] - b[2]; pl1[5] = b[1] - a[1]; v[0] = (a[0] * cos(t) + a[1] * sin(t)) * (b[0] * -sin(t) + b[1] * cos(t)) - (b[0] * cos(t) + b[1] * sin(t)) * (a[0] * -sin(t) + a[1] * cos(t)); v[1] = (a[0] * cos(t) + a[1] * sin(t)) * b[2] - (b[0] * cos(t) + b[1] * sin(t)) * a[2]; v[2] = (a[0] * cos(t) + a[1] * sin(t)) - (b[0] * cos(t) + b[1] * sin(t)); v[3] = (a[0] * -sin(t) + a[1] * cos(t)) * b[2] - (b[0] * -sin(t) + b[1] * cos(t)) * a[2]; v[4] = a[2] - b[2]; v[5] = (b[0] * -sin(t) + b[1] * cos(t)) - (a[0] * -sin(t) + a[1] * cos(t)); pl2[0] * v[4] + pl2[1] * v[5] + pl2[2] * v[3] + pl2[4] * v[0] + pl2[5] * v[1] + pl2[3] * v[2] = 0; v[0] = (a[0] * cos(t) + a[1] * sin(t)) * (b[0] * -sin(t) + b[1] * cos(t)) - (b[0] * cos(t) + b[1] * sin(t)) * (a[0] * -sin(t) + a[1] * cos(t)); v[0] = (a[1] * b[1] - a[0] * b[0]) * cos(t) * sin(t) + (a[0] * b[1] + a[1] * b[0] * cos(t)^2) - (a[1] * b[0]) - ((b[1] * a[1] - b[0] * a[0]) * cos(t) * sin(t) + (b[0] * a[1] + b[1] * a[0]) * cos(t)^2 - (b[1] * a[0])) v[0] = - (a[1] * b[0]) - ( - (b[1] * a[0])) v[0] = (b[1] * a[0]) - (a[1] * b[0]) v[0] = (a[0]*b[1]) - (a[1]*b[0]); v[1] = (a[0]*b[2] - b[0]*a[2]) * cos(t) + (a[1]*b[2] - b[1]*a[2]) * sin(t); v[2] = (a[0]-b[0]) * cos(t) + (a[1]-b[1]) * sin(t); v[3] = (b[0]*a[2] - a[0]*b[2]) * sin(t) + (a[1]*b[2] - b[1]*a[2]) * cos(t); v[4] = a[2] - b[2]; v[5] = (a[0]-b[0]) * sin(t) + (b[1]-a[1]) * cos(t); v[0] = (a[0]*b[1]) - (a[1]*b[0]); v[1] = (a[0]*b[2] - b[0]*a[2]) * cos(t) + (a[1]*b[2] - b[1]*a[2]) * sin(t); v[2] = (a[0]-b[0]) * cos(t) - (b[1]-a[1]) * sin(t); v[3] = (a[0]*b[2] - b[0]*a[2]) * -sin(t) + (a[1]*b[2] - b[1]*a[2]) * cos(t); v[4] = a[2] - b[2]; v[5] = (a[0]-b[0]) * sin(t) + (b[1]-a[1]) * cos(t); v[0] = pl1[0]; v[1] = pl1[1] * cos(t) + pl1[3] * sin(t); v[2] = pl1[2] * cos(t) - pl1[5] * sin(t); v[3] = pl1[3] * cos(t) - pl1[1] * sin(t); v[4] = pl1[4]; v[5] = pl1[5] * cos(t) + pl1[2] * sin(t); pl2[0] * v[4] + pl2[1] * v[5] + pl2[2] * v[3] + pl2[4] * v[0] + pl2[5] * v[1] + pl2[3] * v[2] = 0; 0 = pl2[0] * pl1[4] + pl2[1] * (pl1[5] * cos(t) + pl1[2] * sin(t)) + pl2[2] * (pl1[3] * cos(t) - pl1[1] * sin(t)) + pl2[4] * pl1[0] + pl2[5] * (pl1[1] * cos(t) + pl1[3] * sin(t)) + pl2[3] * (pl1[2] * cos(t) - pl1[5] * sin(t)); v2 * cos(t) + v1 * sin(t) + v0 = 0; // rotation about the z-axis v0 = pl2[0] * pl1[4] + pl2[4] * pl1[0]; v1 = pl2[1] * pl1[2] - pl2[2] * pl1[1] + pl2[5] * pl1[3] - pl2[3] * pl1[5]; v2 = pl2[1] * pl1[5] + pl2[2] * pl1[3] + pl2[5] * pl1[1] + pl2[3] * pl1[2]; // rotation about the x-axis //v0 = pl2[3] * pl1[2] + pl2[2] * pl1[3]; //v1 = -pl2[5] * pl1[0] + pl2[4] * pl1[1] - pl2[1] * pl1[4] + pl2[0] * pl1[5]; //v2 = pl2[4] * pl1[0] + pl2[5] * pl1[1] + pl2[0] * pl1[4] + pl2[1] * pl1[5]; r = tan(t / 2); sin(t) = 2*r/(1+r*r); cos(t) = (1-r*r)/(1+r*r); v1 * 2 * r / (1 + r*r) + v2 * (1 - r*r) / (1 + r*r) + v0 = 0 (v1 * 2 * r + v2 * (1 - r*r)) / (1 + r*r) = -v0 (v1 * 2 * r + v2 - v2 * r*r) / (1 + r*r) = -v0 v1 * 2 * r + v2 - v2 * r*r = -v0 * (1 + r*r) v1 * 2 * r + v2 - v2 * r*r = -v0 + -v0 * r*r (v0 - v2) * r * r + (2 * v1) * r + (v0 + v2) = 0; MrE gives Pluecker a banana.. good monkey */ tanHalfAngle = tw->maxTan; // transform rotation axis to z-axis ct = ( vc - tw->origin ) * tw->matrix; dt = ( vd - tw->origin ) * tw->matrix; pl2.FromLine( ct, dt ); v0 = pl2[0] * pl1[4] + pl2[4] * pl1[0]; v1 = pl2[1] * pl1[2] - pl2[2] * pl1[1] + pl2[5] * pl1[3] - pl2[3] * pl1[5]; v2 = pl2[1] * pl1[5] + pl2[2] * pl1[3] + pl2[5] * pl1[1] + pl2[3] * pl1[2]; a = v0 - v2; b = v1; c = v0 + v2; if( a == 0.0f ) { if( b == 0.0f ) { return false; } frac1 = -c / ( 2.0f * b ); frac2 = 1e10; // = tan( idMath::HALF_PI ) } else { d = b * b - c * a; if( d <= 0.0f ) { return false; } sqrtd = sqrt( d ); if( b > 0.0f ) { q = - b + sqrtd; } else { q = - b - sqrtd; } frac1 = q / a; frac2 = c / q; } if( tw->angle < 0.0f ) { frac1 = -frac1; frac2 = -frac2; } // get smallest tangent for which a collision occurs if( frac1 >= minTan && frac1 < tanHalfAngle ) { tanHalfAngle = frac1; } if( frac2 >= minTan && frac2 < tanHalfAngle ) { tanHalfAngle = frac2; } if( tw->angle < 0.0f ) { tanHalfAngle = -tanHalfAngle; } return true; } /* ================ idCollisionModelManagerLocal::EdgeFurthestFromEdge calculates the direction of motion at the initial position, where dir < 0 means the edges move towards each other if the edges move away from each other the tangent of half the rotation angle at which the edges are furthest apart is also calculated ================ */ int idCollisionModelManagerLocal::EdgeFurthestFromEdge( cm_traceWork_t* tw, const idPluecker& pl1, const idVec3& vc, const idVec3& vd, float& tanHalfAngle, float& dir ) { double v0, v1, v2, a, b, c, d, sqrtd, q, frac1, frac2; idVec3 ct, dt; idPluecker pl2; /* v2 * cos(t) + v1 * sin(t) + v0 = 0; // rotation about the z-axis v0 = pl2[0] * pl1[4] + pl2[4] * pl1[0]; v1 = pl2[1] * pl1[2] - pl2[2] * pl1[1] + pl2[5] * pl1[3] - pl2[3] * pl1[5]; v2 = pl2[1] * pl1[5] + pl2[2] * pl1[3] + pl2[5] * pl1[1] + pl2[3] * pl1[2]; derivative: v1 * cos(t) - v2 * sin(t) = 0; r = tan(t / 2); sin(t) = 2*r/(1+r*r); cos(t) = (1-r*r)/(1+r*r); -v2 * 2 * r / (1 + r*r) + v1 * (1 - r*r)/(1+r*r); -v2 * 2 * r + v1 * (1 - r*r) / (1 + r*r) = 0; -v2 * 2 * r + v1 * (1 - r*r) = 0; (-v1) * r * r + (-2 * v2) * r + (v1) = 0; */ tanHalfAngle = 0.0f; // transform rotation axis to z-axis ct = ( vc - tw->origin ) * tw->matrix; dt = ( vd - tw->origin ) * tw->matrix; pl2.FromLine( ct, dt ); v0 = pl2[0] * pl1[4] + pl2[4] * pl1[0]; v1 = pl2[1] * pl1[2] - pl2[2] * pl1[1] + pl2[5] * pl1[3] - pl2[3] * pl1[5]; v2 = pl2[1] * pl1[5] + pl2[2] * pl1[3] + pl2[5] * pl1[1] + pl2[3] * pl1[2]; // get the direction of motion at the initial position c = v0 + v2; if( tw->angle > 0.0f ) { if( c > 0.0f ) { dir = v1; } else { dir = -v1; } } else { if( c > 0.0f ) { dir = -v1; } else { dir = v1; } } // negative direction means the edges move towards each other at the initial position if( dir <= 0.0f ) { return true; } a = -v1; b = -v2; c = v1; if( a == 0.0f ) { if( b == 0.0f ) { return false; } frac1 = -c / ( 2.0f * b ); frac2 = 1e10; // = tan( idMath::HALF_PI ) } else { d = b * b - c * a; if( d <= 0.0f ) { return false; } sqrtd = sqrt( d ); if( b > 0.0f ) { q = - b + sqrtd; } else { q = - b - sqrtd; } frac1 = q / a; frac2 = c / q; } if( tw->angle < 0.0f ) { frac1 = -frac1; frac2 = -frac2; } if( frac1 < 0.0f && frac2 < 0.0f ) { return false; } if( frac1 > frac2 ) { tanHalfAngle = frac1; } else { tanHalfAngle = frac2; } if( tw->angle < 0.0f ) { tanHalfAngle = -tanHalfAngle; } return true; } /* ================ idCollisionModelManagerLocal::RotateTrmEdgeThroughPolygon ================ */ void idCollisionModelManagerLocal::RotateTrmEdgeThroughPolygon( cm_traceWork_t* tw, cm_polygon_t* poly, cm_trmEdge_t* trmEdge ) { int i, j, edgeNum; float f1, f2, startTan, dir, tanHalfAngle; cm_edge_t* edge; cm_vertex_t* v1, *v2; idVec3 collisionPoint, collisionNormal, origin, epsDir; idPluecker epsPl; idBounds bounds; // if the trm is convex and the rotation axis intersects the trm if( tw->isConvex && tw->axisIntersectsTrm ) { // if both points are behind the polygon the edge cannot collide within a 180 degrees rotation if( tw->vertices[trmEdge->vertexNum[0]].polygonSide & tw->vertices[trmEdge->vertexNum[1]].polygonSide ) { return; } } // if the trace model edge rotation bounds do not intersect the polygon bounds if( !trmEdge->rotationBounds.IntersectsBounds( poly->bounds ) ) { return; } // edge rotation bounds should cross polygon plane if( trmEdge->rotationBounds.PlaneSide( poly->plane ) != SIDE_CROSS ) { return; } // check edges for a collision for( i = 0; i < poly->numEdges; i++ ) { edgeNum = poly->edges[i]; edge = tw->model->edges + abs( edgeNum ); // if this edge is already checked if( edge->checkcount == idCollisionModelManagerLocal::checkCount ) { continue; } // can never collide with internal edges if( edge->internal ) { continue; } v1 = tw->model->vertices + edge->vertexNum[INT32_SIGNBITSET( edgeNum )]; v2 = tw->model->vertices + edge->vertexNum[INT32_SIGNBITNOTSET( edgeNum )]; // edge bounds for( j = 0; j < 3; j++ ) { if( v1->p[j] > v2->p[j] ) { bounds[0][j] = v2->p[j]; bounds[1][j] = v1->p[j]; } else { bounds[0][j] = v1->p[j]; bounds[1][j] = v2->p[j]; } } // if the trace model edge rotation bounds do not intersect the polygon edge bounds if( !trmEdge->rotationBounds.IntersectsBounds( bounds ) ) { continue; } f1 = trmEdge->pl.PermutedInnerProduct( tw->polygonEdgePlueckerCache[i] ); // pluecker coordinate for epsilon expanded edge epsDir = edge->normal * ( CM_CLIP_EPSILON + CM_PL_RANGE_EPSILON ); epsPl.FromLine( tw->model->vertices[edge->vertexNum[0]].p + epsDir, tw->model->vertices[edge->vertexNum[1]].p + epsDir ); f2 = trmEdge->pl.PermutedInnerProduct( epsPl ); // if the rotating edge is inbetween the polygon edge and the epsilon expanded edge if( ( f1 < 0.0f && f2 > 0.0f ) || ( f1 > 0.0f && f2 < 0.0f ) ) { if( !EdgeFurthestFromEdge( tw, trmEdge->plzaxis, v1->p, v2->p, startTan, dir ) ) { continue; } if( dir <= 0.0f ) { // moving towards the polygon edge so stop immediately tanHalfAngle = 0.0f; } else if( idMath::Fabs( startTan ) >= tw->maxTan ) { // never going to get beyond the start tangent during the current rotation continue; } else { // collide with the epsilon expanded edge if( !RotateEdgeThroughEdge( tw, trmEdge->plzaxis, v1->p + epsDir, v2->p + epsDir, idMath::Fabs( startTan ), tanHalfAngle ) ) { tanHalfAngle = startTan; } } } else { // collide with the epsilon expanded edge epsDir = edge->normal * CM_CLIP_EPSILON; if( !RotateEdgeThroughEdge( tw, trmEdge->plzaxis, v1->p + epsDir, v2->p + epsDir, 0.0f, tanHalfAngle ) ) { continue; } } if( idMath::Fabs( tanHalfAngle ) >= tw->maxTan ) { continue; } // check if the collision is between the edge bounds if( !CollisionBetweenEdgeBounds( tw, trmEdge->start, trmEdge->end, v1->p, v2->p, tanHalfAngle, collisionPoint, collisionNormal ) ) { continue; } // allow rotation if the rotation axis goes through the collisionPoint origin = tw->origin + tw->axis * ( tw->axis * ( collisionPoint - tw->origin ) ); if( ( collisionPoint - origin ).LengthSqr() < ROTATION_AXIS_EPSILON * ROTATION_AXIS_EPSILON ) { continue; } // fill in trace structure tw->maxTan = idMath::Fabs( tanHalfAngle ); tw->trace.c.normal = collisionNormal; tw->trace.c.normal.Normalize(); tw->trace.c.dist = tw->trace.c.normal * v1->p; // make