/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 1993-2012 id Software LLC, a ZeniMax Media company. This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #pragma hdrstop #include "../precompiled.h" /* ================= idSurface_Patch::SetSize ================= */ void idSurface_Patch::SetSize( int patchWidth, int patchHeight ) { if( patchWidth < 1 || patchWidth > maxWidth ) { idLib::common->FatalError( "idSurface_Patch::SetSize: invalid patchWidth" ); } if( patchHeight < 1 || patchHeight > maxHeight ) { idLib::common->FatalError( "idSurface_Patch::SetSize: invalid patchHeight" ); } width = patchWidth; height = patchHeight; verts.SetNum( width * height ); } /* ================= idSurface_Patch::PutOnCurve Expects an expanded patch. ================= */ void idSurface_Patch::PutOnCurve() { int i, j; idDrawVert prev, next; assert( expanded == true ); // put all the approximating points on the curve for( i = 0; i < width; i++ ) { for( j = 1; j < height; j += 2 ) { LerpVert( verts[j * maxWidth + i], verts[( j + 1 )*maxWidth + i], prev ); LerpVert( verts[j * maxWidth + i], verts[( j - 1 )*maxWidth + i], next ); LerpVert( prev, next, verts[j * maxWidth + i] ); } } for( j = 0; j < height; j++ ) { for( i = 1; i < width; i += 2 ) { LerpVert( verts[j * maxWidth + i], verts[j * maxWidth + i + 1], prev ); LerpVert( verts[j * maxWidth + i], verts[j * maxWidth + i - 1], next ); LerpVert( prev, next, verts[j * maxWidth + i] ); } } } /* ================ idSurface_Patch::ProjectPointOntoVector ================ */ void idSurface_Patch::ProjectPointOntoVector( const idVec3& point, const idVec3& vStart, const idVec3& vEnd, idVec3& vProj ) { idVec3 pVec, vec; pVec = point - vStart; vec = vEnd - vStart; vec.Normalize(); // project onto the directional vector for this segment vProj = vStart + ( pVec * vec ) * vec; } /* ================ idSurface_Patch::RemoveLinearColumnsRows Expects an expanded patch. ================ */ void idSurface_Patch::RemoveLinearColumnsRows() { int i, j, k; float len, maxLength; idVec3 proj, dir; assert( expanded == true ); for( j = 1; j < width - 1; j++ ) { maxLength = 0; for( i = 0; i < height; i++ ) { idSurface_Patch::ProjectPointOntoVector( verts[i * maxWidth + j].xyz, verts[i * maxWidth + j - 1].xyz, verts[i * maxWidth + j + 1].xyz, proj ); dir = verts[i * maxWidth + j].xyz - proj; len = dir.LengthSqr(); if( len > maxLength ) { maxLength = len; } } if( maxLength < Square( 0.2f ) ) { width--; for( i = 0; i < height; i++ ) { for( k = j; k < width; k++ ) { verts[i * maxWidth + k] = verts[i * maxWidth + k + 1]; } } j--; } } for( j = 1; j < height - 1; j++ ) { maxLength = 0; for( i = 0; i < width; i++ ) { idSurface_Patch::ProjectPointOntoVector( verts[j * maxWidth + i].xyz, verts[( j - 1 )*maxWidth + i].xyz, verts[( j + 1 )*maxWidth + i].xyz, proj ); dir = verts[j * maxWidth + i].xyz - proj; len = dir.LengthSqr(); if( len > maxLength ) { maxLength = len; } } if( maxLength < Square( 0.2f ) ) { height--; for( i = 0; i < width; i++ ) { for( k = j; k < height; k++ ) { verts[k * maxWidth + i] = verts[( k + 1 ) * maxWidth + i]; } } j--; } } } /* ================ idSurface_Patch::ResizeExpanded ================ */ void idSurface_Patch::ResizeExpanded( int newHeight, int newWidth ) { int i, j; assert( expanded == true ); if( newHeight <= maxHeight && newWidth <= maxWidth ) { return; } if( newHeight * newWidth > maxHeight * maxWidth ) { verts.SetNum( newHeight * newWidth ); } // space out verts for new height and width for( j = maxHeight - 1; j >= 0; j-- ) { for( i = maxWidth - 1; i >= 0; i-- ) { verts[j * newWidth + i] = verts[j * maxWidth + i]; } } maxHeight = newHeight; maxWidth = newWidth; } /* ================ idSurface_Patch::Collapse ================ */ void idSurface_Patch::Collapse() { int i, j; if( !expanded ) { idLib::common->FatalError( "idSurface_Patch::Collapse: patch not expanded" ); } expanded = false; if( width != maxWidth ) { for( j = 0; j < height; j++ ) { for( i = 0; i < width; i++ ) { verts[j * width + i] = verts[j * maxWidth + i]; } } } verts.SetNum( width * height ); } /* ================ idSurface_Patch::Expand ================ */ void idSurface_Patch::Expand() { int i, j; if( expanded ) { idLib::common->FatalError( "idSurface_Patch::Expand: patch alread expanded" ); } expanded = true; verts.SetNum( maxWidth * maxHeight ); if( width != maxWidth ) { for( j = height - 1; j >= 0; j-- ) { for( i = width - 1; i >= 0; i-- ) { verts[j * maxWidth + i] = verts[j * width + i]; } } } } /* ============ idSurface_Patch::LerpVert ============ */ void idSurface_Patch::LerpVert( const idDrawVert& a, const idDrawVert& b, idDrawVert& out ) const { out.xyz[0] = 0.5f * ( a.xyz[0] + b.xyz[0] ); out.xyz[1] = 0.5f * ( a.xyz[1] + b.xyz[1] ); out.xyz[2] = 0.5f * ( a.xyz[2] + b.xyz[2] ); out.SetNormal( ( a.GetNormal() + b.GetNormal() ) * 0.5f ); out.SetTexCoord( ( a.GetTexCoord() + b.GetTexCoord() ) * 0.5f ); } /* ================= idSurface_Patch::GenerateNormals Handles all the complicated wrapping and degenerate cases Expects a Not expanded patch. ================= */ #define COPLANAR_EPSILON 0.1f void idSurface_Patch::GenerateNormals() { int i, j, k, dist; idVec3 norm; idVec3 sum; int count; idVec3 base; idVec3 delta; int x, y; idVec3 around[8], temp; bool good[8]; bool wrapWidth, wrapHeight; static int neighbors[8][2] = { {0, 1}, {1, 1}, {1, 0}, {1, -1}, {0, -1}, { -1, -1}, { -1, 0}, { -1, 1} }; assert( expanded == false ); // // if all points are coplanar, set all normals to that plane // idVec3 extent[3]; float offset; extent[0] = verts[width - 1].xyz - verts[0].xyz; extent[1] = verts[( height - 1 ) * width + width - 1].xyz - verts[0].xyz; extent[2] = verts[( height - 1 ) * width].xyz - verts[0].xyz; norm = extent[0].Cross( extent[1] ); if( norm.LengthSqr() == 0.0f ) { norm = extent[0].Cross( extent[2] ); if( norm.LengthSqr() == 0.0f ) { norm = extent[1].Cross( extent[2] ); } } // wrapped patched may not get a valid normal here if( norm.Normalize() != 0.0f ) { offset = verts[0].xyz * norm; for( i = 1; i < width * height; i++ ) { float d = verts[i].xyz * norm; if( idMath::Fabs( d - offset ) > COPLANAR_EPSILON ) { break; } } if( i == width * height ) { // all are coplanar for( i = 0; i < width * height; i++ ) { verts[i].SetNormal( norm ); } return; } } // check for wrapped edge cases, which should