/* =========================================================================== Doom 3 BFG Edition GPL Source Code Copyright (C) 2022 Harrie van Ginneken Copyright (C) 2022 Robert Beckebans This file is part of the Doom 3 BFG Edition GPL Source Code ("Doom 3 BFG Edition Source Code"). Doom 3 BFG Edition Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Doom 3 BFG Edition Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Doom 3 BFG Edition Source Code. If not, see . In addition, the Doom 3 BFG Edition Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 BFG Edition Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #include "precompiled.h" #pragma hdrstop // files import as y-up. Use this transform to change the model to z-up. static const idAngles blenderToDoomAngels = idAngles( 0.0f, 0.0f, 90 ); static const idMat4 blenderToDoomTransform( blenderToDoomAngels.ToMat3(), vec3_origin ); MapPolygonMesh* MapPolygonMesh::ConvertFromMeshGltf( const gltfMesh_Primitive* prim, gltfData* _data , const idMat4& transform ) { MapPolygonMesh* mesh = new MapPolygonMesh(); gltfAccessor* accessor = _data->AccessorList()[prim->indices]; gltfBufferView* bv = _data->BufferViewList()[accessor->bufferView]; gltfData* data = bv->parent; gltfMaterial* mat = NULL; if( prim->material != -1 ) { mat = _data->MaterialList()[prim->material]; } gltfBuffer* buff = data->BufferList()[bv->buffer]; uint idxDataSize = sizeof( uint ) * accessor->count; uint* indices = ( uint* ) Mem_ClearedAlloc( idxDataSize , TAG_IDLIB_GLTF ); idFile_Memory idxBin = idFile_Memory( "gltfChunkIndices", ( const char* )( ( data->GetData( bv->buffer ) + bv->byteOffset + accessor->byteOffset ) ), bv->byteLength ); for( int i = 0; i < accessor->count; i++ ) { idxBin.Read( ( void* )( &indices[i] ), accessor->typeSize ); if( bv->byteStride ) { idxBin.Seek( bv->byteStride - accessor->typeSize, FS_SEEK_CUR ); } } int polyCount = accessor->count / 3; mesh->polygons.AssureSize( polyCount ); mesh->polygons.SetNum( polyCount ); int cnt = 0; for( int i = 0; i < accessor->count; i += 3 ) { MapPolygon& polygon = mesh->polygons[cnt++]; if( mat != NULL ) { polygon.SetMaterial( mat->name ); } else { polygon.SetMaterial( "textures/base_wall/snpanel2rust" ); } polygon.AddIndex( indices[i + 2] ); polygon.AddIndex( indices[i + 1] ); polygon.AddIndex( indices[i + 0] ); } assert( cnt == polyCount ); Mem_Free( indices ); bool sizeSet = false; //for( const auto& attrib : prim->attributes ) for( int a = 0; a < prim->attributes.Num(); a++ ) { gltfMesh_Primitive_Attribute* attrib = prim->attributes[a]; gltfAccessor* attrAcc = data->AccessorList()[attrib->accessorIndex]; gltfBufferView* attrBv = data->BufferViewList()[attrAcc->bufferView]; gltfData* attrData = attrBv->parent; gltfBuffer* attrbuff = attrData->BufferList()[attrBv->buffer]; idFile_Memory bin = idFile_Memory( "gltfChunkVertices", ( const char* )( ( attrData->GetData( attrBv->buffer ) + attrBv->byteOffset + attrAcc->byteOffset ) ), attrBv->byteLength ); if( !sizeSet ) { mesh->verts.AssureSize( attrAcc->count ); sizeSet = true; } switch( attrib->type ) { case gltfMesh_Primitive_Attribute::Type::Position: { for( int i = 0; i < attrAcc->count; i++ ) { idVec3 pos; bin.Read( ( void* )( &pos.x ), attrAcc->typeSize ); bin.Read( ( void* )( &pos.y ), attrAcc->typeSize ); bin.Read( ( void* )( &pos.z ), attrAcc->typeSize ); // move into entity space pos *= transform; //pos *= blenderToDoomTransform; mesh->verts[i].xyz.x = pos.x; mesh->verts[i].xyz.y = pos.y; mesh->verts[i].xyz.z = pos.z; if( attrBv->byteStride ) { bin.Seek( attrBv->byteStride - ( 3 * attrAcc->typeSize ), FS_SEEK_CUR ); } idRandom rnd( i ); int r = rnd.RandomInt( 255 ), g = rnd.RandomInt( 255 ), b = rnd.RandomInt( 255 ); //vtxData[i].abgr = 0xff000000 + ( b << 16 ) + ( g << 8 ) + r; } break; } case gltfMesh_Primitive_Attribute::Type::Normal: { idVec3 vec; for( int i = 0; i < attrAcc->count; i++ ) { idVec3 vec; bin.Read( ( void* )( &vec.x ), attrAcc->typeSize ); bin.Read( ( void* )( &vec.y ), attrAcc->typeSize ); bin.Read( ( void* )( &vec.z ), attrAcc->typeSize ); if( attrBv->byteStride ) { bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR ); } idVec3 normal; normal.x = vec.x; normal.y = vec.y; normal.z = vec.z; normal *= transform; mesh->verts[i].SetNormal( normal ); } break; } case gltfMesh_Primitive_Attribute::Type::TexCoord0: { idVec2 vec; for( int i = 0; i < attrAcc->count; i++ ) { bin.Read( ( void* )( &vec.x ), attrAcc->typeSize ); bin.Read( ( void* )( &vec.y ), attrAcc->typeSize ); if( attrBv->byteStride ) { bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR ); } //vec.y = 1.0f - vec.y; mesh->verts[i].SetTexCoord( vec ); } break; } case gltfMesh_Primitive_Attribute::Type::Tangent: { idVec4 vec; for( int i = 0; i < attrAcc->count; i++ ) { bin.Read( ( void* )( &vec.x ), attrAcc->typeSize ); bin.Read( ( void* )( &vec.y ), attrAcc->typeSize ); bin.Read( ( void* )( &vec.z ), attrAcc->typeSize ); bin.Read( ( void* )( &vec.w ), attrAcc->typeSize ); if( attrBv->byteStride ) { bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR ); } idVec3 tangent; tangent.x = vec.x; tangent.y = vec.y; tangent.z = vec.z; tangent *= transform; mesh->verts[i].SetTangent( tangent ); mesh->verts[i].SetBiTangentSign( vec.w ); } break; } case gltfMesh_Primitive_Attribute::Type::Weight: { idVec4 vec; for( int i = 0; i < attrAcc->count; i++ ) { bin.Read( ( void* )( &vec.x ), attrAcc->typeSize ); bin.Read( ( void* )( &vec.y ), attrAcc->typeSize ); bin.Read( ( void* )( &vec.z ), attrAcc->typeSize ); bin.Read( ( void* )( &vec.w ), attrAcc->typeSize ); if( attrBv->byteStride ) { bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR ); } mesh->verts[i].SetColor2( PackColor( vec ) ); } break; } case gltfMesh_Primitive_Attribute::Type::Indices: { if( attrAcc->typeSize == 2 ) { uint16_t vec[4]; assert( sizeof( vec ) == ( attrAcc->typeSize * 4 ) ); for( int i = 0; i < attrAcc->count; i++ ) { bin.Read( ( void* )( &vec[0] ), attrAcc->typeSize ); bin.Read( ( void* )( &vec[1] ), attrAcc->typeSize ); bin.Read( ( void* )( &vec[2] ), attrAcc->typeSize ); bin.Read( ( void* )( &vec[3] ), attrAcc->typeSize ); if( attrBv->byteStride ) { bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR ); } mesh->verts[i].color[0] = vec[0]; mesh->verts[i].color[1] = vec[1]; mesh->verts[i].color[2] = vec[2]; mesh->verts[i].color[3] = vec[3]; } } else { uint8_t vec[4]; for( int i = 0; i < attrAcc->count; i++ ) { assert( sizeof( vec ) == ( attrAcc->typeSize * 4 ) ); bin.Read( ( void* )( &vec[0] ), attrAcc->typeSize ); bin.Read( ( void* )( &vec[1] ), attrAcc->typeSize ); bin.Read( ( void* )( &vec[2] ), attrAcc->typeSize ); bin.Read( ( void* )( &vec[3] ), attrAcc->typeSize ); if( attrBv->byteStride ) { bin.Seek( attrBv->byteStride - ( attrib->elementSize * attrAcc->typeSize ), FS_SEEK_CUR ); } mesh->verts[i].color[0] = vec[0]; mesh->verts[i].color[1] = vec[1]; mesh->verts[i].color[2] = vec[2]; mesh->verts[i].color[3] = vec[3]; } } break; } } } mesh->SetContents(); return mesh; } static void ProcessSceneNode_r( idMapEntity* newEntity, gltfNode* node, const idMat4& parentTransform, const idMat4& worldToEntityTransform, gltfData* data ) { auto& nodeList = data->NodeList(); gltfData::ResolveNodeMatrix( node ); idMat4 nodeToWorldTransform = parentTransform * node->matrix; //idMat4 nodeToWorldTransform = parentTransform * ( blenderToDoomTransform * node->matrix ); // bring mesh data into entity space idMat4 nodeToEntityTransform = nodeToWorldTransform * worldToEntityTransform; if( node->mesh != -1 ) { for( auto* prim : data->MeshList()[node->mesh]->primitives ) { newEntity->AddPrimitive( MapPolygonMesh::ConvertFromMeshGltf( prim, data, nodeToEntityTransform ) ); } } for( auto& child : node->children ) { ProcessSceneNode_r( newEntity, nodeList[child], nodeToWorldTransform, worldToEntityTransform, data ); } } static void AddMeshesToWorldspawn_r( idMapEntity* entity, gltfNode* node, const idMat4& transform, gltfData* data ) { gltfData::ResolveNodeMatrix( node ); idMat4 nodeToWorldTransform = transform * node->matrix; if( node->mesh != -1 ) { for( auto prim : data->MeshList()[node->mesh]->primitives ) { entity->AddPrimitive( MapPolygonMesh::ConvertFromMeshGltf( prim, data, nodeToWorldTransform ) ); } } for( auto& child : node->children ) { AddMeshesToWorldspawn_r( entity, data->NodeList()[child], nodeToWorldTransform, data ); } }; int idMapEntity::GetEntities( gltfData* data, EntityListRef entities, int sceneID ) { idMapEntity* worldspawn = new( TAG_IDLIB_GLTF ) idMapEntity(); worldspawn->epairs.Set( "classname", "worldspawn" ); entities.Append( worldspawn ); bool wpSet = false; int entityCount = 0; for( auto& nodeID : data->SceneList()[sceneID]->nodes ) { auto* node = data->NodeList()[nodeID]; const char* classname = node->extras.strPairs.GetString( "classname" ); bool isWorldSpawn = idStr::Icmp( classname, "worldspawn" ) == 0; if( isWorldSpawn ) { assert( !wpSet ); worldspawn->epairs.Copy( node->extras.strPairs ); wpSet = true; } else { // account all meshes starting with "worldspawn." or "BSP" in the name if( idStr::Icmpn( node->name, "BSP", 3 ) == 0 || idStr::Icmpn( node->name, "worldspawn.", 11 ) == 0 ) { AddMeshesToWorldspawn_r( worldspawn, node, blenderToDoomTransform, data ); } else { idStr classname = node->extras.strPairs.GetString( "classname" ); // skip everything that is not an entity if( !classname.IsEmpty() ) { idMapEntity* newEntity = new( TAG_IDLIB_GLTF ) idMapEntity(); entities.Append( newEntity ); if( node->name.Length() ) { newEntity->epairs.Set( "name", node->name ); } // copy custom properties filled in Blender idDict newPairs = node->extras.strPairs; newPairs.SetDefaults( &newEntity->epairs ); newEntity->epairs = newPairs; // gather entity transform and bring it into id Tech 4 space gltfData::ResolveNodeMatrix( node ); idMat4 entityToWorldTransform = blenderToDoomTransform * node->matrix; idMat4 worldToEntityTransform = entityToWorldTransform.Inverse(); // set entity transform in a way the game and physics code understand it idVec3 origin = blenderToDoomTransform * node->translation; newEntity->epairs.SetVector( "origin", origin ); #if 0 if( idStr::Icmp( classname, "info_player_start" ) != 0 ) //if( !node->matrix.IsIdentity() ) { idMat3 rotation = entityToWorldTransform.ToMat3(); newEntity->epairs.SetMatrix( "rotation", rotation ); } #endif #if 1 for( int i = 0; i < newEntity->epairs.GetNumKeyVals(); i++ ) { const idKeyValue* kv = newEntity->epairs.GetKeyVal( i ); idLib::Printf( "entity[ %s ] key = '%s' value = '%s'\n", node->name.c_str(), kv->GetKey().c_str(), kv->GetValue().c_str() ); } #endif // add meshes from all subnodes ProcessSceneNode_r( newEntity, node, mat4_identity, worldToEntityTransform, data ); entityCount++; } } } } return entityCount; }