sure the collision plane faces the trace model if( ( tw->trace.c.normal * trmEdge->start ) - tw->trace.c.dist < 0 ) { tw->trace.c.normal = -tw->trace.c.normal; tw->trace.c.dist = -tw->trace.c.dist; } tw->trace.c.contents = poly->contents; tw->trace.c.material = poly->material; tw->trace.c.type = CONTACT_EDGE; tw->trace.c.modelFeature = edgeNum; tw->trace.c.trmFeature = trmEdge - tw->edges; tw->trace.c.point = collisionPoint; // if no collision can be closer if( tw->maxTan == 0.0f ) { break; } } } /* ================ idCollisionModelManagerLocal::RotatePointThroughPlane calculates the tangent of half the rotation angle at which the point collides with the plane ================ */ int idCollisionModelManagerLocal::RotatePointThroughPlane( const cm_traceWork_t* tw, const idVec3& point, const idPlane& plane, const float angle, const float minTan, float& tanHalfAngle ) { double v0, v1, v2, a, b, c, d, sqrtd, q, frac1, frac2; idVec3 p, normal; /* p[0] = point[0] * cos(t) + point[1] * sin(t) p[1] = point[0] * -sin(t) + point[1] * cos(t) p[2] = point[2]; normal[0] * (p[0] * cos(t) + p[1] * sin(t)) + normal[1] * (p[0] * -sin(t) + p[1] * cos(t)) + normal[2] * p[2] + dist = 0 normal[0] * p[0] * cos(t) + normal[0] * p[1] * sin(t) + -normal[1] * p[0] * sin(t) + normal[1] * p[1] * cos(t) + normal[2] * p[2] + dist = 0 v2 * cos(t) + v1 * sin(t) + v0 // rotation about the z-axis v0 = normal[2] * p[2] + dist v1 = normal[0] * p[1] - normal[1] * p[0] v2 = normal[0] * p[0] + normal[1] * p[1] r = tan(t / 2); sin(t) = 2*r/(1+r*r); cos(t) = (1-r*r)/(1+r*r); v1 * 2 * r / (1 + r*r) + v2 * (1 - r*r) / (1 + r*r) + v0 = 0 (v1 * 2 * r + v2 * (1 - r*r)) / (1 + r*r) = -v0 (v1 * 2 * r + v2 - v2 * r*r) / (1 + r*r) = -v0 v1 * 2 * r + v2 - v2 * r*r = -v0 * (1 + r*r) v1 * 2 * r + v2 - v2 * r*r = -v0 + -v0 * r*r (v0 - v2) * r * r + (2 * v1) * r + (v0 + v2) = 0; */ tanHalfAngle = tw->maxTan; // transform rotation axis to z-axis p = ( point - tw->origin ) * tw->matrix; d = plane[3] + plane.Normal() * tw->origin; normal = plane.Normal() * tw->matrix; v0 = normal[2] * p[2] + d; v1 = normal[0] * p[1] - normal[1] * p[0]; v2 = normal[0] * p[0] + normal[1] * p[1]; a = v0 - v2; b = v1; c = v0 + v2; if( a == 0.0f ) { if( b == 0.0f ) { return false; } frac1 = -c / ( 2.0f * b ); frac2 = 1e10; // = tan( idMath::HALF_PI ) } else { d = b * b - c * a; if( d <= 0.0f ) { return false; } sqrtd = sqrt( d ); if( b > 0.0f ) { q = - b + sqrtd; } else { q = - b - sqrtd; } frac1 = q / a; frac2 = c / q; } if( angle < 0.0f ) { frac1 = -frac1; frac2 = -frac2; } // get smallest tangent for which a collision occurs if( frac1 >= minTan && frac1 < tanHalfAngle ) { tanHalfAngle = frac1; } if( frac2 >= minTan && frac2 < tanHalfAngle ) { tanHalfAngle = frac2; } if( angle < 0.0f ) { tanHalfAngle = -tanHalfAngle; } return true; } /* ================ idCollisionModelManagerLocal::PointFurthestFromPlane calculates the direction of motion at the initial position, where dir < 0 means the point moves towards the plane if the point moves away from the plane the tangent of half the rotation angle at which the point is furthest away from the plane is also calculated ================ */ int idCollisionModelManagerLocal::PointFurthestFromPlane( const cm_traceWork_t* tw, const idVec3& point, const idPlane& plane, const float angle, float& tanHalfAngle, float& dir ) { double v1, v2, a, b, c, d, sqrtd, q, frac1, frac2; idVec3 p, normal; /* v2 * cos(t) + v1 * sin(t) + v0 = 0; // rotation about the z-axis v0 = normal[2] * p[2] + dist v1 = normal[0] * p[1] - normal[1] * p[0] v2 = normal[0] * p[0] + normal[1] * p[1] derivative: v1 * cos(t) - v2 * sin(t) = 0; r = tan(t / 2); sin(t) = 2*r/(1+r*r); cos(t) = (1-r*r)/(1+r*r); -v2 * 2 * r / (1 + r*r) + v1 * (1 - r*r)/(1+r*r); -v2 * 2 * r + v1 * (1 - r*r) / (1 + r*r) = 0; -v2 * 2 * r + v1 * (1 - r*r) = 0; (-v1) * r * r + (-2 * v2) * r + (v1) = 0; */ tanHalfAngle = 0.0f; // transform rotation axis to z-axis p = ( point - tw->origin ) * tw->matrix; normal = plane.Normal() * tw->matrix; v1 = normal[0] * p[1] - normal[1] * p[0]; v2 = normal[0] * p[0] + normal[1] * p[1]; // the point will always start at the front of the plane, therefore v0 + v2 > 0 is always true if( angle < 0.0f ) { dir = -v1; } else { dir = v1; } // negative direction means the point moves towards the plane at the initial position if( dir <= 0.0f ) { return true; } a = -v1; b = -v2; c = v1; if( a == 0.0f ) { if( b == 0.0f ) { return false; } frac1 = -c / ( 2.0f * b ); frac2 = 1e10; // = tan( idMath::HALF_PI ) } else { d = b * b - c * a; if( d <= 0.0f ) { return false; } sqrtd = sqrt( d ); if( b > 0.0f ) { q = - b + sqrtd; } else { q = - b - sqrtd; } frac1 = q / a; frac2 = c / q; } if( angle < 0.0f ) { frac1 = -frac1; frac2 = -frac2; } if( frac1 < 0.0f && frac2 < 0.0f ) { return false; } if( frac1 > frac2 ) { tanHalfAngle = frac1; } else { tanHalfAngle = frac2; } if( angle < 0.0f ) { tanHalfAngle = -tanHalfAngle; } return true; } /* ================ idCollisionModelManagerLocal::RotatePointThroughEpsilonPlane ================ */ int idCollisionModelManagerLocal::RotatePointThroughEpsilonPlane( const cm_traceWork_t* tw, const idVec3& point, const