/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #pragma hdrstop #include "../precompiled.h" /* ================= UpdateVertexIndex ================= */ ID_INLINE int UpdateVertexIndex( int vertexIndexNum[2], int* vertexRemap, int* vertexCopyIndex, int vertNum ) { int s = INT32_SIGNBITSET( vertexRemap[vertNum] ); vertexIndexNum[0] = vertexRemap[vertNum]; vertexRemap[vertNum] = vertexIndexNum[s]; vertexIndexNum[1] += s; vertexCopyIndex[vertexRemap[vertNum]] = vertNum; return vertexRemap[vertNum]; } /* ================= idSurface::Split ================= */ int idSurface::Split( const idPlane& plane, const float epsilon, idSurface** front, idSurface** back, int* frontOnPlaneEdges, int* backOnPlaneEdges ) const { float* dists; float f; byte* sides; int counts[3]; int* edgeSplitVertex; int numEdgeSplitVertexes; int* vertexRemap[2]; int vertexIndexNum[2][2]; int* vertexCopyIndex[2]; int* indexPtr[2]; int indexNum[2]; int* index; int* onPlaneEdges[2]; int numOnPlaneEdges[2]; int maxOnPlaneEdges; int i; idSurface* surface[2]; idDrawVert v; dists = ( float* ) _alloca( verts.Num() * sizeof( float ) ); sides = ( byte* ) _alloca( verts.Num() * sizeof( byte ) ); counts[0] = counts[1] = counts[2] = 0; // determine side for each vertex for( i = 0; i < verts.Num(); i++ ) { dists[i] = f = plane.Distance( verts[i].xyz ); if( f > epsilon ) { sides[i] = SIDE_FRONT; } else if( f < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } *front = *back = NULL; // if coplanar, put on the front side if the normals match if( !counts[SIDE_FRONT] && !counts[SIDE_BACK] ) { f = ( verts[indexes[1]].xyz - verts[indexes[0]].xyz ).Cross( verts[indexes[0]].xyz - verts[indexes[2]].xyz ) * plane.Normal(); if( IEEE_FLT_SIGNBITSET( f ) ) { *back = new( TAG_IDLIB_SURFACE ) idSurface( *this ); return SIDE_BACK; } else { *front = new( TAG_IDLIB_SURFACE ) idSurface( *this ); return SIDE_FRONT; } } // if nothing at the front of the clipping plane if( !counts[SIDE_FRONT] ) { *back = new( TAG_IDLIB_SURFACE ) idSurface( *this ); return SIDE_BACK; } // if nothing at the back of the clipping plane if( !counts[SIDE_BACK] ) { *front = new( TAG_IDLIB_SURFACE ) idSurface( *this ); return SIDE_FRONT; } // allocate front and back surface *front = surface[0] = new( TAG_IDLIB_SURFACE ) idSurface(); *back = surface[1] = new( TAG_IDLIB_SURFACE ) idSurface(); edgeSplitVertex = ( int* ) _alloca( edges.Num() * sizeof( int ) ); numEdgeSplitVertexes = 0; maxOnPlaneEdges = 4 * counts[SIDE_ON]; counts[SIDE_FRONT] = counts[SIDE_BACK] = counts[SIDE_ON] = 0; // split edges for( i = 0; i < edges.Num(); i++ ) { int v0 = edges[i].verts[0]; int v1 = edges[i].verts[1]; int sidesOr = ( sides[v0] | sides[v1] ); // if both vertexes are on the same side or one is on the clipping plane if( !( sides[v0] ^ sides[v1] ) || ( sidesOr & SIDE_ON ) ) { edgeSplitVertex[i] = -1; counts[sidesOr & SIDE_BACK]++; counts[SIDE_ON] += ( sidesOr & SIDE_ON ) >> 1; } else { f = dists[v0] / ( dists[v0] - dists[v1] ); v.LerpAll( verts[v0], verts[v1], f ); edgeSplitVertex[i] = numEdgeSplitVertexes++; surface[0]->verts.Append( v ); surface[1]->verts.Append( v ); } } // each edge is shared by at most two triangles, as such there can never be more indexes than twice the number of edges surface[0]->indexes.Resize( ( ( counts[SIDE_FRONT] + counts[SIDE_ON] ) * 2 ) + ( numEdgeSplitVertexes * 4 ) ); surface[1]->indexes.Resize( ( ( counts[SIDE_BACK] + counts[SIDE_ON] ) * 2 ) + ( numEdgeSplitVertexes * 4 ) ); // allocate