/*
===========================================================================
Doom 3 BFG Edition GPL Source Code
Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company.
Copyright (C) 2012-2013 Robert Beckebans
Copyright (C) 2013 Daniel Gibson
This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code").
Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 BFG Edition Source Code. If not, see .
In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#pragma hdrstop
#include "../../precompiled.h"
#ifdef __FreeBSD__
#include // for pthread_set_name_np
#endif
// DG: Note: On Linux you need at least (e)glibc 2.12 to be able to set the threadname
//#define DEBUG_THREADS
typedef void* ( *pthread_function_t )( void* );
/*
========================
Sys_SetThreadName
caedes: This should be seen as a helper-function for Sys_CreateThread() only.
(re)setting the name of a running thread seems like a bad idea and
currently (fresh d3 bfg source) isn't done anyway.
Furthermore SDL doesn't support it
========================
*/
#ifdef DEBUG_THREADS
static int Sys_SetThreadName( pthread_t handle, const char* name )
{
int ret = 0;
#ifdef __linux__
// NOTE: linux only supports threadnames up to 16chars *including* terminating NULL
// http://man7.org/linux/man-pages/man3/pthread_setname_np.3.html
// on my machine a longer name (eg "JobListProcessor_0") caused an ENOENT error (instead of ERANGE)
assert( strlen( name ) < 16 );
ret = pthread_setname_np( handle, name );
if( ret != 0 )
idLib::common->Printf( "Setting threadname \"%s\" failed, reason: %s (%i)\n", name, strerror( errno ), errno );
#elif defined(__FreeBSD__)
// according to http://www.freebsd.org/cgi/man.cgi?query=pthread_set_name_np&sektion=3
// the interface is void pthread_set_name_np(pthread_t tid, const char *name);
pthread_set_name_np( handle, name ); // doesn't return anything
#endif
/* TODO: OSX:
// according to http://stackoverflow.com/a/7989973
// this needs to be called in the thread to be named!
ret = pthread_setname_np(name);
// so we'd have to wrap the xthread_t function in Sys_CreateThread and set the name in the wrapping function...
*/
return ret;
}
static int Sys_GetThreadName( pthread_t handle, char* namebuf, size_t buflen )
{
int ret = 0;
#ifdef __linux__
ret = pthread_getname_np( handle, namebuf, buflen );
if( ret != 0 )
idLib::common->Printf( "Getting threadname failed, reason: %s (%i)\n", strerror( errno ), errno );
#elif defined(__FreeBSD__)
// seems like there is no pthread_getname_np equivalent on FreeBSD
idStr::snPrintf( namebuf, buflen, "Can't read threadname on this platform!" );
#endif
/* TODO: OSX:
// int pthread_getname_np(pthread_t, char*, size_t);
*/
return ret;
}
#endif // DEBUG_THREADS
/*
========================
Sys_Createthread
========================
*/
uintptr_t Sys_CreateThread( xthread_t function, void* parms, xthreadPriority priority, const char* name, core_t core, int stackSize, bool suspended )
{
pthread_attr_t attr;
pthread_attr_init( &attr );
if( pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE ) != 0 )
{
idLib::common->FatalError( "ERROR: pthread_attr_setdetachstate %s failed\n", name );
return ( uintptr_t )0;
}
pthread_t handle;
if( pthread_create( ( pthread_t* )&handle, &attr, ( pthread_function_t )function, parms ) != 0 )
{