idVec3& endPoint, const idPlane& plane, const float angle, const idVec3& origin, float& tanHalfAngle, idVec3& collisionPoint, idVec3& endDir ) { float d, dir, startTan; idVec3 vec, startDir; idPlane epsPlane; // epsilon expanded plane epsPlane = plane; epsPlane.SetDist( epsPlane.Dist() + CM_CLIP_EPSILON ); // if the rotation sphere at the rotation origin is too far away from the polygon plane d = epsPlane.Distance( origin ); vec = point - origin; if( d * d > vec * vec ) { return false; } // calculate direction of motion at vertex start position startDir = ( point - origin ).Cross( tw->axis ); if( angle < 0.0f ) { startDir = -startDir; } // if moving away from plane at start position if( startDir * epsPlane.Normal() >= 0.0f ) { // if end position is outside epsilon range d = epsPlane.Distance( endPoint ); if( d >= 0.0f ) { return false; // no collision } // calculate direction of motion at vertex end position endDir = ( endPoint - origin ).Cross( tw->axis ); if( angle < 0.0f ) { endDir = -endDir; } // if also moving away from plane at end position if( endDir * epsPlane.Normal() > 0.0f ) { return false; // no collision } } // if the start position is in the epsilon range d = epsPlane.Distance( point ); if( d <= CM_PL_RANGE_EPSILON ) { // calculate tangent of half the rotation for which the vertex is furthest away from the plane if( !PointFurthestFromPlane( tw, point, plane, angle, startTan, dir ) ) { return false; } if( dir <= 0.0f ) { // moving towards the polygon plane so stop immediately tanHalfAngle = 0.0f; } else if( idMath::Fabs( startTan ) >= tw->maxTan ) { // never going to get beyond the start tangent during the current rotation return false; } else { // calculate collision with epsilon expanded plane if( !RotatePointThroughPlane( tw, point, epsPlane, angle, idMath::Fabs( startTan ), tanHalfAngle ) ) { tanHalfAngle = startTan; } } } else { // calculate collision with epsilon expanded plane if( !RotatePointThroughPlane( tw, point, epsPlane, angle, 0.0f, tanHalfAngle ) ) { return false; } } // calculate collision point collisionPoint = point; if( tanHalfAngle != 0.0f ) { CM_RotatePoint( collisionPoint, tw->origin, tw->axis, tanHalfAngle ); } // calculate direction of motion at collision point endDir = ( collisionPoint - origin ).Cross( tw->axis ); if( angle < 0.0f ) { endDir = -endDir; } return true; } /* ================ idCollisionModelManagerLocal::RotateTrmVertexThroughPolygon ================ */ void idCollisionModelManagerLocal::RotateTrmVertexThroughPolygon( cm_traceWork_t* tw, cm_polygon_t* poly, cm_trmVertex_t* v, int vertexNum ) { int i; float tanHalfAngle; idVec3 endDir, collisionPoint; idPluecker pl; // if the trm vertex is behind the polygon plane it cannot collide with the polygon within a 180 degrees rotation if( tw->isConvex && tw->axisIntersectsTrm && v->polygonSide ) { return; } // if the trace model vertex rotation bounds do not intersect the polygon bounds if( !v->rotationBounds.IntersectsBounds( poly->bounds ) ) { return; } // vertex rotation bounds should cross polygon plane if( v->rotationBounds.PlaneSide( poly->plane ) != SIDE_CROSS ) { return; } // rotate the vertex through the epsilon plane if( !RotatePointThroughEpsilonPlane( tw, v->p, v->endp, poly->plane, tw->angle, v->rotationOrigin, tanHalfAngle, collisionPoint, endDir ) ) { return; } if( idMath::Fabs( tanHalfAngle ) < tw->maxTan ) { // verify if 'collisionPoint' moving along 'endDir' moves between polygon edges pl.FromRay( collisionPoint, endDir ); for( i = 0; i < poly->numEdges; i++ ) { if( poly->edges[i] < 0 ) { if( pl.PermutedInnerProduct( tw->polygonEdgePlueckerCache[i] ) > 0.0f ) { return; } } else { if( pl.PermutedInnerProduct( tw->polygonEdgePlueckerCache[i] ) < 0.0f ) { return; } } } tw->maxTan = idMath::Fabs( tanHalfAngle ); // collision plane is the polygon plane tw->trace.c.normal = poly->plane.Normal(); tw->trace.c.dist = poly->plane.Dist(); tw->trace.c.contents = poly->contents; tw->trace.c.material = poly->material; tw->trace.c.type = CONTACT_TRMVERTEX; tw->trace.c.modelFeature = *reinterpret_cast( &poly ); tw->trace.c.trmFeature = v - tw->vertices; tw->trace.c.point = collisionPoint; } } /* ================ idCollisionModelManagerLocal::RotateVertexThroughTrmPolygon ================ */ void idCollisionModelManagerLocal::RotateVertexThroughTrmPolygon( cm_traceWork_t* tw, cm_trmPolygon_t* trmpoly, cm_polygon_t* poly, cm_vertex_t* v, idVec3& rotationOrigin ) { int i, edgeNum; float tanHalfAngle; idVec3 dir, endp, endDir, collisionPoint; idPluecker pl; cm_trmEdge_t* edge; // if the polygon vertex is behind the trm plane it cannot collide with the trm polygon within a 180 degrees rotation if( tw->isConvex && tw->axisIntersectsTrm && trmpoly->plane.Distance( v->p ) < 0.0f ) { return; } // if the model vertex is outside the trm polygon rotation bounds if( !trmpoly->rotationBounds.ContainsPoint( v->p ) ) { return; } // if the rotation axis goes through the polygon vertex dir = v->p - rotationOrigin; if( dir * dir < ROTATION_AXIS_EPSILON * ROTATION_AXIS_EPSILON ) { return; } // calculate vertex end position endp = v->p; tw->modelVertexRotation.RotatePoint( endp ); // rotate the