indexes to construct the triangle indexes for the front and back surface vertexRemap[0] = ( int* ) _alloca( verts.Num() * sizeof( int ) ); memset( vertexRemap[0], -1, verts.Num() * sizeof( int ) ); vertexRemap[1] = ( int* ) _alloca( verts.Num() * sizeof( int ) ); memset( vertexRemap[1], -1, verts.Num() * sizeof( int ) ); vertexCopyIndex[0] = ( int* ) _alloca( ( numEdgeSplitVertexes + verts.Num() ) * sizeof( int ) ); vertexCopyIndex[1] = ( int* ) _alloca( ( numEdgeSplitVertexes + verts.Num() ) * sizeof( int ) ); vertexIndexNum[0][0] = vertexIndexNum[1][0] = 0; vertexIndexNum[0][1] = vertexIndexNum[1][1] = numEdgeSplitVertexes; indexPtr[0] = surface[0]->indexes.Ptr(); indexPtr[1] = surface[1]->indexes.Ptr(); indexNum[0] = surface[0]->indexes.Num(); indexNum[1] = surface[1]->indexes.Num(); maxOnPlaneEdges += 4 * numEdgeSplitVertexes; // allocate one more in case no triangles are actually split which may happen for a disconnected surface onPlaneEdges[0] = ( int* ) _alloca( ( maxOnPlaneEdges + 1 ) * sizeof( int ) ); onPlaneEdges[1] = ( int* ) _alloca( ( maxOnPlaneEdges + 1 ) * sizeof( int ) ); numOnPlaneEdges[0] = numOnPlaneEdges[1] = 0; // split surface triangles for( i = 0; i < edgeIndexes.Num(); i += 3 ) { int e0, e1, e2, v0, v1, v2, s, n; e0 = abs( edgeIndexes[i + 0] ); e1 = abs( edgeIndexes[i + 1] ); e2 = abs( edgeIndexes[i + 2] ); v0 = indexes[i + 0]; v1 = indexes[i + 1]; v2 = indexes[i + 2]; switch( ( INT32_SIGNBITSET( edgeSplitVertex[e0] ) | ( INT32_SIGNBITSET( edgeSplitVertex[e1] ) << 1 ) | ( INT32_SIGNBITSET( edgeSplitVertex[e2] ) << 2 ) ) ^ 7 ) { case 0: // no edges split { if( ( sides[v0] & sides[v1] & sides[v2] ) & SIDE_ON ) { // coplanar f = ( verts[v1].xyz - verts[v0].xyz ).Cross( verts[v0].xyz - verts[v2].xyz ) * plane.Normal(); s = IEEE_FLT_SIGNBITSET( f ); } else { s = ( sides[v0] | sides[v1] | sides[v2] ) & SIDE_BACK; } n = indexNum[s]; onPlaneEdges[s][numOnPlaneEdges[s]] = n; numOnPlaneEdges[s] += ( sides[v0] & sides[v1] ) >> 1; onPlaneEdges[s][numOnPlaneEdges[s]] = n + 1; numOnPlaneEdges[s] += ( sides[v1] & sides[v2] ) >> 1; onPlaneEdges[s][numOnPlaneEdges[s]] = n + 2; numOnPlaneEdges[s] += ( sides[v2] & sides[v0] ) >> 1; index = indexPtr[s]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v0 ); index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v1 ); index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v2 ); indexNum[s] = n; break; } case 1: // first edge split { s = sides[v0] & SIDE_BACK; n = indexNum[s]; onPlaneEdges[s][numOnPlaneEdges[s]++] = n; index = indexPtr[s]; index[n++] = edgeSplitVertex[e0]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v2 ); index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v0 ); indexNum[s] = n; s ^= 1; n = indexNum[s]; onPlaneEdges[s][numOnPlaneEdges[s]++] = n; index = indexPtr[s]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v2 ); index[n++] = edgeSplitVertex[e0]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v1 ); indexNum[s] = n; break; } case 2: // second edge split { s = sides[v1] & SIDE_BACK; n = indexNum[s]; onPlaneEdges[s][numOnPlaneEdges[s]++] = n; index = indexPtr[s]; index[n++] = edgeSplitVertex[e1]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v0 ); index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v1 ); indexNum[s] = n; s ^= 1; n = indexNum[s]; onPlaneEdges[s][numOnPlaneEdges[s]++] = n; index = indexPtr[s]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v0 ); index[n++] = edgeSplitVertex[e1]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v2 ); indexNum[s] = n; break; } case 3: // first and second edge split { s = sides[v1] & SIDE_BACK; n = indexNum[s]; onPlaneEdges[s][numOnPlaneEdges[s]++] = n; index = indexPtr[s]; index[n++] = edgeSplitVertex[e1]; index[n++] = edgeSplitVertex[e0]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v1 ); indexNum[s] = n; s ^= 1; n = indexNum[s]; onPlaneEdges[s][numOnPlaneEdges[s]++] = n; index = indexPtr[s]; index[n++] = edgeSplitVertex[e0]; index[n++] = edgeSplitVertex[e1]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v0 ); index[n++] = edgeSplitVertex[e1]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v2 ); index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v0 ); indexNum[s] = n; break; } case 4: // third edge split { s = sides[v2] & SIDE_BACK; n = indexNum[s]; onPlaneEdges[s][numOnPlaneEdges[s]++] = n; index = indexPtr[s]; index[n++] = edgeSplitVertex[e2]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v1 ); index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v2 ); indexNum[s] = n; s ^= 1; n = indexNum[s]; onPlaneEdges[s][numOnPlaneEdges[s]++] = n; index = indexPtr[s]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v1 ); index[n++] = edgeSplitVertex[e2]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v0 ); indexNum[s] = n; break; } case 5: // first and third edge split { s = sides[v0] & SIDE_BACK; n = indexNum[s]; onPlaneEdges[s][numOnPlaneEdges[s]++] = n; index = indexPtr[s]; index[n++] = edgeSplitVertex[e0]; index[n++] = edgeSplitVertex[e2]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v0 ); indexNum[s] = n; s ^= 1; n = indexNum[s]; onPlaneEdges[s][numOnPlaneEdges[s]++] = n; index = indexPtr[s]; index[n++] = edgeSplitVertex[e2]; index[n++] = edgeSplitVertex[e0]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v1 ); index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v1 ); index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v2 ); index[n++] = edgeSplitVertex[e2]; indexNum[s] = n; break; } case 6: // second and third edge split { s = sides[v2] & SIDE_BACK; n = indexNum[s]; onPlaneEdges[s][numOnPlaneEdges[s]++] = n; index = indexPtr[s]; index[n++] = edgeSplitVertex[e2]; index[n++] = edgeSplitVertex[e1]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v2 ); indexNum[s] = n; s ^= 1; n = indexNum[s]; onPlaneEdges[s][numOnPlaneEdges[s]++] = n; index = indexPtr[s]; index[n++] = edgeSplitVertex[e1]; index[n++] = edgeSplitVertex[e2]; index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v1 ); index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v0 ); index[n++] = UpdateVertexIndex( vertexIndexNum[s], vertexRemap[s], vertexCopyIndex[s], v1 ); index[n++] = edgeSplitVertex[e2]; indexNum[s] = n; break; } } } surface[0]->indexes.SetNum( indexNum[0] ); surface[1]->indexes.SetNum( indexNum[1] ); // copy vertexes surface[0]->verts.SetNum( vertexIndexNum[0][1] ); index = vertexCopyIndex[0]; for( i = numEdgeSplitVertexes; i < surface[0]->verts.Num(); i++ ) { surface[0]->verts[i] = verts[index[i]]; } surface[1]->verts.SetNum( vertexIndexNum[1][1] ); index = vertexCopyIndex[1]; for( i = numEdgeSplitVertexes; i < surface[1]->verts.Num(); i++ ) { surface[1]->verts[i] = verts[index[i]]; } // generate edge indexes surface[0]->GenerateEdgeIndexes(); surface[1]->GenerateEdgeIndexes(); if( frontOnPlaneEdges ) { memcpy( frontOnPlaneEdges, onPlaneEdges[0], numOnPlaneEdges[0] * sizeof( int ) ); frontOnPlaneEdges[numOnPlaneEdges[0]] = -1; } if( backOnPlaneEdges ) { memcpy( backOnPlaneEdges, onPlaneEdges[1], numOnPlaneEdges[1] * sizeof( int ) ); backOnPlaneEdges[numOnPlaneEdges[1]] = -1; } return SIDE_CROSS; } /* ================= idSurface::ClipInPlace ================= */ bool idSurface::ClipInPlace( const idPlane& plane, const float epsilon, const bool keepOn ) { float* dists; float f; byte* sides; int counts[3]; int i; int* edgeSplitVertex; int* vertexRemap; int vertexIndexNum[2]; int* vertexCopyIndex; int* indexPtr; int indexNum; int numEdgeSplitVertexes; idDrawVert v; idList newVerts; idList newIndexes; dists = ( float* ) _alloca( verts.Num() * sizeof( float ) ); sides = ( byte* ) _alloca( verts.Num() * sizeof( byte ) ); counts[0] = counts[1] = counts[2] = 0; // determine side for each vertex for( i = 0; i < verts.Num(); i++ ) { dists[i] = f = plane.Distance( verts[i].xyz ); if( f > epsilon ) { sides[i] = SIDE_FRONT; } else if( f < -epsilon ) { sides[i] = SIDE_BACK; } else { sides[i] = SIDE_ON; } counts[sides[i]]++; } // if coplanar, put on the front side if the normals match if( !counts[SIDE_FRONT] && !counts[SIDE_BACK] ) { f = ( verts[indexes[1]].xyz - verts[indexes[0]].xyz ).Cross( verts[indexes[0]].xyz - verts[indexes[2]].xyz ) * plane.Normal(); if( IEEE_FLT_SIGNBITSET( f ) ) { Clear(); return false; } else { return true; } } // if nothing at the front of the clipping plane if( !counts[SIDE_FRONT] ) { Clear(); return false; } // if nothing at the back of the clipping plane if( !counts[SIDE_BACK] ) { return true; } edgeSplitVertex = ( int* ) _alloca( edges.Num() * sizeof( int ) ); numEdgeSplitVertexes = 0; counts[SIDE_FRONT] = counts[SIDE_BACK] = 0; // split edges for( i = 0; i < edges.Num(); i++ ) { int v0 = edges[i].verts[0]; int v1 = edges[i].verts[1]; // if both vertexes are on the same side or one is on the clipping plane if( !( sides[v0] ^ sides[v1] ) || ( ( sides[v0] | sides[v1] ) & SIDE_ON ) ) { edgeSplitVertex[i] = -1; counts[( sides[v0] | sides[v1] ) & SIDE_BACK]++; } else { f = dists[v0] / ( dists[v0] - dists[v1] ); v.LerpAll( verts[v0], verts[v1], f ); edgeSplitVertex[i] = numEdgeSplitVertexes++; newVerts.Append( v ); } } // each edge is shared by at most two triangles, as such there can never be // more indexes than twice the number of edges newIndexes.Resize( ( counts[SIDE_FRONT] << 1 ) + ( numEdgeSplitVertexes << 2 ) ); // allocate indexes to construct the triangle indexes for the front and back surface vertexRemap = ( int* ) _alloca( verts.Num() * sizeof( int ) ); memset( vertexRemap, -1, verts.Num() * sizeof( int ) ); vertexCopyIndex = ( int* ) _alloca( ( numEdgeSplitVertexes + verts.Num() ) * sizeof( int ) ); vertexIndexNum[0] = 0; vertexIndexNum[1] = numEdgeSplitVertexes; indexPtr = newIndexes.Ptr(); indexNum = newIndexes.Num(); // split surface triangles for( i = 0; i < edgeIndexes.Num(); i += 3 ) { int e0, e1, e2, v0, v1, v2; e0 = abs( edgeIndexes[i + 0] ); e1 = abs( edgeIndexes[i + 1] ); e2 = abs( edgeIndexes[i + 2] ); v0 = indexes[i + 0]; v1 = indexes[i + 1]; v2 = indexes[i + 2]; switch( ( INT32_SIGNBITSET( edgeSplitVertex[e0] ) | ( INT32_SIGNBITSET( edgeSplitVertex[e1] ) << 1 ) | ( INT32_SIGNBITSET( edgeSplitVertex[e2] ) << 2 ) ) ^ 7 ) { case 0: // no edges split { if( ( sides[v0] | sides[v1] | sides[v2] ) & SIDE_BACK ) { break; } if( ( sides[v0] & sides[v1] & sides[v2] ) & SIDE_ON ) { // coplanar if( !keepOn ) { break; } f = ( verts[v1].xyz - verts[v0].xyz ).Cross( verts[v0].xyz - verts[v2].xyz ) * plane.Normal(); if( IEEE_FLT_SIGNBITSET( f ) ) { break; } } indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v0 ); indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v1 ); indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v2 ); break; } case 1: // first edge split { if( !