/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #pragma hdrstop #include "precompiled.h" /* ================================================================================================ idBitMsg ================================================================================================ */ /* ======================== idBitMsg::CheckOverflow ======================== */ bool idBitMsg::CheckOverflow( int numBits ) { if( numBits > GetRemainingWriteBits() ) { if( !allowOverflow ) { idLib::FatalError( "idBitMsg: overflow without allowOverflow set; maxsize=%i size=%i numBits=%i numRemainingWriteBits=%i", GetMaxSize(), GetSize(), numBits, GetRemainingWriteBits() ); } if( numBits > ( maxSize << 3 ) ) { idLib::FatalError( "idBitMsg: %i bits is > full message size", numBits ); } idLib::Printf( "idBitMsg: overflow\n" ); BeginWriting(); overflowed = true; return true; } return false; } /* ======================== idBitMsg::GetByteSpace ======================== */ byte* idBitMsg::GetByteSpace( int length ) { byte* ptr; if( !writeData ) { idLib::FatalError( "idBitMsg::GetByteSpace: cannot write to message" ); } // round up to the next byte WriteByteAlign(); // check for overflow CheckOverflow( length << 3 ); ptr = writeData + curSize; curSize += length; return ptr; } #define NBM( x ) (uint64)( ( 1LL << x ) - 1 ) static uint64 maskForNumBits64[33] = { NBM( 0x00 ), NBM( 0x01 ), NBM( 0x02 ), NBM( 0x03 ), NBM( 0x04 ), NBM( 0x05 ), NBM( 0x06 ), NBM( 0x07 ), NBM( 0x08 ), NBM( 0x09 ), NBM( 0x0A ), NBM( 0x0B ), NBM( 0x0C ), NBM( 0x0D ), NBM( 0x0E ), NBM( 0x0F ), NBM( 0x10 ), NBM( 0x11 ), NBM( 0x12 ), NBM( 0x13 ), NBM( 0x14 ), NBM( 0x15 ), NBM( 0x16 ), NBM( 0x17 ), NBM( 0x18 ), NBM( 0x19 ), NBM( 0x1A ), NBM( 0x1B ), NBM( 0x1C ), NBM( 0x1D ), NBM( 0x1E ), NBM( 0x1F ), 0xFFFFFFFF }; /* ======================== idBitMsg::WriteBits If the number of bits is negative a sign is included. ======================== */ void idBitMsg::WriteBits( int value, int numBits ) { if( !writeData ) { idLib::FatalError( "idBitMsg::WriteBits: cannot write to message" ); } // check if the number of bits is valid if( numBits == 0 || numBits < -31 || numBits > 32 ) { idLib::FatalError( "idBitMsg::WriteBits: bad numBits %i", numBits ); } // check for value overflows if( numBits != 32 ) { if( numBits > 0 ) { if( value > ( 1 << numBits ) - 1 ) { idLib::FatalError( "idBitMsg::WriteBits: value overflow %d %d", value, numBits ); } else if( value < 0 ) { idLib::FatalError( "idBitMsg::WriteBits: value overflow %d %d", value, numBits ); } } else { const unsigned shift = ( -1 - numBits ); int r = 1 << shift; if( value > r - 1 ) { idLib::FatalError( "idBitMsg::WriteBits: value overflow %d %d", value, numBits ); } else if( value < -r ) { idLib::FatalError( "idBitMsg::WriteBits: value overflow %d %d", value, numBits ); } } } if( numBits < 0 ) { numBits = -numBits; } // check for msg overflow if( CheckOverflow( numBits ) ) { return; } // Merge value with possible previous leftover tempValue |= ( ( ( int64 )value ) & maskForNumBits64[numBits] ) << writeBit; writeBit += numBits; // Flush 8 bits (1 byte) at a time while( writeBit >= 8 ) { writeData[curSize++] = tempValue & 255; tempValue >>= 8; writeBit -= 8; } // Write leftover now, in case this is the last WriteBits call if( writeBit > 0 ) { writeData[curSize] = tempValue & 255; } } /* ======================== idBitMsg::WriteString ======================== */ void idBitMsg::WriteString( const char* s, int maxLength, bool make7Bit ) { if( !s ) { WriteData( "", 1 ); } else { int i, l; byte* dataPtr; const byte* bytePtr; l = idStr::Length( s ); if( maxLength >= 0 && l >= maxLength ) { l = maxLength - 1; } dataPtr = GetByteSpace( l + 1 ); bytePtr = reinterpret_cast< const byte* >( s ); if( make7Bit ) { for( i = 0; i < l; i++ ) { if( bytePtr[i] > 127 ) { dataPtr[i] = '.'; } else { dataPtr[i] = bytePtr[i]; } } } else { for( i = 0; i < l; i++ ) { dataPtr[i] = bytePtr[i]; } } dataPtr[i] = '\0'; } } /* ======================== idBitMsg::WriteData ======================== */ void idBitMsg::WriteData( const void* data, int length ) { memcpy( GetByteSpace( length ), data, length ); } /* ======================== idBitMsg::WriteNetadr ======================== */ void idBitMsg::WriteNetadr( const netadr_t adr ) { WriteData( adr.ip, 4 ); WriteUShort( adr.port ); WriteByte( adr.type ); } /* ======================== idBitMsg::WriteDeltaDict ======================== */ bool idBitMsg::WriteDeltaDict( const idDict& dict, const idDict* base ) { int i; const idKeyValue* kv, *basekv; bool changed = false; if( base != NULL ) { for( i = 0; i < dict.GetNumKeyVals(); i++ ) { kv = dict.GetKeyVal( i ); basekv = base->FindKey( kv->GetKey() ); if( basekv == NULL || basekv->GetValue().Icmp( kv->GetValue() ) != 0 ) { WriteString( kv->GetKey() ); WriteString( kv->GetValue() ); changed = true; } } WriteString( "" ); for( i = 0; i < base->GetNumKeyVals(); i++ ) { basekv = base->GetKeyVal( i ); kv = dict.FindKey( basekv->GetKey() ); if( kv == NULL ) { WriteString( basekv->GetKey() ); changed = true; } } WriteString( "" ); } else { for( i = 0; i < dict.GetNumKeyVals(); i++ ) { kv = dict.GetKeyVal( i ); WriteString( kv->GetKey() ); WriteString( kv->GetValue() ); changed = true; } WriteString( "" ); WriteString( "" ); } return changed; } /* ======================== idBitMsg::ReadBits If the number of bits is negative a sign is included. ======================== */ int idBitMsg::ReadBits( int numBits ) const { int value; int valueBits; int get; int fraction; bool sgn; if( !readData ) { idLib::FatalError( "idBitMsg::ReadBits: cannot read from message" ); } // check if the number of bits is valid if( numBits == 0 || numBits < -31 || numBits > 32 ) { idLib::FatalError( "idBitMsg::ReadBits: bad numBits %i", numBits ); } value = 0; valueBits = 0; if( numBits < 0 ) { numBits = -numBits; sgn = true; } else { sgn = false; } // check for overflow if( numBits > GetRemainingReadBits() ) { return -1; } while( valueBits < numBits ) { if( readBit == 0 ) { readCount++; } get = 8 - readBit; if( get > ( numBits - valueBits ) ) { get = ( numBits - valueBits ); } fraction = readData[readCount - 1]; fraction >>= readBit; // this doesn't really do anything: the bits set to 0 here are already shifted to 0 fraction &= ( 1 << get ) - 1; value |= fraction << valueBits; valueBits += get; readBit = ( readBit + get ) & 7; } if( sgn ) { if( value & ( 1 << ( numBits - 1 ) ) ) { value |= -1 ^ ( ( 1 << numBits ) - 1 ); } } return value; } /* ======================== idBitMsg::ReadString ======================== */ int idBitMsg::ReadString( char* buffer, int bufferSize ) const { int l, c; ReadByteAlign(); l = 0; while( 1 ) { c = ReadByte(); if( c <= 0 || c >= 255 ) { break; } // translate all fmt spec to avoid crash bugs in string routines if( c == '%' ) { c = '.'; } // we will read past any excessively long string, so // the following data can be read, but the string will // be truncated if( l < bufferSize - 1 ) { buffer[l] = c; l++; } } buffer[l] = 0; return l; } /* ======================== idBitMsg::ReadString ======================== */ int idBitMsg::ReadString( idStr& str ) const { ReadByteAlign(); int cnt = 0; for( int i = readCount; i < curSize; i++ ) { if( readData[i] == 0 ) { break; } cnt++; } str.Clear(); str.Append( ( const char* )readData + readCount, cnt ); readCount += cnt + 1; return str.Length(); } /* ======================== idBitMsg::ReadData ======================== */ int idBitMsg::ReadData( void* data, int length ) const { int cnt; ReadByteAlign(); cnt = readCount; if( readCount + length > curSize ) { if( data ) { memcpy( data, readData + readCount, GetRemainingData() ); } readCount = curSize; } else { if( data ) { memcpy( data, readData + readCount, length ); } readCount += length; } return ( readCount - cnt ); } /* ======================== idBitMsg::ReadNetadr ======================== */ void idBitMsg::ReadNetadr( netadr_t* adr ) const { ReadData( adr->ip, 4 ); adr->port = ReadUShort(); adr->type = ( netadrtype_t ) ReadByte(); } /* ======================== idBitMsg::ReadDeltaDict ======================== */ bool idBitMsg::ReadDeltaDict( idDict& dict, const idDict* base ) const { char key[MAX_STRING_CHARS]; char value[MAX_STRING_CHARS]; bool changed = false; if( base != NULL ) { dict = *base; } else { dict.Clear(); } while( ReadString( key, sizeof( key ) ) != 0 ) { ReadString( value, sizeof( value ) ); dict.Set( key, value ); changed = true; } while( ReadString( key, sizeof( key ) ) != 0 ) { dict.Delete( key ); changed = true; } return changed; } /* ======================== idBitMsg::DirToBits ======================== */ int idBitMsg::DirToBits( const idVec3& dir, int numBits ) { int max, bits; float bias; assert( numBits >= 6 && numBits <= 32 ); assert( dir.LengthSqr() - 1.0f < 0.01f ); numBits /= 3; max = ( 1 << ( numBits - 1 ) ) - 1; bias = 0.5f / max; bits = IEEE_FLT_SIGNBITSET( dir.x ) << ( numBits * 3 - 1 ); bits |= ( idMath::Ftoi( ( idMath::Fabs( dir.x ) + bias ) * max ) ) << ( numBits * 2 ); bits |= IEEE_FLT_SIGNBITSET( dir.y ) << ( numBits * 2 - 1 ); bits |= ( idMath::Ftoi( ( idMath::Fabs( dir.y ) + bias ) * max ) ) << ( numBits * 1 ); bits |= IEEE_FLT_SIGNBITSET( dir.z ) << ( numBits * 1 - 1 ); bits |= ( idMath::Ftoi( ( idMath::Fabs( dir.z ) + bias ) * max ) ) << ( numBits * 0 ); return bits; } /* ======================== idBitMsg::BitsToDir ======================== */ idVec3 idBitMsg::BitsToDir( int bits, int numBits ) { static float sign[2] = { 1.0f, -1.0f }; int max; float invMax; idVec3 dir; assert( numBits >= 6 && numBits <= 32 ); numBits /= 3; max = ( 1 << ( numBits - 1 ) ) - 1; invMax = 1.0f / max; dir.x = sign[( bits >> ( numBits * 3 - 1 ) ) & 1] * ( ( bits >> ( numBits * 2 ) ) & max ) * invMax; dir.y = sign[( bits >> ( numBits * 2 - 1 ) ) & 1] * ( ( bits >> ( numBits * 1 ) ) & max ) * invMax; dir.z = sign[( bits >> ( numBits * 1 - 1 ) ) & 1] * ( ( bits >> ( numBits * 0 ) ) & max ) * invMax; dir.NormalizeFast(); return dir; }