vertex through the epsilon plane if( !RotatePointThroughEpsilonPlane( tw, v->p, endp, trmpoly->plane, -tw->angle, rotationOrigin, tanHalfAngle, collisionPoint, endDir ) ) { return; } if( idMath::Fabs( tanHalfAngle ) < tw->maxTan ) { // verify if 'collisionPoint' moving along 'endDir' moves between polygon edges pl.FromRay( collisionPoint, endDir ); for( i = 0; i < trmpoly->numEdges; i++ ) { edgeNum = trmpoly->edges[i]; edge = tw->edges + abs( edgeNum ); if( edgeNum < 0 ) { if( pl.PermutedInnerProduct( edge->pl ) > 0.0f ) { return; } } else { if( pl.PermutedInnerProduct( edge->pl ) < 0.0f ) { return; } } } tw->maxTan = idMath::Fabs( tanHalfAngle ); // collision plane is the flipped trm polygon plane tw->trace.c.normal = -trmpoly->plane.Normal(); tw->trace.c.dist = tw->trace.c.normal * v->p; tw->trace.c.contents = poly->contents; tw->trace.c.material = poly->material; tw->trace.c.type = CONTACT_MODELVERTEX; tw->trace.c.modelFeature = v - tw->model->vertices; tw->trace.c.trmFeature = trmpoly - tw->polys; tw->trace.c.point = v->p; } } /* ================ idCollisionModelManagerLocal::RotateTrmThroughPolygon returns true if the polygon blocks the complete rotation ================ */ bool idCollisionModelManagerLocal::RotateTrmThroughPolygon( cm_traceWork_t* tw, cm_polygon_t* p ) { int i, j, k, edgeNum; float d; cm_trmVertex_t* bv; cm_trmEdge_t* be; cm_trmPolygon_t* bp; cm_vertex_t* v; cm_edge_t* e; idVec3* rotationOrigin; // if already checked this polygon if( p->checkcount == idCollisionModelManagerLocal::checkCount ) { return false; } p->checkcount = idCollisionModelManagerLocal::checkCount; // if this polygon does not have the right contents behind it if( !( p->contents & tw->contents ) ) { return false; } // if the the trace bounds do not intersect the polygon bounds if( !tw->bounds.IntersectsBounds( p->bounds ) ) { return false; } // back face culling if( tw->isConvex ) { // if the center of the convex trm is behind the polygon plane if( p->plane.Distance( tw->start ) < 0.0f ) { // if the rotation axis intersects the trace model if( tw->axisIntersectsTrm ) { return false; } else { // if the direction of motion at the start and end position of the // center of the trm both go towards or away from the polygon plane // or if the intersections of the rotation axis with the expanded heart planes // are both in front of the polygon plane } } } // if the polygon is too far from the first heart plane d = p->bounds.PlaneDistance( tw->heartPlane1 ); if( idMath::Fabs( d ) > tw->maxDistFromHeartPlane1 ) { return false; } // rotation bounds should cross polygon plane switch( tw->bounds.PlaneSide( p->plane ) ) { case PLANESIDE_CROSS: break; case PLANESIDE_FRONT: if( tw->model->isConvex ) { tw->quickExit = true; return true; } default: return false; } for( i = 0; i < tw->numVerts; i++ ) { bv = tw->vertices + i; // calculate polygon side this vertex is on d = p->plane.Distance( bv->p ); bv->polygonSide = ( d < 0.0f ); } for( i = 0; i < p->numEdges; i++ ) { edgeNum = p->edges[i]; e = tw->model->edges + abs( edgeNum ); v = tw->model->vertices + e->vertexNum[INT32_SIGNBITSET( edgeNum )]; // pluecker coordinate for edge tw->polygonEdgePlueckerCache[i].FromLine( tw->model->vertices[e->vertexNum[0]].p, tw->model->vertices[e->vertexNum[1]].p ); // calculate rotation origin projected into rotation plane through the vertex tw->polygonRotationOriginCache[i] = tw->origin + tw->axis * ( tw->axis * ( v->p - tw->origin ) ); } // copy first to last so we can easily cycle through tw->polygonRotationOriginCache[p->numEdges] = tw->polygonRotationOriginCache[0]; // fast point rotation if( tw->pointTrace ) { RotateTrmVertexThroughPolygon( tw, p, &tw->vertices[0], 0 ); } else { // rotate trm vertices through polygon for( i = 0; i < tw->numVerts; i++ ) { bv = tw->vertices + i; if( bv->used ) { RotateTrmVertexThroughPolygon( tw, p, bv, i ); } } // rotate trm edges through polygon for( i = 1; i <= tw->numEdges; i++ ) { be = tw->edges + i; if( be->used ) { RotateTrmEdgeThroughPolygon( tw, p, be ); } } // rotate all polygon vertices through the trm for( i = 0; i < p->numEdges; i++ ) { edgeNum = p->edges[i]; e = tw->model->edges + abs( edgeNum ); if( e->checkcount == idCollisionModelManagerLocal::checkCount ) { continue; } // set edge check count e->checkcount = idCollisionModelManagerLocal::checkCount; // can never collide with internal edges if( e->internal ) { continue; } // got to check both vertices because we skip internal edges for( k = 0; k < 2; k++ ) { v = tw->model->vertices + e->vertexNum[k ^ INT32_SIGNBITSET( edgeNum )]; // if this vertex is already checked if( v->checkcount == idCollisionModelManagerLocal::checkCount ) { continue; } // set vertex check count v->checkcount = idCollisionModelManagerLocal::checkCount; // if the vertex is outside the trm rotation bounds if( !tw->bounds.ContainsPoint( v->p ) ) { continue; } rotationOrigin = &tw->polygonRotationOriginCache[i + k]; for( j = 0; j < tw->numPolys; j++ ) { bp = tw->polys + j; if( bp->used ) { RotateVertexThroughTrmPolygon( tw, bp, p, v, *rotationOrigin ); } } } } } return ( tw->maxTan == 0.0f ); } /* ================ idCollisionModelManagerLocal::BoundsForRotation