( sides[v0] & SIDE_BACK ) ) { indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v0 ); indexPtr[indexNum++] = edgeSplitVertex[e0]; indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v2 ); } else { indexPtr[indexNum++] = edgeSplitVertex[e0]; indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v1 ); indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v2 ); } break; } case 2: // second edge split { if( !( sides[v1] & SIDE_BACK ) ) { indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v1 ); indexPtr[indexNum++] = edgeSplitVertex[e1]; indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v0 ); } else { indexPtr[indexNum++] = edgeSplitVertex[e1]; indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v2 ); indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v0 ); } break; } case 3: // first and second edge split { if( !( sides[v1] & SIDE_BACK ) ) { indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v1 ); indexPtr[indexNum++] = edgeSplitVertex[e1]; indexPtr[indexNum++] = edgeSplitVertex[e0]; } else { indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v0 ); indexPtr[indexNum++] = edgeSplitVertex[e0]; indexPtr[indexNum++] = edgeSplitVertex[e1]; indexPtr[indexNum++] = edgeSplitVertex[e1]; indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v2 ); indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v0 ); } break; } case 4: // third edge split { if( !( sides[v2] & SIDE_BACK ) ) { indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v2 ); indexPtr[indexNum++] = edgeSplitVertex[e2]; indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v1 ); } else { indexPtr[indexNum++] = edgeSplitVertex[e2]; indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v0 ); indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v1 ); } break; } case 5: // first and third edge split { if( !( sides[v0] & SIDE_BACK ) ) { indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v0 ); indexPtr[indexNum++] = edgeSplitVertex[e0]; indexPtr[indexNum++] = edgeSplitVertex[e2]; } else { indexPtr[indexNum++] = edgeSplitVertex[e0]; indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v1 ); indexPtr[indexNum++] = edgeSplitVertex[e2]; indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v1 ); indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v2 ); indexPtr[indexNum++] = edgeSplitVertex[e2]; } break; } case 6: // second and third edge split { if( !( sides[v2] & SIDE_BACK ) ) { indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v2 ); indexPtr[indexNum++] = edgeSplitVertex[e2]; indexPtr[indexNum++] = edgeSplitVertex[e1]; } else { indexPtr[indexNum++] = edgeSplitVertex[e2]; indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v1 ); indexPtr[indexNum++] = edgeSplitVertex[e1]; indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v0 ); indexPtr[indexNum++] = UpdateVertexIndex( vertexIndexNum, vertexRemap, vertexCopyIndex, v1 ); indexPtr[indexNum++] = edgeSplitVertex[e2]; } break; } } } newIndexes.SetNum( indexNum ); // copy vertexes newVerts.SetNum( vertexIndexNum[1] ); for( i = numEdgeSplitVertexes; i < newVerts.Num(); i++ ) { newVerts[i] = verts[vertexCopyIndex[i]]; } // copy back to this surface