idLib::common->FatalError( "ERROR: pthread_create %s failed\n", name );
return ( uintptr_t )0;
}
#if defined(DEBUG_THREADS)
if( Sys_SetThreadName( handle, name ) != 0 )
{
idLib::common->Warning( "Warning: pthread_setname_np %s failed\n", name );
return ( uintptr_t )0;
}
#endif
pthread_attr_destroy( &attr );
#if 0
// RB: realtime policies require root privileges
// all Linux threads have one of the following scheduling policies:
// SCHED_OTHER or SCHED_NORMAL: the default policy, priority: [-20..0..19], default 0
// SCHED_FIFO: first in/first out realtime policy
// SCHED_RR: round-robin realtime policy
// SCHED_BATCH: similar to SCHED_OTHER, but with a throughput orientation
// SCHED_IDLE: lower priority than SCHED_OTHER
int schedulePolicy = SCHED_OTHER;
struct sched_param scheduleParam;
int error = pthread_getschedparam( handle, &schedulePolicy, &scheduleParam );
if( error != 0 )
{
idLib::common->FatalError( "ERROR: pthread_getschedparam %s failed: %s\n", name, strerror( error ) );
return ( uintptr_t )0;
}
schedulePolicy = SCHED_FIFO;
int minPriority = sched_get_priority_min( schedulePolicy );
int maxPriority = sched_get_priority_max( schedulePolicy );
if( priority == THREAD_HIGHEST )
{
// we better sleep enough to do this
scheduleParam.__sched_priority = maxPriority;
}
else if( priority == THREAD_ABOVE_NORMAL )
{
scheduleParam.__sched_priority = Lerp( minPriority, maxPriority, 0.75f );
}
else if( priority == THREAD_NORMAL )
{
scheduleParam.__sched_priority = Lerp( minPriority, maxPriority, 0.5f );
}
else if( priority == THREAD_BELOW_NORMAL )
{
scheduleParam.__sched_priority = Lerp( minPriority, maxPriority, 0.25f );
}
else if( priority == THREAD_LOWEST )
{
scheduleParam.__sched_priority = minPriority;
}
// set new priority
error = pthread_setschedparam( handle, schedulePolicy, &scheduleParam );
if( error != 0 )
{
idLib::common->FatalError( "ERROR: pthread_setschedparam( name = %s, policy = %i, priority = %i ) failed: %s\n", name, schedulePolicy, scheduleParam.__sched_priority, strerror( error ) );
return ( uintptr_t )0;
}
pthread_getschedparam( handle, &schedulePolicy, &scheduleParam );
if( error != 0 )
{
idLib::common->FatalError( "ERROR: pthread_getschedparam %s failed: %s\n", name, strerror( error ) );
return ( uintptr_t )0;
}
#endif
// Under Linux, we don't set the thread affinity and let the OS deal with scheduling
return ( uintptr_t )handle;
}
/*
========================
Sys_GetCurrentThreadID
========================
*/
uintptr_t Sys_GetCurrentThreadID()
{
/*
* This cast is safe because pthread_self()
* returns a pointer and uintptr_t is
* designed to hold a pointer. The compiler
* is just too stupid to know. :)
* -- Yamagi
*/
return ( uintptr_t )pthread_self();
}
/*
========================
Sys_DestroyThread
========================
*/
void Sys_DestroyThread( uintptr_t threadHandle )
{
if( threadHandle == 0 )
{
return;
}
char name[128];
name[0] = '\0';
#if defined(DEBUG_THREADS)
Sys_GetThreadName( ( pthread_t )threadHandle, name, sizeof( name ) );
#endif
#if 0 //!defined(__ANDROID__)
if( pthread_cancel( ( pthread_t )threadHandle ) != 0 )
{
idLib::common->FatalError( "ERROR: pthread_cancel %s failed\n", name );
}
#endif
if( pthread_join( ( pthread_t )threadHandle, NULL ) != 0 )
{
idLib::common->FatalError( "ERROR: pthread_join %s failed\n", name );
}
}
/*
========================
