Added spherical harmonics math

This commit is contained in:
Robert Beckebans 2021-04-08 12:06:14 +02:00
parent 36105c277c
commit ee4085b388
2 changed files with 428 additions and 0 deletions

View file

@ -275,6 +275,7 @@ public:
#include "math/Curve.h"
#include "math/Ode.h"
#include "math/Lcp.h"
#include "math/SphericalHarmonics.h"
// bounding volumes
#include "bv/Sphere.h"

View file

@ -0,0 +1,427 @@
/*
The MIT License (MIT)
Copyright (c) 2015 Yuriy O'Donnell
Copyright (c) 2021 Robert Beckebans (id Tech 4.x integration)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef __MATH_SPHERICAL_HARMONICS_H__
#define __MATH_SPHERICAL_HARMONICS_H__
// https://graphics.stanford.edu/papers/envmap/envmap.pdf
template <typename T, size_t L>
struct SphericalHarmonicsT
{
T data[( L + 1 ) * ( L + 1 )];
const T& operator []( size_t i ) const
{
return data[i];
}
T& operator []( size_t i )
{
return data[i];
}
T& at( int l, int m )
{
return data[l * l + l + m];
}
const T& at( int l, int m ) const
{
return data[l * l + l + m];
}
};
typedef SphericalHarmonicsT<float, 1> SphericalHarmonicsL1;
typedef SphericalHarmonicsT<float, 2> SphericalHarmonicsL2;
typedef SphericalHarmonicsT<idVec3, 1> SphericalHarmonicsL1RGB;
typedef SphericalHarmonicsT<idVec3, 2> SphericalHarmonicsL2RGB;
template <typename T, size_t L>
SphericalHarmonicsL1 shEvaluateL1( idVec3 p );
SphericalHarmonicsL2 shEvaluateL2( idVec3 p );
inline size_t shSize( size_t L )
{
return ( L + 1 ) * ( L + 1 );
}
template <typename Ta, typename Tb, typename Tw, size_t L>
inline void shAddWeighted( SphericalHarmonicsT<Ta, L>& accumulatorSh, const SphericalHarmonicsT<Tb, L>& sh, const Tw& weight )
{
for( size_t i = 0; i < shSize( L ); ++i )
{
accumulatorSh[i] += sh[i] * weight;
}
}
template <typename Ta, typename Tb, size_t L>
inline Ta shDot( const SphericalHarmonicsT<Ta, L>& shA, const SphericalHarmonicsT<Tb, L>& shB )
{
Ta result = Ta( 0 );
for( size_t i = 0; i < shSize( L ); ++i )
{
result += shA[i] * shB[i];
}
return result;
}
template <size_t L>
inline SphericalHarmonicsT<float, L> shEvaluate( idVec3 p )
{
// From Peter-Pike Sloan's Stupid SH Tricks
// http://www.ppsloan.org/publications/StupidSH36.pdf
// https://github.com/dariomanesku/cmft/blob/master/src/cmft/cubemapfilter.cpp#L130
static_assert( L <= 4, "Spherical Harmonics above L4 are not supported" );
SphericalHarmonicsT<float, L> result;
const float x = -p.x;
const float y = -p.y;
const float z = p.z;
const float x2 = x * x;
const float y2 = y * y;
const float z2 = z * z;
const float z3 = z2 * z;
const float x4 = x2 * x2;
const float y4 = y2 * y2;
const float z4 = z2 * z2;
const float sqrtPi = sqrt( idMath::PI );
size_t i = 0;
result[i++] = 1.0f / ( 2.0f * sqrtPi );
if( L >= 1 )
{
result[i++] = -sqrt( 3.0f / ( 4.0f * idMath::PI ) ) * y;
result[i++] = sqrt( 3.0f / ( 4.0f * idMath::PI ) ) * z;
result[i++] = -sqrt( 3.0f / ( 4.0f * idMath::PI ) ) * x;
}
if( L >= 2 )
{
result[i++] = sqrt( 15.0f / ( 4.0f * idMath::PI ) ) * y * x;
result[i++] = -sqrt( 15.0f / ( 4.0f * idMath::PI ) ) * y * z;
result[i++] = sqrt( 5.0f / ( 16.0f * idMath::PI ) ) * ( 3.0f * z2 - 1.0f );
result[i++] = -sqrt( 15.0f / ( 4.0f * idMath::PI ) ) * x * z;
result[i++] = sqrt( 15.0f / ( 16.0f * idMath::PI ) ) * ( x2 - y2 );
}
if( L >= 3 )
{
result[i++] = -sqrt( 70.0f / ( 64.0f * idMath::PI ) ) * y * ( 3.0f * x2 - y2 );
result[i++] = sqrt( 105.0f / ( 4.0f * idMath::PI ) ) * y * x * z;