indexes = newIndexes; verts = newVerts; GenerateEdgeIndexes(); return true; } /* ============= idSurface::IsConnected ============= */ bool idSurface::IsConnected() const { int i, j, numIslands, numTris; int queueStart, queueEnd; int* queue, *islandNum; int curTri, nextTri, edgeNum; const int* index; numIslands = 0; numTris = indexes.Num() / 3; islandNum = ( int* ) _alloca16( numTris * sizeof( int ) ); memset( islandNum, -1, numTris * sizeof( int ) ); queue = ( int* ) _alloca16( numTris * sizeof( int ) ); for( i = 0; i < numTris; i++ ) { if( islandNum[i] != -1 ) { continue; } queueStart = 0; queueEnd = 1; queue[0] = i; islandNum[i] = numIslands; for( curTri = queue[queueStart]; queueStart < queueEnd; curTri = queue[++queueStart] ) { index = &edgeIndexes[curTri * 3]; for( j = 0; j < 3; j++ ) { edgeNum = index[j]; nextTri = edges[abs( edgeNum )].tris[INT32_SIGNBITNOTSET( edgeNum )]; if( nextTri == -1 ) { continue; } nextTri /= 3; if( islandNum[nextTri] != -1 ) { continue; } queue[queueEnd++] = nextTri; islandNum[nextTri] = numIslands; } } numIslands++; } return ( numIslands == 1 ); } /* ================= idSurface::IsClosed ================= */ bool idSurface::IsClosed() const { for( int i = 0; i < edges.Num(); i++ ) { if( edges[i].tris[0] < 0 || edges[i].tris[1] < 0 ) { return false; } } return true; } /* ============= idSurface::IsPolytope ============= */ bool idSurface::IsPolytope( const float epsilon ) const { int i, j; idPlane plane; if( !IsClosed() ) { return false; } for( i = 0; i < indexes.Num(); i += 3 ) { plane.FromPoints( verts[indexes[i + 0]].xyz, verts[indexes[i + 1]].xyz, verts[indexes[i + 2]].xyz ); for( j = 0; j < verts.Num(); j++ ) { if( plane.Side( verts[j].xyz, epsilon ) == SIDE_FRONT ) { return false; } } } return true; } /* ============= idSurface::PlaneDistance ============= */ float idSurface::PlaneDistance( const idPlane& plane ) const { int i; float d, min, max; min = idMath::INFINITY; max = -min; for( i = 0; i < verts.Num(); i++ ) { d = plane.Distance( verts[i].xyz ); if( d < min ) { min = d; if( IEEE_FLT_SIGNBITSET( min ) & IEEE_FLT_SIGNBITNOTSET( max ) ) { return 0.0f; } } if( d > max ) { max = d; if( IEEE_FLT_SIGNBITSET( min ) & IEEE_FLT_SIGNBITNOTSET( max ) ) { return 0.0f; } } } if( IEEE_FLT_SIGNBITNOTSET( min ) ) { return min; } if( IEEE_FLT_SIGNBITSET( max ) ) { return max; } return 0.0f; } /* ============= idSurface::PlaneSide ============= */ int idSurface::PlaneSide( const idPlane& plane, const float epsilon ) const { bool front, back; int i; float d; front = false; back = false; for( i = 0; i < verts.Num(); i++ ) { d = plane.Distance( verts[i].xyz ); if( d < -epsilon ) { if( front ) { return SIDE_CROSS; } back = true; continue; } else if( d > epsilon ) { if( back ) { return SIDE_CROSS; } front = true; continue; } } if( back ) { return SIDE_BACK; } if( front ) { return SIDE_FRONT; } return SIDE_ON; } /* ================= idSurface::LineIntersection ================= */ bool idSurface::LineIntersection( const idVec3& start, const idVec3& end, bool backFaceCull ) const { float scale; RayIntersection( start, end - start, scale, false ); return ( scale >= 0.0f && scale <= 1.0f ); } /* ================= idSurface::RayIntersection ================= */ bool idSurface::RayIntersection( const idVec3& start, const idVec3& dir, float& scale, bool backFaceCull ) const { int i, i0, i1, i2, s0, s1, s2; float d, s; byte* sidedness; idPluecker rayPl, pl; idPlane plane; sidedness = ( byte* )_alloca( edges.Num() * sizeof( byte ) ); scale = idMath::INFINITY; rayPl.FromRay( start, dir ); // ray sidedness for edges for( i = 0; i < edges.Num(); i++ ) { pl.FromLine( verts[ edges[i].verts[1] ].xyz, verts[ edges[i].verts[0] ].xyz ); d = pl.PermutedInnerProduct( rayPl ); sidedness[ i ] = IEEE_FLT_SIGNBITSET( d ); } // test triangles for( i = 0; i < edgeIndexes.Num(); i += 3 ) { i0 = edgeIndexes[i + 0]; i1 = edgeIndexes[i + 1]; i2 = edgeIndexes[i + 2]; s0 = sidedness[abs( i0 )] ^ INT32_SIGNBITSET( i0 ); s1 = sidedness[abs( i1 )] ^ INT32_SIGNBITSET( i1 ); s2 = sidedness[abs( i2 )] ^ INT32_SIGNBITSET( i2 ); if( s0 & s1 & s2 ) { plane.FromPoints( verts[indexes[i + 0]].xyz, verts[indexes[i + 1]].xyz, verts[indexes[i + 2]].xyz ); plane.RayIntersection( start, dir, s ); if( idMath::Fabs( s ) < idMath::Fabs( scale ) ) { scale = s; } } else if( !backFaceCull && !( s0 | s1 | s2 ) ) { plane.FromPoints( verts[indexes[i + 0]].xyz, verts[indexes[i + 1]].xyz, verts[indexes[i + 2]].xyz ); plane.RayIntersection( start, dir, s ); if( idMath::Fabs( s ) < idMath::Fabs( scale ) ) { scale = s; } } } if( idMath::Fabs( scale ) < idMath::INFINITY ) { return true; } return false; } /* ================= idSurface::GenerateEdgeIndexes Assumes each edge is shared by at most two triangles. ================= */ void idSurface::GenerateEdgeIndexes() { int i, j, i0, i1, i2, s, v0, v1, edgeNum; int* index, *vertexEdges, *edgeChain; surfaceEdge_t e[3]; vertexEdges = ( int* ) _alloca16( verts.Num() * sizeof( int ) ); memset( vertexEdges, -1, verts.Num() * sizeof( int ) ); edgeChain = ( int* ) _alloca16( indexes.Num() * sizeof( int ) ); edgeIndexes.SetNum( indexes.Num() ); edges.Clear(); // the first edge is a dummy e[0].verts[0] = e[0].verts[1] = e[0].tris[0] = e[0].tris[1] = 0; edges.Append( e[0] ); for( i = 0; i < indexes.Num(); i += 3 ) { index = indexes.Ptr() + i; // vertex numbers i0 = index[0]; i1 = index[1]; i2 = index[2]; // setup edges each with smallest vertex number first s = INT32_SIGNBITSET( i1 - i0 ); e[0].verts[0] = index[s]; e[0].verts[1] = index[s ^ 1]; s = INT32_SIGNBITSET( i2 - i1 ) + 1; e[1].verts[0] = index[s]; e[1].verts[1] = index[s ^ 3]; s = INT32_SIGNBITSET( i2 - i0 ) << 1; e[2].verts[0] = index[s]; e[2].verts[1] = index[s ^ 2]; // get edges for( j = 0; j < 3; j++ ) { v0 = e[j].verts[0]; v1 = e[j].verts[1]; for( edgeNum = vertexEdges[v0]; edgeNum >= 0; edgeNum = edgeChain[edgeNum] ) { if( edges[edgeNum].verts[1] == v1 ) { break; } } // if the edge does not yet exist if( edgeNum < 0 ) { e[j].tris[0] = e[j].tris[1] = -1; edgeNum = edges.Append( e[j] ); edgeChain[edgeNum] = vertexEdges[v0]; vertexEdges[v0] = edgeNum; } // update edge index and edge tri references if( index[j] == v0 ) { assert( edges[edgeNum].tris[0] == -1 ); // edge may not be shared by more than two triangles edges[edgeNum].tris[0] = i; edgeIndexes[i + j] = edgeNum; } else { assert( edges[edgeNum].tris[1] == -1 ); // edge may not be shared by more than two triangles edges[edgeNum].tris[1] = i; edgeIndexes[i + j] = -edgeNum; } } } } /* ================= idSurface::FindEdge ================= */ int idSurface::FindEdge( int v1, int v2 ) const { int i, firstVert, secondVert; if( v1 < v2 ) { firstVert = v1; secondVert = v2; } else { firstVert = v2; secondVert = v1; } for( i = 1; i < edges.Num(); i++ ) { if( edges[i].verts[0] == firstVert ) { if( edges[i].verts[1] == secondVert ) { break; } } } if( i < edges.Num() ) { return v1 < v2 ? i : -i; } return 0; }