Sys_Yield
========================
*/
void Sys_Yield()
{
pthread_yield();
}
/*
================================================================================================
Signal
================================================================================================
*/
/*
========================
Sys_SignalCreate
========================
*/
void Sys_SignalCreate( signalHandle_t& handle, bool manualReset )
{
// handle = CreateEvent( NULL, manualReset, FALSE, NULL );
handle.manualReset = manualReset;
// if this is true, the signal is only set to nonsignaled when Clear() is called,
// else it's "auto-reset" and the state is set to !signaled after a single waiting
// thread has been released
// the inital state is always "not signaled"
handle.signaled = false;
handle.waiting = 0;
#if 0
pthread_mutexattr_t attr;
pthread_mutexattr_init( &attr );
pthread_mutexattr_settype( &attr, PTHREAD_MUTEX_ERRORCHECK );
//pthread_mutexattr_settype( &attr, PTHREAD_MUTEX_DEFAULT );
pthread_mutex_init( &mutex, &attr );
pthread_mutexattr_destroy( &attr );
#else
pthread_mutex_init( &handle.mutex, NULL );
#endif
pthread_cond_init( &handle.cond, NULL );
}
/*
========================
Sys_SignalDestroy
========================
*/
void Sys_SignalDestroy( signalHandle_t& handle )
{
// CloseHandle( handle );
handle.signaled = false;
handle.waiting = 0;
pthread_mutex_destroy( &handle.mutex );
pthread_cond_destroy( &handle.cond );
}
/*
========================
Sys_SignalRaise
========================
*/
void Sys_SignalRaise( signalHandle_t& handle )
{
// SetEvent( handle );
pthread_mutex_lock( &handle.mutex );
if( handle.manualReset )
{
// signaled until reset
handle.signaled = true;
// wake *all* threads waiting on this cond
pthread_cond_broadcast( &handle.cond );
}
else
{
// automode: signaled until first thread is released
if( handle.waiting > 0 )
{
// there are waiting threads => release one
pthread_cond_signal( &handle.cond );
}
else
{
// no waiting threads, save signal
handle.signaled = true;
// while the MSDN documentation is a bit unspecific about what happens
// when SetEvent() is called n times without a wait inbetween
// (will only one wait be successful afterwards or n waits?)
// it seems like the signaled state is a flag, not a counter.
// http://stackoverflow.com/a/13703585 claims the same.
}
}
pthread_mutex_unlock( &handle.mutex );
}
/*
========================
Sys_SignalClear
========================
*/
void Sys_SignalClear( signalHandle_t& handle )
{
// ResetEvent( handle );
pthread_mutex_lock( &handle.mutex );
// TODO: probably signaled could be atomically changed?
handle.signaled = false;
pthread_mutex_unlock( &handle.mutex );
}
/*
========================
Sys_SignalWait
========================
*/
bool Sys_SignalWait( signalHandle_t& handle, int timeout )
{
//DWORD result = WaitForSingleObject( handle, timeout == idSysSignal::WAIT_INFINITE ? INFINITE : timeout );
//assert( result == WAIT_OBJECT_0 || ( timeout != idSysSignal::WAIT_INFINITE && result == WAIT_TIMEOUT ) );
//return ( result == WAIT_OBJECT_0 );
int status;
pthread_mutex_lock( &handle.mutex );
if( handle.signaled ) // there is a signal that hasn't been used yet
{
if( ! handle.manualReset ) // for auto-mode only one thread may be released - this one.
handle.signaled = false;
status = 0; // success!
