/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #ifndef __MATH_MATH_H__ #define __MATH_MATH_H__ #ifdef MACOS_X // for square root estimate instruction #include // for FLT_MIN #include #endif /* =============================================================================== Math =============================================================================== */ #ifdef INFINITY #undef INFINITY #endif #ifdef FLT_EPSILON #undef FLT_EPSILON #endif #define DEG2RAD(a) ( (a) * idMath::M_DEG2RAD ) #define RAD2DEG(a) ( (a) * idMath::M_RAD2DEG ) #define SEC2MS(t) ( idMath::Ftoi( (t) * idMath::M_SEC2MS ) ) #define MS2SEC(t) ( (t) * idMath::M_MS2SEC ) #define ANGLE2SHORT(x) ( idMath::Ftoi( (x) * 65536.0f / 360.0f ) & 65535 ) #define SHORT2ANGLE(x) ( (x) * ( 360.0f / 65536.0f ) ) #define ANGLE2BYTE(x) ( idMath::Ftoi( (x) * 256.0f / 360.0f ) & 255 ) #define BYTE2ANGLE(x) ( (x) * ( 360.0f / 256.0f ) ) #define C_FLOAT_TO_INT( x ) (int)(x) /* ================================================================================================ two-complements integer bit layouts ================================================================================================ */ #define INT8_SIGN_BIT 7 #define INT16_SIGN_BIT 15 #define INT32_SIGN_BIT 31 #define INT64_SIGN_BIT 63 #define INT8_SIGN_MASK ( 1 << INT8_SIGN_BIT ) #define INT16_SIGN_MASK ( 1 << INT16_SIGN_BIT ) #define INT32_SIGN_MASK ( 1UL << INT32_SIGN_BIT ) #define INT64_SIGN_MASK ( 1ULL << INT64_SIGN_BIT ) /* ================================================================================================ integer sign bit tests ================================================================================================ */ // If this was ever compiled on a system that had 64 bit unsigned ints, // it would fail. compile_time_assert( sizeof( unsigned int ) == 4 ); #define OLD_INT32_SIGNBITSET(i) (static_cast(i) >> INT32_SIGN_BIT) #define OLD_INT32_SIGNBITNOTSET(i) ((~static_cast(i)) >> INT32_SIGN_BIT) // Unfortunately, /analyze can't figure out that these always return // either 0 or 1, so this extra wrapper is needed to avoid the static // alaysis warning. ID_INLINE_EXTERN int INT32_SIGNBITSET( int i ) { int r = OLD_INT32_SIGNBITSET( i ); assert( r == 0 || r == 1 ); return r; } ID_INLINE_EXTERN int INT32_SIGNBITNOTSET( int i ) { int r = OLD_INT32_SIGNBITNOTSET( i ); assert( r == 0 || r == 1 ); return r; } /* ================================================================================================ floating point bit layouts according to the IEEE 754-1985 and 754-2008 standard ================================================================================================ */ #define IEEE_FLT16_MANTISSA_BITS 10 #define IEEE_FLT16_EXPONENT_BITS 5 #define IEEE_FLT16_EXPONENT_BIAS 15 #define IEEE_FLT16_SIGN_BIT 15 #define IEEE_FLT16_SIGN_MASK ( 1U << IEEE_FLT16_SIGN_BIT ) #define IEEE_FLT_MANTISSA_BITS 23 #define IEEE_FLT_EXPONENT_BITS 8 #define IEEE_FLT_EXPONENT_BIAS 127 #define IEEE_FLT_SIGN_BIT 31 #define IEEE_FLT_SIGN_MASK ( 1UL << IEEE_FLT_SIGN_BIT ) #define IEEE_DBL_MANTISSA_BITS 52 #define IEEE_DBL_EXPONENT_BITS 11 #define IEEE_DBL_EXPONENT_BIAS 1023 #define IEEE_DBL_SIGN_BIT 63 #define IEEE_DBL_SIGN_MASK ( 1ULL << IEEE_DBL_SIGN_BIT ) #define IEEE_DBLE_MANTISSA_BITS 63 #define IEEE_DBLE_EXPONENT_BITS 15 #define IEEE_DBLE_EXPONENT_BIAS 0 #define IEEE_DBLE_SIGN_BIT 79 /* ================================================================================================ floating point sign bit tests ================================================================================================ */ #define IEEE_FLT_SIGNBITSET( a ) (reinterpret_cast(a) >> IEEE_FLT_SIGN_BIT) #define IEEE_FLT_SIGNBITNOTSET( a ) ((~reinterpret_cast(a)) >> IEEE_FLT_SIGN_BIT) #define IEEE_FLT_ISNOTZERO( a ) (reinterpret_cast(a) & ~(1u<( x ) == 0xffc00000 ); } /* ======================== IEEE_FLT_IS_DENORMAL ======================== */ ID_INLINE_EXTERN bool IEEE_FLT_IS_DENORMAL( float x ) { return ( ( reinterpret_cast( x ) & 0x7f800000 ) == 0x00000000 && ( reinterpret_cast( x ) & 0x007fffff ) != 0x00000000 ); } /* ======================== IsNAN ======================== */template ID_INLINE_EXTERN bool IsNAN( const type& v ) { for( int i = 0; i < v.GetDimension(); i++ ) { const float f = v.ToFloatPtr()[i]; if( IEEE_FLT_IS_NAN( f ) || IEEE_FLT_IS_INF( f ) || IEEE_FLT_IS_IND( f ) ) { return true; } } return false; } /* ======================== IsValid ======================== */ template ID_INLINE_EXTERN bool IsValid( const type& v ) { for( int i = 0; i < v.GetDimension(); i++ ) { const float f = v.ToFloatPtr()[i]; if( IEEE_FLT_IS_NAN( f ) || IEEE_FLT_IS_INF( f ) || IEEE_FLT_IS_IND( f ) || IEEE_FLT_IS_DENORMAL( f ) ) { return false; } } return true; } /* ======================== IsValid ======================== */ template<> ID_INLINE bool IsValid( const float& f ) // these parameter must be a reference for the function to be considered a specialization { return !( IEEE_FLT_IS_NAN( f ) || IEEE_FLT_IS_INF( f ) || IEEE_FLT_IS_IND( f ) || IEEE_FLT_IS_DENORMAL( f ) ); } /* ======================== IsNAN ======================== */ template<> ID_INLINE bool IsNAN( const float& f ) // these parameter must be a reference for the function to be considered a specialization { if( IEEE_FLT_IS_NAN( f ) || IEEE_FLT_IS_INF( f ) || IEEE_FLT_IS_IND( f ) ) { return true; } return false; } /* ======================== IsInRange Returns true if any scalar is greater than the range or less than the negative range. ======================== */ template ID_INLINE bool IsInRange( const type& v, const float range ) { for( int i = 0; i < v.GetDimension(); i++ ) { const float f = v.ToFloatPtr()[i]; if( f > range || f < -range ) { return false; } } return true; } /* ================================================================================================ MinIndex/MaxIndex ================================================================================================ */ template ID_INLINE int MaxIndex( T x, T y ) { return ( x > y ) ? 0 : 1; } template ID_INLINE int MinIndex( T x, T y ) { return ( x < y ) ? 0 : 1; } template ID_INLINE T Max3( T x, T y, T z ) { return ( x > y ) ? ( ( x > z ) ? x : z ) : ( ( y > z ) ? y : z ); } template ID_INLINE T Min3( T x, T y, T z ) { return ( x < y ) ? ( ( x < z ) ? x : z ) : ( ( y < z ) ? y : z ); } template ID_INLINE int Max3Index( T x, T y, T z ) { return ( x > y ) ? ( ( x > z ) ? 0 : 2 ) : ( ( y > z ) ? 1 : 2 ); } template ID_INLINE int Min3Index( T x, T y, T z ) { return ( x < y ) ? ( ( x < z ) ? 0 : 2 ) : ( ( y < z ) ? 1 : 2 ); } /* ================================================================================================ Sign/Square/Cube ================================================================================================ */ template ID_INLINE T Sign( T f ) { return ( f > 0 ) ? 1 : ( ( f < 0 ) ? -1 : 0 ); } template ID_INLINE T Square( T x ) { return x * x; } template ID_INLINE T Cube( T x ) { return x * x * x; } class idMath { public: static void Init(); static float InvSqrt( float x ); // inverse square root with 32 bits precision, returns huge number when x == 0.0 static float InvSqrt16( float x ); // inverse square root with 16 bits precision, returns huge number when x == 0.0 static float Sqrt( float x ); // square root with 32 bits precision static float Sqrt16( float x ); // square root with 16 bits precision static float Sin( float a ); // sine with 32 bits precision static float Sin16( float a ); // sine with 16 bits precision, maximum absolute error is 2.3082e-09 static float Cos( float a ); // cosine with 32 bits precision static float Cos16( float a ); // cosine with 16 bits precision, maximum absolute error is 2.3082e-09 static void SinCos( float a, float& s, float& c ); // sine and cosine with 32 