smooth across themselves wrapWidth = false; for( i = 0; i < height; i++ ) { delta = verts[i * width].xyz - verts[i * width + width - 1].xyz; if( delta.LengthSqr() > Square( 1.0f ) ) { break; } } if( i == height ) { wrapWidth = true; } wrapHeight = false; for( i = 0; i < width; i++ ) { delta = verts[i].xyz - verts[( height - 1 ) * width + i].xyz; if( delta.LengthSqr() > Square( 1.0f ) ) { break; } } if( i == width ) { wrapHeight = true; } for( i = 0; i < width; i++ ) { for( j = 0; j < height; j++ ) { count = 0; base = verts[j * width + i].xyz; for( k = 0; k < 8; k++ ) { around[k] = vec3_origin; good[k] = false; for( dist = 1; dist <= 3; dist++ ) { x = i + neighbors[k][0] * dist; y = j + neighbors[k][1] * dist; if( wrapWidth ) { if( x < 0 ) { x = width - 1 + x; } else if( x >= width ) { x = 1 + x - width; } } if( wrapHeight ) { if( y < 0 ) { y = height - 1 + y; } else if( y >= height ) { y = 1 + y - height; } } if( x < 0 || x >= width || y < 0 || y >= height ) { break; // edge of patch } temp = verts[y * width + x].xyz - base; if( temp.Normalize() == 0.0f ) { continue; // degenerate edge, get more dist } else { good[k] = true; around[k] = temp; break; // good edge } } } sum = vec3_origin; for( k = 0; k < 8; k++ ) { if( !good[k] || !good[( k + 1 ) & 7] ) { continue; // didn't get two points } norm = around[( k + 1 ) & 7].Cross( around[k] ); if( norm.Normalize() == 0.0f ) { continue; } sum += norm; count++; } if( count == 0 ) { //idLib::common->Printf("bad normal\n"); count = 1; } sum.Normalize(); verts[j * width + i].SetNormal( sum ); } } } /* ================= idSurface_Patch::GenerateIndexes ================= */ void idSurface_Patch::GenerateIndexes() { int i, j, v1, v2, v3, v4, index; indexes.SetNum( ( width - 1 ) * ( height - 1 ) * 2 * 3 ); index = 0; for( i = 0; i < width - 1; i++ ) { for( j = 0; j < height - 1; j++ ) { v1 = j * width + i; v2 = v1 + 1; v3 = v1 + width + 1; v4 = v1 + width; indexes[index++] = v1; indexes[index++] = v3; indexes[index++] = v2; indexes[index++] = v1; indexes[index++] = v4; indexes[index++] = v3; } } GenerateEdgeIndexes(); } /* =============== idSurface_Patch::SampleSinglePatchPoint =============== */ void idSurface_Patch::SampleSinglePatchPoint( const idDrawVert ctrl[3][3], float u, float v, idDrawVert* out ) const { float vCtrl[3][8]; int vPoint; int axis; // find the control points for the v coordinate for( vPoint = 0; vPoint < 3; vPoint++ ) { for( axis = 0; axis < 8; axis++ ) { float a, b, c; float qA, qB, qC; if( axis < 3 ) { a = ctrl[0][vPoint].xyz[axis]; b = ctrl[1][vPoint].xyz[axis]; c = ctrl[2][vPoint].xyz[axis]; } else if( axis < 6 ) { a = ctrl[0][vPoint].GetNormal()[axis - 3]; b = ctrl[1][vPoint].GetNormal()[axis - 3]; c = ctrl[2][vPoint].GetNormal()[axis - 3]; } else { a = ctrl[0][vPoint].GetTexCoord()[axis - 6]; b = ctrl[1][vPoint].GetTexCoord()[axis - 6]; c = ctrl[2][vPoint].GetTexCoord()[axis - 6]; } qA = a - 2.0f * b + c; qB = 2.0f * b - 2.0f * a; qC = a; vCtrl[vPoint][axis] = qA * u * u + qB * u + qC; } } // interpolate the v value for( axis = 0; axis < 8; axis++ ) { float a, b, c; float qA, qB, qC; a = vCtrl[0][axis]; b = vCtrl[1][axis]; c = vCtrl[2][axis]; qA = a - 2.0f * b + c; qB = 2.0f * b - 2.0f * a; qC = a; if( axis < 3 ) { out->xyz[axis] = qA * v * v + qB * v + qC; } else if( axis < 6 ) { idVec3 tempNormal = out->GetNormal(); tempNormal[axis - 3] = qA * v * v + qB * v + qC; out->SetNormal( tempNormal ); //out->normal[axis-3] = qA * v * v + qB * v + qC; } else { idVec2 tempST = out->GetTexCoord(); tempST[axis - 6] = qA * v * v + qB * v + qC; out->SetTexCoord( tempST ); } } } /* =================== idSurface_Patch::SampleSinglePatch =================== */ void idSurface_Patch::SampleSinglePatch( const idDrawVert ctrl[3][3], int baseCol, int baseRow, int width, int horzSub, int vertSub, idDrawVert* outVerts ) const { int i, j; float u, v; horzSub++; vertSub++; for( i = 0; i < horzSub; i++ ) { for( j = 0; j < vertSub; j++ ) { u = ( float ) i / ( horzSub - 1 ); v = ( float ) j / ( vertSub - 1 ); SampleSinglePatchPoint( ctrl, u, v, &outVerts[( ( baseRow + j ) * width ) + i + baseCol] ); } } } /* ================= idSurface_Patch::SubdivideExplicit ================= */ void idSurface_Patch::SubdivideExplicit( int horzSubdivisions, int vertSubdivisions, bool genNormals, bool removeLinear ) { int i, j, k, l; idDrawVert sample[3][3]; int outWidth = ( ( width - 1 ) / 2 * horzSubdivisions ) + 1; int outHeight = ( ( height - 1 ) / 2 * vertSubdivisions ) + 1; idDrawVert* dv = new( TAG_IDLIB_SURFACE ) idDrawVert[ outWidth * outHeight ]; // generate normals for the control mesh if( genNormals ) { GenerateNormals(); } int baseCol = 0; for( i = 0; i + 2 < width; i += 2 ) { int baseRow = 0; for( j = 0; j + 2 < height; j += 2 ) { for( k = 0; k < 3; k++ ) { for( l = 0; l < 3; l++ ) { sample[k][l] = verts[( ( j + l ) * width ) + i + k ]; } } SampleSinglePatch( sample, baseCol, baseRow, outWidth, horzSubdivisions, vertSubdivisions, dv ); baseRow += vertSubdivisions; } baseCol += horzSubdivisions; } verts.SetNum( outWidth * outHeight ); for( i = 0; i < outWidth * outHeight; i++ ) { verts[i] = dv[i]; } delete[] dv; width = maxWidth = outWidth; height = maxHeight = outHeight; expanded = false; if( removeLinear ) { Expand(); RemoveLinearColumnsRows(); Collapse(); } // normalize all the lerped normals if( genNormals ) { idVec3 tempNormal; for( i = 0; i < width * height; i++ ) { tempNormal = verts[i].GetNormal(); tempNormal.Normalize(); verts[i].SetNormal( tempNormal ); } } GenerateIndexes(); } /* ================= idSurface_Patch::Subdivide ================= */ void idSurface_Patch::Subdivide( float maxHorizontalError, float maxVerticalError, float maxLength, bool genNormals ) { int i, j, k, l; idDrawVert prev, next, mid; idVec3 prevxyz, nextxyz, midxyz; idVec3 delta; float maxHorizontalErrorSqr, maxVerticalErrorSqr, maxLengthSqr; // generate normals for the control mesh if( genNormals ) { GenerateNormals(); } maxHorizontalErrorSqr = Square( maxHorizontalError ); maxVerticalErrorSqr = Square( maxVerticalError ); maxLengthSqr = Square( maxLength ); Expand(); // horizontal subdivisions for( j = 0; j + 2 < width; j += 2 ) { // check subdivided midpoints against control points for( i = 0; i < height; i++ ) { for( l = 0; l < 3; l++ ) { prevxyz[l] = verts[i * maxWidth + j + 