}
else // we'll have to wait for a signal
{
++handle.waiting;
if( timeout == idSysSignal::WAIT_INFINITE )
{
status = pthread_cond_wait( &handle.cond, &handle.mutex );
}
else
{
timespec ts;
clock_gettime( CLOCK_REALTIME, &ts );
// DG: handle timeouts > 1s better
ts.tv_nsec += ( timeout % 1000 ) * 1000000; // millisec to nanosec
ts.tv_sec += timeout / 1000;
if( ts.tv_nsec >= 1000000000 ) // nanoseconds are more than one second
{
ts.tv_nsec -= 1000000000; // remove one second in nanoseconds
ts.tv_sec += 1; // add one second to seconds
}
// DG end
status = pthread_cond_timedwait( &handle.cond, &handle.mutex, &ts );
}
--handle.waiting;
}
pthread_mutex_unlock( &handle.mutex );
assert( status == 0 || ( timeout != idSysSignal::WAIT_INFINITE && status == ETIMEDOUT ) );
return ( status == 0 );
}
/*
================================================================================================
Mutex
================================================================================================
*/
/*
========================
Sys_MutexCreate
========================
*/
void Sys_MutexCreate( mutexHandle_t& handle )
{
pthread_mutexattr_t attr;
pthread_mutexattr_init( &attr );
pthread_mutexattr_settype( &attr, PTHREAD_MUTEX_ERRORCHECK );
pthread_mutex_init( &handle, &attr );
pthread_mutexattr_destroy( &attr );
}
/*
========================
Sys_MutexDestroy
========================
*/
void Sys_MutexDestroy( mutexHandle_t& handle )
{
pthread_mutex_destroy( &handle );
}
/*
========================
Sys_MutexLock
========================
*/
bool Sys_MutexLock( mutexHandle_t& handle, bool blocking )
{
if( pthread_mutex_trylock( &handle ) != 0 )
{
if( !blocking )
{
return false;
}
pthread_mutex_lock( &handle );
}
return true;
}
/*
========================
Sys_MutexUnlock
========================
*/
void Sys_MutexUnlock( mutexHandle_t& handle )
{
pthread_mutex_unlock( & handle );
}
/*
================================================================================================
Interlocked Integer
================================================================================================
*/
/*
========================
Sys_InterlockedIncrement
========================
*/
interlockedInt_t Sys_InterlockedIncrement( interlockedInt_t& value )
{
// return InterlockedIncrementAcquire( & value );
return __sync_add_and_fetch( &value, 1 );
}
/*
========================
Sys_InterlockedDecrement
========================
*/
interlockedInt_t Sys_InterlockedDecrement( interlockedInt_t& value )
{
// return InterlockedDecrementRelease( & value );
return __sync_sub_and_fetch( &value, 1 );
}
/*
========================
Sys_InterlockedAdd
========================
*/
interlockedInt_t Sys_InterlockedAdd( interlockedInt_t& value, interlockedInt_t i )
{
//return InterlockedExchangeAdd( & value, i ) + i;
return __sync_add_and_fetch( &value, i );
}
/*
========================
Sys_InterlockedSub
========================
*/
interlockedInt_t Sys_InterlockedSub( interlockedInt_t& value, interlockedInt_t i )
{
//return InterlockedExchangeAdd( & value, - i ) - i;
return __sync_sub_and_fetch( &value, i );
}
/*
========================
Sys_InterlockedExchange
========================
*/
interlockedInt_t Sys_InterlockedExchange( interlockedInt_t& value, interlockedInt_t exchange )
{
//return InterlockedExchange( & value, exchange );
// source: http://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/Atomic-Builtins.html
// These builtins perform an atomic compare and swap. That is, if the current value of *ptr is oldval, then write newval into *ptr.
return __sync_val_compare_and_swap( &value, value, exchange );
}
/*
========================
Sys_InterlockedCompareExchange
========================
*/
interlockedInt_t Sys_InterlockedCompareExchange( interlockedInt_t& value, interlockedInt_t comparand, interlockedInt_t exchange )
{
//return InterlockedCompareExchange( & value, exchange, comparand );
return __sync_val_compare_and_swap( &value, comparand, exchange );
}
/*
================================================================================================
Interlocked Pointer
================================================================================================
*/
/*
========================
Sys_InterlockedExchangePointer
========================
*/
void* Sys_InterlockedExchangePointer( void*& ptr, void* exchange )
{
//return InterlockedExchangePointer( & ptr, exchange );
return __sync_val_compare_and_swap( &ptr, ptr, exchange );
}
/*
========================
Sys_InterlockedCompareExchangePointer
========================
*/
void* Sys_InterlockedCompareExchangePointer( void*& ptr, void* comparand, void* exchange )
{
//return InterlockedCompareExchangePointer( & ptr, exchange, comparand );
return __sync_val_compare_and_swap( &ptr, comparand, exchange );
}