bits precision static void SinCos16( float a, float& s, float& c ); // sine and cosine with 16 bits precision static float Tan( float a ); // tangent with 32 bits precision static float Tan16( float a ); // tangent with 16 bits precision, maximum absolute error is 1.8897e-08 static float ASin( float a ); // arc sine with 32 bits precision, input is clamped to [-1, 1] to avoid a silent NaN static float ASin16( float a ); // arc sine with 16 bits precision, maximum absolute error is 6.7626e-05 static float ACos( float a ); // arc cosine with 32 bits precision, input is clamped to [-1, 1] to avoid a silent NaN static float ACos16( float a ); // arc cosine with 16 bits precision, maximum absolute error is 6.7626e-05 static float ATan( float a ); // arc tangent with 32 bits precision static float ATan16( float a ); // arc tangent with 16 bits precision, maximum absolute error is 1.3593e-08 static float ATan( float y, float x ); // arc tangent with 32 bits precision static float ATan16( float y, float x ); // arc tangent with 16 bits precision, maximum absolute error is 1.3593e-08 static float Pow( float x, float y ); // x raised to the power y with 32 bits precision static float Pow16( float x, float y ); // x raised to the power y with 16 bits precision static float Exp( float f ); // e raised to the power f with 32 bits precision static float Exp16( float f ); // e raised to the power f with 16 bits precision static float Log( float f ); // natural logarithm with 32 bits precision static float Log16( float f ); // natural logarithm with 16 bits precision static int IPow( int x, int y ); // integral x raised to the power y static int ILog2( float f ); // integral base-2 logarithm of the floating point value static int ILog2( int i ); // integral base-2 logarithm of the integer value static int BitsForFloat( float f ); // minumum number of bits required to represent ceil( f ) static int BitsForInteger( int i ); // minumum number of bits required to represent i static int MaskForFloatSign( float f );// returns 0x00000000 if x >= 0.0f and returns 0xFFFFFFFF if x <= -0.0f static int MaskForIntegerSign( int i );// returns 0x00000000 if x >= 0 and returns 0xFFFFFFFF if x < 0 static int FloorPowerOfTwo( int x ); // round x down to the nearest power of 2 static int CeilPowerOfTwo( int x ); // round x up to the nearest power of 2 static bool IsPowerOfTwo( int x ); // returns true if x is a power of 2 static int BitCount( int x ); // returns the number of 1 bits in x static int BitReverse( int x ); // returns the bit reverse of x static int Abs( int x ); // returns the absolute value of the integer value (for reference only) static float Fabs( float f ); // returns the absolute value of the floating point value static float Floor( float f ); // returns the largest integer that is less than or equal to the given value static float Ceil( float f ); // returns the smallest integer that is greater than or equal to the given value static float Rint( float f ); // returns the nearest integer static float Frac( float f ); // f - Floor( f ) static int Ftoi( float f ); // float to int conversion static char Ftoi8( float f ); // float to char conversion static short Ftoi16( float f ); // float to short conversion static unsigned short Ftoui16( float f ); // float to unsigned short conversion static byte Ftob( float f ); // float to byte conversion, the result is clamped to the range [0-255] static signed char ClampChar( int i ); static signed short ClampShort( int i ); static int ClampInt( int min, int max, int value ); static float ClampFloat( float min, float max, float value ); static float AngleNormalize360( float angle ); static float AngleNormalize180( float angle ); static float AngleDelta( float angle1, float angle2 ); static int FloatToBits( float f, int exponentBits, int mantissaBits ); static float BitsToFloat( int i, int exponentBits, int mantissaBits ); static int FloatHash( const float* array, const int numFloats ); static float LerpToWithScale( const float cur, const float dest, const float scale ); static const float PI; // pi static const float TWO_PI; // pi * 2 static const float HALF_PI; // pi / 2 static const float ONEFOURTH_PI; // pi / 4 static const float ONEOVER_PI; // 1 / pi static const float ONEOVER_TWOPI; // 1 / pi * 2 static const float E; // e static const float SQRT_TWO; // sqrt( 2 ) static const float SQRT_THREE; // sqrt( 3 ) static const float SQRT_1OVER2; // sqrt( 1 / 2 ) static const float SQRT_1OVER3; // sqrt( 1 / 3 ) static const float M_DEG2RAD; // degrees to radians multiplier static const float M_RAD2DEG; // radians to degrees multiplier static const float M_SEC2MS; // seconds to milliseconds multiplier static const float M_MS2SEC; // milliseconds to seconds multiplier static const float INFINITY; // huge number which should be larger than any valid number used static const float FLT_EPSILON; // smallest positive number such that 1.0+FLT_EPSILON != 1.0 static const float FLT_SMALLEST_NON_DENORMAL; // smallest non-denormal 32-bit floating point value static const __m128 SIMD_SP_zero; static const __m128 SIMD_SP_255; static const __m128 SIMD_SP_min_char; static const __m128 SIMD_SP_max_char; static const __m128 SIMD_SP_min_short; static const __m128 SIMD_SP_max_short; static const __m128 SIMD_SP_smallestNonDenorm; static const __m128 SIMD_SP_tiny; static const __m128 SIMD_SP_rsqrt_c0; static const __m128 SIMD_SP_rsqrt_c1; private: enum { LOOKUP_BITS = 8, EXP_POS = 23, EXP_BIAS = 127, LOOKUP_POS = ( EXP_POS - LOOKUP_BITS ), SEED_POS = ( EXP_POS - 8 ), SQRT_TABLE_SIZE = ( 2 << LOOKUP_BITS ), LOOKUP_MASK = ( SQRT_TABLE_SIZE - 1 ) }; union _flint { dword i; float f; }; static dword iSqrt[SQRT_TABLE_SIZE]; static bool initialized; }; ID_INLINE byte CLAMP_BYTE( int x ) { return ( ( x ) < 0 ? ( 0 ) : ( ( x ) > 255 ? 255 : ( byte )( x ) ) ); } /* ======================== idMath::InvSqrt ======================== */ ID_INLINE float idMath::InvSqrt( float x ) { return ( x > FLT_SMALLEST_NON_DENORMAL ) ? sqrtf( 1.0f / x ) : INFINITY; } /* ======================== idMath::InvSqrt16 ======================== */ ID_INLINE float idMath::InvSqrt16( float x ) { return ( x > FLT_SMALLEST_NON_DENORMAL ) ? sqrtf( 1.0f / x ) : INFINITY; } /* ======================== idMath::Sqrt ======================== */ ID_INLINE float idMath::Sqrt( float x ) { return ( x >= 0.0f ) ? x * InvSqrt( x ) : 0.0f; } /* ======================== idMath::Sqrt16 ======================== */ ID_INLINE float idMath::Sqrt16( float x ) { return ( x >= 0.0f ) ? x * InvSqrt16( x ) : 0.0f; } /* ======================== idMath::Frac ======================== */ ID_INLINE float idMath::Frac( float f ) { return f - floorf( f ); } /* ======================== idMath::Sin ======================== */ ID_INLINE float idMath::Sin( float a ) { return sinf( a ); } /* ======================== idMath::Sin16 ======================== */ ID_INLINE float idMath::Sin16( float a ) { float s; if( ( a < 0.0f ) || ( a >= TWO_PI ) ) { a -= floorf( a * ONEOVER_TWOPI ) * TWO_PI; } #if 1 if( a < PI ) { if( a > HALF_PI ) { a = PI - a; } } else { if( a > PI + HALF_PI ) { a = a - TWO_PI; } else { a = PI - a; } } #else a = PI - a; if( fabsf( a ) >= HALF_PI ) { a = ( ( a < 0.0f ) ? -PI : PI ) - a; } #endif s = a * a; return a * ( ( ( ( ( -2.39e-08f * s + 2.7526e-06f ) * s - 1.98409e-04f ) * s + 8.3333315e-03f ) * s - 1.666666664e-01f ) * s + 1.0f ); } /* ======================== idMath::Cos ======================== */ ID_INLINE float idMath::Cos( float a ) { return cosf( a ); } /* ======================== idMath::Cos16 ======================== */ ID_INLINE float idMath::Cos16( float a ) { float s, d; if( ( a < 0.0f ) || ( a >= TWO_PI ) ) { a -= floorf( a * ONEOVER_TWOPI ) * TWO_PI; } #if 1 if( a < PI ) { if( a > HALF_PI ) { a = PI - a; d = -1.0f; } else { d = 1.0f; } } else { if( a > PI + HALF_PI ) { a = a - TWO_PI; d = 1.0f; } else { a = PI - a; d = -1.0f; } } #else a = PI - a; if( fabsf( a ) >= HALF_PI ) { a = ( ( a < 0.0f ) ? -PI : PI ) - a; d = 1.0f; } else { d = -1.0f; } #endif s = a * a; return d * ( ( ( ( ( -2.605e-07f * s + 2.47609e-05f ) * s - 1.3888397e-03f ) * s + 4.16666418e-02f ) * s - 4.999999963e-01f ) * s + 1.0f ); } /* ======================== idMath::SinCos ======================== */ ID_INLINE void idMath::SinCos( float a, float& s, float& c ) { #if defined(_MSC_VER) && defined(_M_IX86) _asm { fld a fsincos mov ecx, c mov edx, s fstp dword ptr [ecx] fstp dword ptr [edx] } #else // DG: non-MSVC version s = sinf( a ); c = cosf( a ); // DG end #endif } /* ======================== idMath::SinCos16 ======================== */ ID_INLINE void idMath::SinCos16( float a, float& s, float& c ) { float t, d; if( ( a < 0.0f ) || ( a >= TWO_PI ) ) { a -= floorf( a * ONEOVER_TWOPI ) * TWO_PI; } #if 1 if( a < PI ) { if( a > HALF_PI ) { a = PI - a; d = -1.0f; } else { d = 1.0f; } } else { if( a > PI + HALF_PI ) { a = a - TWO_PI; d = 1.0f; } else { a = PI - a; d = -1.0f; } } #else a = PI - a; if( fabsf( a ) >= HALF_PI ) { a = ( ( a < 0.0f ) ? -PI : PI ) - a; d = 1.0f; } else { d = -1.0f; } #endif t = a * a; s = a * ( ( ( ( ( -2.39e-08f * t + 2.7526e-06f ) * t - 1.98409e-04f ) * t + 8.3333315e-03f ) * t - 1.666666664e-01f ) * t + 1.0f ); c = d * ( ( ( ( ( -2.605e-07f * t + 2.47609e-05f ) * t - 1.3888397e-03f ) * t + 4.16666418e-02f ) * t - 4.999999963e-01f ) * t + 1.0f ); } /* ======================== idMath::Tan ======================== */ ID_INLINE float idMath::Tan( float a ) { return tanf( a ); } /* ======================== idMath::Tan16 ======================== */ ID_INLINE float idMath::Tan16( float a ) { float s; bool reciprocal; if( ( a < 0.0f ) || ( a >= PI ) ) { a -= floorf( a * ONEOVER_PI ) * PI; } #if 1 if( a < HALF_PI ) { if( a > ONEFOURTH_PI ) { a = HALF_PI - a; reciprocal = true; } else { reciprocal = false; } } else { if( a > HALF_PI + ONEFOURTH_PI ) { a = a - PI; reciprocal = false; } else { a = HALF_PI - a; reciprocal = true; } } #else a = HALF_PI - a; if( fabsf( a ) >= ONEFOURTH_PI ) { a = ( ( a < 0.0f ) ? -HALF_PI : HALF_PI ) - a; reciprocal = false; } else { reciprocal = true; } #endif s = a * a; s = a * ( ( ( ( ( ( 9.5168091e-03f * s + 2.900525e-03f ) * s + 2.45650893e-02f ) * s + 5.33740603e-02f ) * s + 1.333923995e-01f ) * s + 3.333314036e-01f ) * s + 1.0f ); if( reciprocal ) { return 1.0f / s; } else { return s; } } /* ======================== idMath::ASin ======================== */ ID_INLINE float idMath::ASin( float a ) { if( a <= -1.0f ) { return -HALF_PI; } if( a >= 1.0f ) { return HALF_PI; } return asinf( a ); } /* ======================== idMath::ASin16 ======================== */ ID_INLINE float idMath::ASin16( float a ) { if( a < 0.0f ) { if( a <= -1.0f ) { return -HALF_PI; } a = fabsf( a ); return ( ( ( -0.0187293f * a + 0.0742610f ) * a - 0.2121144f ) * a + 1.5707288f ) * idMath::Sqrt( 1.0f - a ) - HALF_PI; } else { if( a >= 1.0f ) { return HALF_PI; } return HALF_PI - ( ( ( -0.0187293f * a + 0.0742610f ) * a - 0.2121144f ) * a + 1.5707288f ) * idMath::Sqrt( 1.0f - a ); } } /* ======================== idMath::ACos ======================== */ ID_INLINE float idMath::ACos( float a ) { if( a <= -1.0f ) { return PI; } if( a >= 1.0f ) { return 0.0f; } return acosf( a ); } /* ======================== idMath::ACos16 ======================== */ ID_INLINE float idMath::ACos16( float a ) { if( a < 0.0f ) { if( a <= -1.0f ) { return PI; } a = fabsf( a ); return PI - ( ( ( -0.0187293f * a + 0.0742610f ) * a - 0.2121144f ) * a + 1.5707288f ) * idMath::Sqrt( 1.0f - a ); } else { if( a >= 1.0f ) { return 0.0f; } return ( ( ( -0.0187293f * a + 0.0742610f ) * a - 0.2121144f ) * a + 1.5707288f ) * idMath::Sqrt( 1.0f - a ); } } /* ======================== idMath::ATan ======================== */ ID_INLINE float idMath::ATan( float a ) { return atanf( a ); } /* ======================== idMath::ATan16 ======================== */ ID_INLINE float idMath::ATan16( float a ) { float s; if( fabsf( a ) > 1.0f ) { a = 1.0f / a; s = a * a; s = - ( ( ( ( ( ( ( ( ( 0.0028662257f * s - 0.0161657367f ) * s + 0.0429096138f ) * s - 0.0752896400f ) * s + 0.1065626393f ) * s - 0.1420889944f ) * s + 0.1999355085f ) * s - 0.3333314528f ) * s ) + 1.0f ) * a; if( a < 0.0f ) { return s - HALF_PI; } else { return s + HALF_PI; } } else { s = a * a; return ( ( ( ( ( ( ( ( ( 0.0028662257f * s - 0.0161657367f ) * s + 0.0429096138f ) * s - 0.0752896400f ) * s + 0.1065626393f ) * s - 0.1420889944f ) * s + 0.1999355085f ) * s - 0.3333314528f ) * s ) + 1.0f ) * a; } } /* ======================== idMath::ATan ======================== */ ID_INLINE float idMath::ATan( float y, float x ) { assert( fabs( y ) > idMath::FLT_SMALLEST_NON_DENORMAL || fabs( x ) > idMath::FLT_SMALLEST_NON_DENORMAL ); return atan2f( y, x ); } /* ======================== idMath::ATan16 ======================== */ ID_INLINE float idMath::ATan16( float y, float x ) { assert( fabs( y ) > idMath::FLT_SMALLEST_NON_DENORMAL || fabs( x ) > idMath::FLT_SMALLEST_NON_DENORMAL ); float a, s; if( fabsf( y ) > fabsf( x ) ) { a = x / y; s = a * a; s = - ( ( ( ( ( ( ( ( ( 0.0028662257f * s - 0.0161657367f ) * s + 0.0429096138f ) * s - 0.0752896400f ) * s + 0.1065626393f ) * s - 0.1420889944f ) * s + 0.1999355085f ) * s - 0.3333314528f ) * s ) + 1.0f ) * a; if( a < 0.0f ) { return s - HALF_PI; } else { return s + HALF_PI; } } else { a = y / x; s = a * a; return ( ( ( ( ( ( ( ( ( 0.0028662257f * s - 0.0161657367f ) * s + 0.0429096138f ) * s - 0.0752896400f ) * s + 0.1065626393f ) * s - 0.1420889944f ) * s + 0.1999355085f ) * s - 0.3333314528f ) * s ) + 1.0f ) * a; } } /* ======================== idMath::Pow ======================== */ ID_INLINE float idMath::Pow( float x, float y ) { return powf( x, y ); } /* ======================== idMath::Pow16 ======================== */ ID_INLINE float idMath::Pow16( float x, float y ) { return Exp16( y * Log16( x ) ); } /* ======================== idMath::Exp ======================== */ ID_INLINE float idMath::Exp( float f ) { return expf( f ); } /* ======================== idMath::Exp16 ======================== */ ID_INLINE float idMath::Exp16( float f ) { float x = f * 1.44269504088896340f; // multiply with ( 1 / log( 2 ) ) #if 1 int i = *reinterpret_cast( &x ); int s = ( i >> IEEE_FLT_SIGN_BIT ); int e = ( ( i >> IEEE_FLT_MANTISSA_BITS ) & ( ( 1 << IEEE_FLT_EXPONENT_BITS ) - 1 ) ) - IEEE_FLT_EXPONENT_BIAS; int m = ( i & ( ( 1 << IEEE_FLT_MANTISSA_BITS ) - 1 ) ) | ( 1 << IEEE_FLT_MANTISSA_BITS ); i = ( ( m >> ( IEEE_FLT_MANTISSA_BITS - e ) ) & ~( e >> INT32_SIGN_BIT ) ) ^ s; #else int i = ( int ) x; if( x < 0.0f ) { i--; } #endif int exponent = ( i + IEEE_FLT_EXPONENT_BIAS ) << IEEE_FLT_MANTISSA_BITS; float y = *reinterpret_cast( &exponent ); x -= ( float ) i; if( x >= 0.5f ) { x -= 0.5f; y *= 1.4142135623730950488f; // multiply with sqrt( 2 ) } float x2 = x * x; float p = x * ( 7.2152891511493f + x2 * 0.0576900723731f ); float q = 20.8189237930062f + x2; x = y * ( q + p ) / ( q - p ); return x; } /* ======================== idMath::Log ======================== */ ID_INLINE float idMath::Log( float f ) { return logf( f ); } /* ======================== idMath::Log16 ======================== */ ID_INLINE float idMath::Log16( float f ) { int i = *reinterpret_cast( &f ); int exponent = ( ( i >> IEEE_FLT_MANTISSA_BITS ) & ( ( 1 << IEEE_FLT_EXPONENT_BITS ) - 1 ) ) - IEEE_FLT_EXPONENT_BIAS; i -= ( exponent + 1 ) << IEEE_FLT_MANTISSA_BITS; // get value in the range [.5, 1> float y = *reinterpret_cast( &i ); y *= 1.4142135623730950488f; // multiply with sqrt( 2 ) y = ( y - 1.0f ) / ( y + 1.0f ); float y2 = y * y; y = y * ( 