result[i++] = -sqrt( 21.0f / ( 16.0f * idMath::PI ) ) * y * ( -1.0f + 5.0f * z2 );
result[i++] = sqrt( 7.0f / ( 16.0f * idMath::PI ) ) * ( 5.0f * z3 - 3.0f * z );
result[i++] = -sqrt( 42.0f / ( 64.0f * idMath::PI ) ) * x * ( -1.0f + 5.0f * z2 );
result[i++] = sqrt( 105.0f / ( 16.0f * idMath::PI ) ) * ( x2 - y2 ) * z;
result[i++] = -sqrt( 70.0f / ( 64.0f * idMath::PI ) ) * x * ( x2 - 3.0f * y2 );
}
if( L >= 4 )
{
result[i++] = 3.0f * sqrt( 35.0f / ( 16.0f * idMath::PI ) ) * x * y * ( x2 - y2 );
result[i++] = -3.0f * sqrt( 70.0f / ( 64.0f * idMath::PI ) ) * y * z * ( 3.0f * x2 - y2 );
result[i++] = 3.0f * sqrt( 5.0f / ( 16.0f * idMath::PI ) ) * y * x * ( -1.0f + 7.0f * z2 );
result[i++] = -3.0f * sqrt( 10.0f / ( 64.0f * idMath::PI ) ) * y * z * ( -3.0f + 7.0f * z2 );
result[i++] = ( 105.0f * z4 - 90.0f * z2 + 9.0f ) / ( 16.0f * sqrtPi );
result[i++] = -3.0f * sqrt( 10.0f / ( 64.0f * idMath::PI ) ) * x * z * ( -3.0f + 7.0f * z2 );
result[i++] = 3.0f * sqrt( 5.0f / ( 64.0f * idMath::PI ) ) * ( x2 - y2 ) * ( -1.0f + 7.0f * z2 );
result[i++] = -3.0f * sqrt( 70.0f / ( 64.0f * idMath::PI ) ) * x * z * ( x2 - 3.0f * y2 );
result[i++] = 3.0f * sqrt( 35.0f / ( 4.0f * ( 64.0f * idMath::PI ) ) ) * ( x4 - 6.0f * y2 * x2 + y4 );
}
return result;
}
inline SphericalHarmonicsL1 shEvaluateL1( idVec3 p )
{
return shEvaluate<1>( p );
}
inline SphericalHarmonicsL2 shEvaluateL2( idVec3 p )
{
return shEvaluate<2>( p );
}
inline float shEvaluateDiffuseL1Geomerics( const SphericalHarmonicsL1& sh, const idVec3& n )
{
// http://www.geomerics.com/wp-content/uploads/2015/08/CEDEC_Geomerics_ReconstructingDiffuseLighting1.pdf
float R0 = sh[0];
idVec3 R1 = 0.5f * idVec3( sh[3], sh[1], sh[2] );
float lenR1 = R1.Length();
//float q = 0.5f * (1.0f + dot(R1 / lenR1, n));
float q = 0.5f * ( 1.0f + ( R1 / lenR1 ) * n );
float p = 1.0f + 2.0f * lenR1 / R0;
float a = ( 1.0f - lenR1 / R0 ) / ( 1.0f + lenR1 / R0 );
return R0 * ( a + ( 1.0f - a ) * ( p + 1.0f ) * pow( q, p ) );
}
template <typename T, size_t L>
inline SphericalHarmonicsT<T, L> shConvolveDiffuse( SphericalHarmonicsT<T, L>& sh )
{
SphericalHarmonicsT<T, L> result;
// https://cseweb.ucsd.edu/~ravir/papers/envmap/envmap.pdf equation 8
const float A[5] =
{
pi,
pi * 2.0f / 3.0f,
pi * 1.0f / 4.0f,
0.0f,
-pi * 1.0f / 24.0f
};
int i = 0;
for( int l = 0; l <= ( int )L; ++l )
{
for( int m = -l; m <= l; ++m )
{
result[i] = sh[i] * A[l];
++i;
}
}
return result;
}
template <typename T, size_t L>
inline T shEvaluateDiffuse( const SphericalHarmonicsT<T, L>& sh, const idVec3& direction )
{
static_assert( L <= 4, "Spherical Harmonics above L4 are not supported" );
SphericalHarmonicsT<float, L> directionSh = shEvaluate<L>( direction );
// https://cseweb.ucsd.edu/~ravir/papers/envmap/envmap.pdf equation 8
const float A[5] =
{
pi,
pi * 2.0f / 3.0f,
pi * 1.0f / 4.0f,
0.0f,
-pi * 1.0f / 24.0f
};
size_t i = 0;
T result = sh[i] * directionSh[i] * A[0];
++i;
if( L >= 1 )
{
result += sh[i] * directionSh[i] * A[1];
++i;
result += sh[i] * directionSh[i] * A[1];
++i;
result += sh[i] * directionSh[i] * A[1];
++i;
}
if( L >= 2 )
{
result += sh[i] * directionSh[i] * A[2];
++i;
result += sh[i] * directionSh[i] * A[2];
++i;
result += sh[i] * directionSh[i] * A[2];
++i;
result += sh[i] * directionSh[i] * A[2];
++i;
result += sh[i] * directionSh[i] * A[2];
++i;
}
// L3 and other odd bands > 1 have 0 factor
if( L >= 4 )
{
i = 16;