only for rotations < 180 degrees ================ */ void idCollisionModelManagerLocal::BoundsForRotation( const idVec3& origin, const idVec3& axis, const idVec3& start, const idVec3& end, idBounds& bounds ) { int i; float radiusSqr; idVec3 v1, v2; radiusSqr = ( start - origin ).LengthSqr(); v1 = ( start - origin ).Cross( axis ); v2 = ( end - origin ).Cross( axis ); for( i = 0; i < 3; i++ ) { // if the derivative changes sign along this axis during the rotation from start to end if( ( v1[i] > 0.0f && v2[i] < 0.0f ) || ( v1[i] < 0.0f && v2[i] > 0.0f ) ) { if( ( 0.5f * ( start[i] + end[i] ) - origin[i] ) > 0.0f ) { bounds[0][i] = Min( start[i], end[i] ); bounds[1][i] = origin[i] + idMath::Sqrt( radiusSqr * ( 1.0f - axis[i] * axis[i] ) ); } else { bounds[0][i] = origin[i] - idMath::Sqrt( radiusSqr * ( 1.0f - axis[i] * axis[i] ) ); bounds[1][i] = Max( start[i], end[i] ); } } else if( start[i] > end[i] ) { bounds[0][i] = end[i]; bounds[1][i] = start[i]; } else { bounds[0][i] = start[i]; bounds[1][i] = end[i]; } // expand for epsilons bounds[0][i] -= CM_BOX_EPSILON; bounds[1][i] += CM_BOX_EPSILON; } } /* ================ idCollisionModelManagerLocal::Rotation180 ================ */ void idCollisionModelManagerLocal::Rotation180( trace_t* results, const idVec3& rorg, const idVec3& axis, const float startAngle, const float endAngle, const idVec3& start, const idTraceModel* trm, const idMat3& trmAxis, int contentMask, cmHandle_t model, const idVec3& modelOrigin, const idMat3& modelAxis ) { int i, j, edgeNum; float d, maxErr, initialTan; bool model_rotated, trm_rotated; idVec3 dir, dir1, dir2, tmp, vr, vup, org, at, bt; idMat3 invModelAxis, endAxis, tmpAxis; idRotation startRotation, endRotation; idPluecker plaxis; cm_trmPolygon_t* poly; cm_trmEdge_t* edge; cm_trmVertex_t* vert; ALIGN16( static cm_traceWork_t tw ); if( model < 0 || model > MAX_SUBMODELS || model > idCollisionModelManagerLocal::maxModels ) { common->Printf( "idCollisionModelManagerLocal::Rotation180: invalid model handle\n" ); return; } if( !idCollisionModelManagerLocal::models[model] ) { common->Printf( "idCollisionModelManagerLocal::Rotation180: invalid model\n" ); return; } idCollisionModelManagerLocal::checkCount++; tw.trace.fraction = 1.0f; tw.trace.c.contents = 0; tw.trace.c.type = CONTACT_NONE; tw.contents = contentMask; tw.isConvex = true; tw.rotation = true; tw.positionTest = false; tw.axisIntersectsTrm = false; tw.quickExit = false; tw.angle = endAngle - startAngle; assert( tw.angle > -180.0f && tw.angle < 180.0f ); tw.maxTan = initialTan = idMath::Fabs( tan( ( idMath::PI / 360.0f ) * tw.angle ) ); tw.model = idCollisionModelManagerLocal::models[model]; tw.start = start - modelOrigin; // rotation axis, axis is assumed to be normalized tw.axis = axis; // assert( tw.axis[0] * tw.axis[0] + tw.axis[1] * tw.axis[1] + tw.axis[2] * tw.axis[2] > 0.99f ); // rotation origin projected into rotation plane through tw.start tw.origin = rorg - modelOrigin; d = ( tw.axis * tw.origin ) - ( tw.axis * tw.start ); tw.origin = tw.origin - d * tw.axis; // radius of rotation tw.radius = ( tw.start - tw.origin ).Length(); // maximum error of the circle approximation traced through the axial BSP tree d = tw.radius * tw.radius - ( CIRCLE_APPROXIMATION_LENGTH * CIRCLE_APPROXIMATION_LENGTH * 0.25f ); if( d > 0.0f ) { maxErr = tw.radius - idMath::Sqrt( d ); } else { maxErr = tw.radius; } model_rotated = modelAxis.IsRotated(); if( model_rotated ) { invModelAxis = modelAxis.Transpose(); tw.axis *= invModelAxis; tw.origin *= invModelAxis; } startRotation.Set( tw.origin, tw.axis, startAngle ); endRotation.Set( tw.origin, tw.axis, endAngle ); // create matrix which rotates the rotation axis to the z-axis tw.axis.NormalVectors( vr, vup ); tw.matrix[0][0] = vr[0]; tw.matrix[1][0] = vr[1]; tw.matrix[2][0] = vr[2]; tw.matrix[0][1] = -vup[0]; tw.matrix[1][1] = -vup[1]; tw.matrix[2][1] = -vup[2]; tw.matrix[0][2] = tw.axis[0]; tw.matrix[1][2] = tw.axis[1]; tw.matrix[2][2] = tw.axis[2]; // if optimized point trace if( !trm || ( trm->bounds[1][0] - trm->bounds[0][0] <= 0.0f && trm->bounds[1][1] - trm->bounds[0][1] <= 0.0f && trm->bounds[1][2] - trm->bounds[0][2] <= 0.0f ) ) { if( model_rotated ) { // rotate trace instead of model tw.start *= invModelAxis; } tw.end = tw.start; // if we start at a specific angle if( startAngle != 0.0f ) { startRotation.RotatePoint( tw.start ); } // calculate end position of rotation endRotation.RotatePoint( tw.end ); // calculate rotation origin projected into rotation plane through the vertex tw.numVerts = 1; tw.vertices[0].p = tw.start; tw.vertices[0].endp = tw.end; tw.vertices[0].used = true; tw.vertices[0].rotationOrigin = tw.origin + tw.axis * ( tw.axis * ( tw.vertices[0].p - tw.origin ) ); BoundsForRotation( tw.vertices[0].rotationOrigin, tw.axis, tw.start, tw.end, tw.vertices[0].rotationBounds ); // rotation bounds tw.bounds = tw.vertices[0].rotationBounds; tw.numEdges = tw.numPolys = 0; // collision with single point tw.pointTrace = true; // extents is set to maximum error of the circle approximation traced through the axial BSP tree tw.extents[0] = tw.extents[1] = tw.extents[2] = maxErr + CM_BOX_EPSILON; // setup rotation heart plane tw.heartPlane1.SetNormal( tw.axis ); tw.heartPlane1.FitThroughPoint( tw.start ); tw.maxDistFromHeartPlane1 = CM_BOX_EPSILON; // trace through the model idCollisionModelManagerLocal::TraceThroughModel( &tw ); // store results *results = tw.trace; results->endpos = start; if( tw.maxTan == initialTan ) { results->fraction = 1.0f; } else { results->fraction = idMath::Fabs( atan( tw.maxTan ) * ( 2.0f * 180.0f / idMath::PI ) / tw.angle ); } assert( results->fraction <= 1.0f ); endRotation.Set( rorg, axis, startAngle + ( endAngle - startAngle ) * results->fraction ); endRotation.RotatePoint( results->endpos ); results->endAxis.Identity(); if( results->fraction < 1.0f ) { // rotate trace plane normal if there was a collision with a rotated model if( model_rotated ) { results->c.normal *= modelAxis; results->c.point *= modelAxis; } results->c.point += modelOrigin; results->c.dist += modelOrigin * results->c.normal; } return; } tw.pointTrace = false; // setup trm structure idCollisionModelManagerLocal::SetupTrm( &tw, trm ); trm_rotated = trmAxis.IsRotated(); // calculate vertex positions if( trm_rotated ) { for( i = 0; i < tw.numVerts; i++ ) { // rotate trm around the start position tw.vertices[i].p *= trmAxis; } } for( i = 0; i < tw.numVerts; i++ ) { // set trm at start position tw.vertices[i].p += tw.start; } if( model_rotated ) { for( i = 0; i < tw.numVerts; i++ ) { tw.vertices[i].p *= invModelAxis; } } for( i = 0; i < tw.numVerts; i++ ) { tw.vertices[i].endp = tw.vertices[i].p; } // if we start at a specific angle if( startAngle != 0.0f ) { for( i = 0; i < tw.numVerts; i++ ) { startRotation.RotatePoint( tw.vertices[i].p ); } } for( i = 0; i < tw.numVerts; i++ ) { // end position of vertex endRotation.RotatePoint( tw.vertices[i].endp ); } // add offset to start point if( trm_rotated ) { tw.start += trm->offset * trmAxis; } else { tw.start += trm->offset; } // if the model is rotated if( model_rotated ) { // rotate trace instead of model tw.start *= invModelAxis; } tw.end = tw.start; // if we start at a specific angle if( startAngle != 0.0f ) { startRotation.RotatePoint( tw.start ); } // calculate end position of rotation endRotation.RotatePoint( tw.end ); // setup trm vertices for( vert = tw.vertices, i = 0; i < tw.numVerts; i++, vert++ ) { // calculate rotation origin projected into rotation plane through the vertex vert->rotationOrigin = tw.origin + tw.axis * ( tw.axis * ( vert->p - tw.origin ) ); // calculate rotation bounds for this vertex BoundsForRotation( vert->rotationOrigin, tw.axis, vert->p, vert->endp, vert->rotationBounds ); // if the rotation axis goes through the vertex then the vertex is not used d = ( vert->p - vert->rotationOrigin ).LengthSqr(); if( d > ROTATION_AXIS_EPSILON * ROTATION_AXIS_EPSILON ) { vert->used = true; } } // setup trm edges for( edge = tw.edges + 1, i = 1; i <= tw.numEdges; i++, edge++ ) { // if the rotation axis goes through both the edge vertices then the edge is not used if( tw.vertices[edge->vertexNum[0]].used | tw.vertices[edge->vertexNum[1]].used ) { edge->used = true; } // edge start, end and pluecker coordinate edge->start = tw.vertices[edge->vertexNum[0]].p; edge->end = tw.vertices[edge->vertexNum[1]].p; edge->pl.FromLine( edge->start, edge->end ); // pluecker coordinate for edge being rotated about the z-axis at = ( edge->start - tw.origin ) * tw.matrix; bt = ( edge->end - tw.origin ) * tw.matrix; edge->plzaxis.FromLine( at, bt ); // get edge rotation bounds from the rotation bounds of both vertices edge->rotationBounds = tw.vertices[edge->vertexNum[0]].rotationBounds; edge->rotationBounds.AddBounds( tw.vertices[edge->vertexNum[1]].rotationBounds ); // used to calculate if the rotation axis intersects the trm edge->bitNum = 0; } tw.bounds.Clear(); // rotate trm polygon planes if( trm_rotated & model_rotated ) { tmpAxis = trmAxis * invModelAxis; for( poly = tw.polys, i = 0; i < tw.numPolys; i++, poly++ ) { poly->plane *= tmpAxis; } } else if( trm_rotated ) { for( poly = tw.polys, i = 0; i < tw.numPolys; i++, poly++ ) { poly->plane *= trmAxis; } } else if( model_rotated ) { for( poly = tw.polys, i = 0; i < tw.numPolys; i++, poly++ ) { poly->plane *= invModelAxis; } } // setup trm polygons for( poly = tw.polys, i = 0; i < tw.numPolys; i++, poly++ ) { poly->used = true; // set trm polygon plane distance poly->plane.FitThroughPoint( tw.edges[abs( poly->edges[0] )].start ); // get polygon bounds from edge bounds poly->rotationBounds.Clear(); for( j = 0; j < poly->numEdges; j++ ) { // add edge rotation bounds to polygon rotation bounds edge = &tw.edges[abs( poly->edges[j] )]; poly->rotationBounds.AddBounds( edge->rotationBounds ); } // get trace bounds from polygon bounds tw.bounds.AddBounds( poly->rotationBounds ); } // extents including the maximum error of the circle approximation traced through the axial BSP tree for( i = 0; i < 3; i++ ) { tw.size[0][i] = tw.bounds[0][i] - tw.start[i]; tw.size[1][i] = tw.bounds[1][i] - tw.start[i]; if( idMath::Fabs( tw.size[0][i] ) > idMath::Fabs( tw.size[1][i] ) ) { tw.extents[i] = idMath::Fabs( tw.size[0][i] ) + maxErr + CM_BOX_EPSILON; } else { tw.extents[i] = idMath::Fabs( tw.size[1][i] ) + maxErr + CM_BOX_EPSILON; } } // for back-face culling if( tw.isConvex ) { if( tw.start == tw.origin ) { tw.axisIntersectsTrm = true; } else { // determine if the rotation axis intersects the trm plaxis.FromRay( tw.origin, tw.axis ); for( poly = tw.polys, i = 0; i < tw.numPolys; i++, poly++ ) { // back face cull polygons if( poly->plane.Normal() * tw.axis > 0.0f ) { continue; } // test if the axis goes between the polygon edges for( j = 0; j < poly->numEdges; j++ ) { edgeNum = poly->edges[j]; edge = tw.edges + abs( edgeNum ); if( ( edge->bitNum & 2 ) == 0 ) { d = plaxis.PermutedInnerProduct( edge->pl ); edge->bitNum = ( ( d < 0.0f ) ? 