2.000000000046727f + y2 * ( 0.666666635059382f + y2 * ( 0.4000059794795f + y2 * ( 0.28525381498f + y2 * 0.2376245609f ) ) ) ); y += 0.693147180559945f * ( ( float )exponent + 0.5f ); return y; } /* ======================== idMath::IPow ======================== */ ID_INLINE int idMath::IPow( int x, int y ) { int r; for( r = x; y > 1; y-- ) { r *= x; } return r; } /* ======================== idMath::ILog2 ======================== */ ID_INLINE int idMath::ILog2( float f ) { return ( ( ( *reinterpret_cast( &f ) ) >> IEEE_FLT_MANTISSA_BITS ) & ( ( 1 << IEEE_FLT_EXPONENT_BITS ) - 1 ) ) - IEEE_FLT_EXPONENT_BIAS; } /* ======================== idMath::ILog2 ======================== */ ID_INLINE int idMath::ILog2( int i ) { return ILog2( ( float )i ); } /* ======================== idMath::BitsForFloat ======================== */ ID_INLINE int idMath::BitsForFloat( float f ) { return ILog2( f ) + 1; } /* ======================== idMath::BitsForInteger ======================== */ ID_INLINE int idMath::BitsForInteger( int i ) { return ILog2( ( float )i ) + 1; } /* ======================== idMath::MaskForFloatSign ======================== */ ID_INLINE int idMath::MaskForFloatSign( float f ) { return ( ( *reinterpret_cast( &f ) ) >> IEEE_FLT_SIGN_BIT ); } /* ======================== idMath::MaskForIntegerSign ======================== */ ID_INLINE int idMath::MaskForIntegerSign( int i ) { return ( i >> INT32_SIGN_BIT ); } /* ======================== idMath::FloorPowerOfTwo ======================== */ ID_INLINE int idMath::FloorPowerOfTwo( int x ) { x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x++; return x >> 1; } /* ======================== idMath::CeilPowerOfTwo ======================== */ ID_INLINE int idMath::CeilPowerOfTwo( int x ) { x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x++; return x; } /* ======================== idMath::IsPowerOfTwo ======================== */ ID_INLINE bool idMath::IsPowerOfTwo( int x ) { return ( x & ( x - 1 ) ) == 0 && x > 0; } /* ======================== idMath::BitCount ======================== */ ID_INLINE int idMath::BitCount( int x ) { x -= ( ( x >> 1 ) & 0x55555555 ); x = ( ( ( x >> 2 ) & 0x33333333 ) + ( x & 0x33333333 ) ); x = ( ( ( x >> 4 ) + x ) & 0x0f0f0f0f ); x += ( x >> 8 ); return ( ( x + ( x >> 16 ) ) & 0x0000003f ); } /* ======================== idMath::BitReverse ======================== */ ID_INLINE int idMath::BitReverse( int x ) { x = ( ( ( x >> 1 ) & 0x55555555 ) | ( ( x & 0x55555555 ) << 1 ) ); x = ( ( ( x >> 2 ) & 0x33333333 ) | ( ( x & 0x33333333 ) << 2 ) ); x = ( ( ( x >> 4 ) & 0x0f0f0f0f ) | ( ( x & 0x0f0f0f0f ) << 4 ) ); x = ( ( ( x >> 8 ) & 0x00ff00ff ) | ( ( x & 0x00ff00ff ) << 8 ) ); return ( ( x >> 16 ) | ( x << 16 ) ); } /* ======================== idMath::Abs ======================== */ ID_INLINE int idMath::Abs( int x ) { #if 1 return abs( x ); #else int y = x >> INT32_SIGN_BIT; return ( ( x ^ y ) - y ); #endif } /* ======================== idMath::Fabs ======================== */ ID_INLINE float idMath::Fabs( float f ) { #if 1 return fabsf( f ); #else int tmp = *reinterpret_cast( &f ); tmp &= 0x7FFFFFFF; return *reinterpret_cast( &tmp ); #endif } /* ======================== idMath::Floor ======================== */ ID_INLINE float idMath::Floor( float f ) { return floorf( f ); } /* ======================== idMath::Ceil ======================== */ ID_INLINE float idMath::Ceil( float f ) { return ceilf( f ); } /* ======================== idMath::Rint ======================== */ ID_INLINE float idMath::Rint( float f ) { return floorf( f + 0.5f ); } /* ======================== idMath::Ftoi ======================== */ ID_INLINE int idMath::Ftoi( float f ) { // If a converted result is larger than the maximum signed doubleword integer, // the floating-point invalid exception is raised, and if this exception is masked, // the indefinite integer value (80000000H) is returned. __m128 