result += sh[i] * directionSh[i] * A[4];
++i;
result += sh[i] * directionSh[i] * A[4];
++i;
result += sh[i] * directionSh[i] * A[4];
++i;
result += sh[i] * directionSh[i] * A[4];
++i;
result += sh[i] * directionSh[i] * A[4];
++i;
result += sh[i] * directionSh[i] * A[4];
++i;
result += sh[i] * directionSh[i] * A[4];
++i;
result += sh[i] * directionSh[i] * A[4];
++i;
result += sh[i] * directionSh[i] * A[4];
++i;
}
return result;
}
template <typename T>
inline T shEvaluateDiffuseL1( const SphericalHarmonicsT<T, 1>& sh, const idVec3& direction )
{
return shEvaluateDiffuse<T, 1>( sh, direction );
}
template <typename T>
inline T shEvaluateDiffuseL2( const SphericalHarmonicsT<T, 2>& sh, const idVec3& direction )
{
return shEvaluateDiffuse<T, 2>( sh, direction );
}
template <size_t L>
float shFindWindowingLambda( const SphericalHarmonicsT<float, L>& sh, float maxLaplacian )
{
// http://www.ppsloan.org/publications/StupidSH36.pdf
// Appendix A7 Solving for Lambda to Reduce the Squared Laplacian
float tableL[L + 1];
float tableB[L + 1];
tableL[0] = 0.0f;
tableB[0] = 0.0f;
for( int l = 1; l <= ( int )L; ++l )
{
tableL[l] = float( sqr( l ) * sqr( l + 1 ) );
float B = 0.0f;
for( int m = -1; m <= l; ++m )
{
B += sqr( sh.at( l, m ) );
}
tableB[l] = B;
}
float squaredLaplacian = 0.0f;
for( int l = 1; l <= ( int )L; ++l )
{
squaredLaplacian += tableL[l] * tableB[l];
}
const float targetSquaredLaplacian = maxLaplacian * maxLaplacian;
if( squaredLaplacian <= targetSquaredLaplacian )
{
return 0.0f;
}
float lambda = 0.0f;
const u32 iterationLimit = 10000000;
for( u32 i = 0; i < iterationLimit; ++i )
{
float f = 0.0f;
float fd = 0.0f;
for( int l = 1; l <= ( int )L; ++l )
{
f += tableL[l] * tableB[l] / sqr( 1.0f + lambda * tableL[l] );
fd += ( 2.0f * sqr( tableL[l] ) * tableB[l] ) / cube( 1.0f + lambda * tableL[l] );
}
f = targetSquaredLaplacian - f;
float delta = -f / fd;
lambda += delta;
if( abs( delta ) < 1e-6f )
{
break;
}
}
return lambda;
}
template <typename T, size_t L>
void shApplyWindowing( SphericalHarmonicsT<T, L>& sh, float lambda )
{
// From Peter-Pike Sloan's Stupid SH Tricks
// http://www.ppsloan.org/publications/StupidSH36.pdf
int i = 0;
for( int l = 0; l <= ( int )L; ++l )
{
float s = 1.0f / ( 1.0f + lambda * l * l * ( l + 1.0f ) * ( l + 1.0f ) );
for( int m = -l; m <= l; ++m )
{
sh[i++] *= s;
}
}
}
#if 0
template <typename T, size_t L>
inline T shMeanSquareError( const SphericalHarmonicsT<T, L>& sh, const idArray<RadianceSample>& radianceSamples )
{
T errorSquaredSum = T( 0.0f );
for( const RadianceSample& sample : radianceSamples )
{
auto directionSh = shEvaluate<L>( sample.direction );
auto reconstructedValue = shDot( sh, directionSh );
auto error = sample.value - reconstructedValue;
errorSquaredSum += error * error;
}
float sampleWeight = 1.0f / radianceSamples.size();
return errorSquaredSum * sampleWeight;
}
template <typename T, size_t L>
inline float shMeanSquareErrorScalar( const SphericalHarmonicsT<T, L>& sh, const idArray<RadianceSample>& radianceSamples )
{
return dot( shMeanSquareError( sh, radianceSamples ), T( 1.0f / 3.0f ) );
}
#endif
template <size_t L>
inline SphericalHarmonicsT<float, L> shLuminance( const SphericalHarmonicsT<idVec3, L>& sh )
{
SphericalHarmonicsT<float, L> result;
for( size_t i = 0; i < shSize( L ); ++i )
{
result[i] = rgbLuminance( sh[i] );
}
return result;
}
#endif // __MATH_SPHERICAL_HARMONICS_H__