1 : 0 ) | 2; } if( ( edge->bitNum ^ INT32_SIGNBITSET( edgeNum ) ) & 1 ) { break; } } if( j >= poly->numEdges ) { tw.axisIntersectsTrm = true; break; } } } } // setup rotation heart plane tw.heartPlane1.SetNormal( tw.axis ); tw.heartPlane1.FitThroughPoint( tw.start ); tw.maxDistFromHeartPlane1 = 0.0f; for( i = 0; i < tw.numVerts; i++ ) { d = idMath::Fabs( tw.heartPlane1.Distance( tw.vertices[i].p ) ); if( d > tw.maxDistFromHeartPlane1 ) { tw.maxDistFromHeartPlane1 = d; } } tw.maxDistFromHeartPlane1 += CM_BOX_EPSILON; // inverse rotation to rotate model vertices towards trace model tw.modelVertexRotation.Set( tw.origin, tw.axis, -tw.angle ); // trace through the model idCollisionModelManagerLocal::TraceThroughModel( &tw ); // store results *results = tw.trace; results->endpos = start; if( tw.maxTan == initialTan ) { results->fraction = 1.0f; } else { results->fraction = idMath::Fabs( atan( tw.maxTan ) * ( 2.0f * 180.0f / idMath::PI ) / tw.angle ); } assert( results->fraction <= 1.0f ); endRotation.Set( rorg, axis, startAngle + ( endAngle - startAngle ) * results->fraction ); endRotation.RotatePoint( results->endpos ); results->endAxis = trmAxis * endRotation.ToMat3(); if( results->fraction < 1.0f ) { // rotate trace plane normal if there was a collision with a rotated model if( model_rotated ) { results->c.normal *= modelAxis; results->c.point *= modelAxis; } results->c.point += modelOrigin; results->c.dist += modelOrigin * results->c.normal; } } /* ================ idCollisionModelManagerLocal::Rotation ================ */ #ifdef _DEBUG static int entered = 0; #endif void idCollisionModelManagerLocal::Rotation( trace_t* results, const idVec3& start, const idRotation& rotation, const idTraceModel* trm, const idMat3& trmAxis, int contentMask, cmHandle_t model, const idVec3& modelOrigin, const idMat3& modelAxis ) { idVec3 tmp; float maxa, stepa, a, lasta; assert( ( ( byte* )&start ) < ( ( byte* )results ) || ( ( byte* )&start ) > ( ( ( byte* )results ) + sizeof( trace_t ) ) ); assert( ( ( byte* )&trmAxis ) < ( ( byte* )results ) || ( ( byte* )&trmAxis ) > ( ( ( byte* )results ) + sizeof( trace_t ) ) ); memset( results, 0, sizeof( *results ) ); // if special position test if( rotation.GetAngle() == 0.0f ) { idCollisionModelManagerLocal::ContentsTrm( results, start, trm, trmAxis, contentMask, model, modelOrigin, modelAxis ); return; } #ifdef _DEBUG bool startsolid = false; // test whether or not stuck to begin with if( cm_debugCollision.GetBool() ) { if( !entered ) { entered = 1; // if already messed up to begin with if( idCollisionModelManagerLocal::Contents( start, trm, trmAxis, -1, model, modelOrigin, modelAxis ) & contentMask ) { startsolid = true; } entered = 0; } } #endif if( rotation.GetAngle() >= 180.0f || rotation.GetAngle() <= -180.0f ) { if( rotation.GetAngle() >= 360.0f ) { maxa = 360.0f; stepa = 120.0f; // three steps strictly < 180 degrees } else if( rotation.GetAngle() <= -360.0f ) { maxa = -360.0f; stepa = -120.0f; // three steps strictly < 180 degrees } else { maxa = rotation.GetAngle(); stepa = rotation.GetAngle() * 0.5f; // two steps strictly < 180 degrees } for( lasta = 0.0f, a = stepa; fabs( a ) < fabs( maxa ) + 1.0f; lasta = a, a += stepa ) { // partial rotation idCollisionModelManagerLocal::Rotation180( results, rotation.GetOrigin(), rotation.GetVec(), lasta, a, start, trm, trmAxis, contentMask, model, modelOrigin, modelAxis ); // if there is a collision if( results->fraction < 1.0f ) { // fraction of total rotation results->fraction = ( lasta + stepa * results->fraction ) / rotation.GetAngle(); return; } } results->fraction = 1.0f; return; } idCollisionModelManagerLocal::Rotation180( results, rotation.GetOrigin(), rotation.GetVec(), 0.0f, rotation.GetAngle(), start, trm, trmAxis, contentMask, model, modelOrigin, modelAxis ); #ifdef _DEBUG // test for missed collisions if( cm_debugCollision.GetBool() ) { if( !entered ) { entered = 1; // if the trm is stuck in the model if( idCollisionModelManagerLocal::Contents( results->endpos, trm, results->endAxis, -1, model, modelOrigin, modelAxis ) & contentMask ) { trace_t tr; // test where the trm is stuck in the model idCollisionModelManagerLocal::Contents( results->endpos, trm, results->endAxis, -1, model, modelOrigin, modelAxis ); // re-run collision detection to find out where it failed idCollisionModelManagerLocal::Rotation( &tr, start, rotation, trm, trmAxis, contentMask, model, modelOrigin, modelAxis ); } entered = 0; } } #endif }