x = _mm_load_ss( &f ); return _mm_cvttss_si32( x ); } /* ======================== idMath::Ftoi8 ======================== */ ID_INLINE char idMath::Ftoi8( float f ) { __m128 x = _mm_load_ss( &f ); x = _mm_max_ss( x, SIMD_SP_min_char ); x = _mm_min_ss( x, SIMD_SP_max_char ); return static_cast( _mm_cvttss_si32( x ) ); } /* ======================== idMath::Ftoi16 ======================== */ ID_INLINE short idMath::Ftoi16( float f ) { __m128 x = _mm_load_ss( &f ); x = _mm_max_ss( x, SIMD_SP_min_short ); x = _mm_min_ss( x, SIMD_SP_max_short ); return static_cast( _mm_cvttss_si32( x ) ); } /* ======================== idMath::Ftoui16 ======================== */ ID_INLINE unsigned short idMath::Ftoui16( float f ) { // TO DO - SSE ?? // The converted result is clamped to the range [-32768,32767]. int i = C_FLOAT_TO_INT( f ); if( i < 0 ) { return 0; } else if( i > 65535 ) { return 65535; } return static_cast( i ); } /* ======================== idMath::Ftob ======================== */ ID_INLINE byte idMath::Ftob( float f ) { // If a converted result is negative the value (0) is returned and if the // converted result is larger than the maximum byte the value (255) is returned. __m128 x = _mm_load_ss( &f ); x = _mm_max_ss( x, SIMD_SP_zero ); x = _mm_min_ss( x, SIMD_SP_255 ); return static_cast( _mm_cvttss_si32( x ) ); } /* ======================== idMath::ClampChar ======================== */ ID_INLINE signed char idMath::ClampChar( int i ) { if( i < -128 ) { return -128; } if( i > 127 ) { return 127; } return static_cast( i ); } /* ======================== idMath::ClampShort ======================== */ ID_INLINE signed short idMath::ClampShort( int i ) { if( i < -32768 ) { return -32768; } if( i > 32767 ) { return 32767; } return static_cast( i ); } /* ======================== idMath::ClampInt ======================== */ ID_INLINE int idMath::ClampInt( int min, int max, int value ) { if( value < min ) { return min; } if( value > max ) { return max; } return value; } /* ======================== idMath::ClampFloat ======================== */ ID_INLINE float idMath::ClampFloat( float min, float max, float value ) { return Max( min, Min( max, value ) ); } /* ======================== idMath::AngleNormalize360 ======================== */ ID_INLINE float idMath::AngleNormalize360( float angle ) { if( ( angle >= 360.0f ) || ( angle < 0.0f ) ) { angle -= floorf( angle * ( 1.0f / 360.0f ) ) * 360.0f; } return angle; } /* ======================== idMath::AngleNormalize180 ======================== */ ID_INLINE float idMath::AngleNormalize180( float angle ) { angle = AngleNormalize360( angle ); if( angle > 180.0f ) { angle -= 360.0f; } return angle; } /* ======================== idMath::AngleDelta ======================== */ ID_INLINE float idMath::AngleDelta( float angle1, float angle2 ) { return AngleNormalize180( angle1 - angle2 ); } /* ======================== idMath::FloatHash ======================== */ ID_INLINE int idMath::FloatHash( const float* array, const int numFloats ) { int i, hash = 0; const int* ptr; ptr = reinterpret_cast( array ); for( i = 0; i < numFloats; i++ ) { hash ^= ptr[i]; } return hash; } template< typename T > ID_INLINE T Lerp( const T from, const T to, float f ) { return from + ( ( to - from ) * f ); } template<> ID_INLINE int Lerp( const int from, const int to, float f ) { return idMath::Ftoi( ( float ) from + ( ( ( float ) to - ( float ) from ) * f ) ); } /* ======================== LerpToWithScale Lerps from "cur" to "dest", scaling the delta to change by "scale" If the delta between "cur" and "dest" is very small, dest is returned to prevent denormals. ======================== */ inline float idMath::LerpToWithScale( const float cur, const float dest, const float scale ) { float delta = dest - cur; if( delta > -1.0e-6f && delta < 1.0e-6f ) { return dest; } return cur + ( dest - cur ) * scale; } #endif /* !__MATH_MATH_H__ */