1].xyz[l] - verts[i * maxWidth + j ].xyz[l]; nextxyz[l] = verts[i * maxWidth + j + 2].xyz[l] - verts[i * maxWidth + j + 1].xyz[l]; midxyz[l] = ( verts[i * maxWidth + j ].xyz[l] + verts[i * maxWidth + j + 1].xyz[l] * 2.0f + verts[i * maxWidth + j + 2].xyz[l] ) * 0.25f; } if( maxLength > 0.0f ) { // if the span length is too long, force a subdivision if( prevxyz.LengthSqr() > maxLengthSqr || nextxyz.LengthSqr() > maxLengthSqr ) { break; } } // see if this midpoint is off far enough to subdivide delta = verts[i * maxWidth + j + 1].xyz - midxyz; if( delta.LengthSqr() > maxHorizontalErrorSqr ) { break; } } if( i == height ) { continue; // didn't need subdivision } if( width + 2 >= maxWidth ) { ResizeExpanded( maxHeight, maxWidth + 4 ); } // insert two columns and replace the peak width += 2; for( i = 0; i < height; i++ ) { idSurface_Patch::LerpVert( verts[i * maxWidth + j ], verts[i * maxWidth + j + 1], prev ); idSurface_Patch::LerpVert( verts[i * maxWidth + j + 1], verts[i * maxWidth + j + 2], next ); idSurface_Patch::LerpVert( prev, next, mid ); for( k = width - 1; k > j + 3; k-- ) { verts[i * maxWidth + k] = verts[i * maxWidth + k - 2]; } verts[i * maxWidth + j + 1] = prev; verts[i * maxWidth + j + 2] = mid; verts[i * maxWidth + j + 3] = next; } // back up and recheck this set again, it may need more subdivision j -= 2; } // vertical subdivisions for( j = 0; j + 2 < height; j += 2 ) { // check subdivided midpoints against control points for( i = 0; i < width; i++ ) { for( l = 0; l < 3; l++ ) { prevxyz[l] = verts[( j + 1 ) * maxWidth + i].xyz[l] - verts[j * maxWidth + i].xyz[l]; nextxyz[l] = verts[( j + 2 ) * maxWidth + i].xyz[l] - verts[( j + 1 ) * maxWidth + i].xyz[l]; midxyz[l] = ( verts[j * maxWidth + i].xyz[l] + verts[( j + 1 ) * maxWidth + i].xyz[l] * 2.0f + verts[( j + 2 ) * maxWidth + i].xyz[l] ) * 0.25f; } if( maxLength > 0.0f ) { // if the span length is too long, force a subdivision if( prevxyz.LengthSqr() > maxLengthSqr || nextxyz.LengthSqr() > maxLengthSqr ) { break; } } // see if this midpoint is off far enough to subdivide delta = verts[( j + 1 ) * maxWidth + i].xyz - midxyz; if( delta.LengthSqr() > maxVerticalErrorSqr ) { break; } } if( i == width ) { continue; // didn't need subdivision } if( height + 2 >= maxHeight ) { ResizeExpanded( maxHeight + 4, maxWidth ); } // insert two columns and replace the peak height += 2; for( i = 0; i < width; i++ ) { LerpVert( verts[j * maxWidth + i], verts[( j + 1 )*maxWidth + i], prev ); LerpVert( verts[( j + 1 )*maxWidth + i], verts[( j + 2 )*maxWidth + i], next ); LerpVert( prev, next, mid ); for( k = height - 1; k > j + 3; k-- ) { verts[k * maxWidth + i] = verts[( k - 2 ) * maxWidth + i]; } verts[( j + 1 )*maxWidth + i] = prev; verts[( j + 2 )*maxWidth + i] = mid; verts[( j + 3 )*maxWidth + i] = next; } // back up and recheck this set again, it may need more subdivision j -= 2; } PutOnCurve(); RemoveLinearColumnsRows(); Collapse(); // normalize all the lerped normals if( genNormals ) { idVec3 tempNormal; for( i = 0; i < width * height; i++ ) { tempNormal = verts[i].GetNormal(); tempNormal.Normalize(); verts[i].SetNormal( tempNormal ); } } GenerateIndexes(); }